(3.235.11.178) 您好!臺灣時間:2021/03/07 08:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:許永昌
研究生(外文):Mike Hsu
論文名稱:微波輔助合成高分子微球及導電高分子微球之製備與性質研究
論文名稱(外文):Study in Preparation and Property of Microwave-Assisted Synthesis of Polymer Microspheres and Conducting Microsphere Materials
指導教授:楊勝俊
指導教授(外文):S.J.Yang
學位類別:碩士
校院名稱:萬能科技大學
系所名稱:材料科技研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:98
語文別:中文
論文頁數:82
中文關鍵詞:高分子微球微波輔助加熱導電性
外文關鍵詞:Polymer microspheresMicrowave-assisted heatingConductive
相關次數:
  • 被引用被引用:1
  • 點閱點閱:281
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:60
  • 收藏至我的研究室書目清單書目收藏:0
近年來,有機-無機複合微球的製備越來越受到關注,這是因為有機-無機複合微球兼具有機材料和無機材料兩者的優勢,既具備有機材料的可塑性、易加工性以及生物兼容性,又有無機物的剛性、磁性以及導電性等性能。
微波代替常規加熱法進行反應有著加熱速率快,轉化率高,能耗低等優點。透過實驗進一步說明微波輔助加熱聚合在製備高分子微球的優勢所在,即可縮短聚合反應時問,降低能耗的同時,也可以製備出粒徑均一的高分子微球。
本研究將利用特殊之微波促進反應方式,結合懸浮、沉澱、分散及乳化之聚合法。實驗是以MMA(Methyl Methacrylate)為主單體、EM-261( Dipentaerythritol Hexaacrylate )為共單體、AIBN( 2,2-Azobisisobutyronitrile )為引發劑、PVA( Poly vinyl Acohol )為分散劑、純水,於三頸瓶中通入氮氣,以微波促進加熱反應30分鐘後成功製備粒徑30μm~50μm左右的高分子微球,最後利用無電解電鍍法( Electroless plating )之技術,將銅金屬沉積於高分子微球表面,形成導電性高分子微球,應用於光電相關產業中。
In recent years, organic-inorganic composite microspheres are received more attention, because the organic-inorganic composite microspheres had many advantages, such as easy to manufacture, had biological compatibility, and with inorganic rigid, magnetic and conductive properties.
Compared with many synthesis methods, microwave had many advantages to instead of conventional heating method, such as fast heating rate, conversion rate, and low power consumption. From this report, it showed that through the microwave-assisted heating polymerization in preparation of polymer microspheres can short the reaction time, reduce energy consumption and also form uniform size polymer microspheres.
This study used the microwave to promote reaction efficiency, and the particular combination suspension, precipitation, dispersion and emulsification of the polymerization also be used. Experiment is based on MMA (methyl methacrylate)-based monomer, EM-261 (dipentaerythritol hexaacrylate) as co-monomer, AIBN (2,2-azobisisobutyronitrile) as the initiator, PVA (poly vinyl acohol) as dispersant, water 170 ml, into the three bottle neck then purge nitrogen. After microwave heating for 30 minutes, diameter of about 30μm~50μm polymer microspheres is formed, then we use non-electrolytic plating (electroless plating) technology to despite copper metal on the surface of polymeric microspheres to form a conductive polymer microspheres which has potential to be used in optical-related industries in the future.
摘要...................................................... I
Abstract ................................................ II
誌謝.............................................III
目錄..................................................... IV
表目錄................................................VIII
圖目錄.............................................. IX
第一章 緒論..........................................1
前 言............................................1
第二章 原理與文獻回顧...............................3
2-1 微波輻射用於聚合反應的研究進展........................4
2-1-1 微波輻射乳液聚合..............................4
2-1-2 微波輻射溶液聚合..............................6
2-1-3 微波輻射本體聚合..............................6
2-1-4 微波輻射其它聚合反應.........................7
2-2 聚合反應的種類.......................................8
2-2-1 分散聚合法...................................8
2-2-2 種子溶脹聚合法...............................9
2-2-3 乳液聚合法.................................9
2-2-4 無皂乳液聚合法..............................10
2-2-5 微乳液聚合法.................................10
2-2-6 細微乳液聚合法.................................11
2-2-7 懸浮聚合法..................................11
2-2-8 沉澱聚合法...................................12
2-3 單體的選擇..........................................12
2-4 分散介質的選擇.................................13
2-5 引發劑的選擇....................................14
2-6 穩定劑的選擇..................................14
2-7 各種不同形態複合微球的研究進展.....................15
2-7-1 中空型微球...................................15
2-7-2 雙半球形微球...............................15
2-7-3 漢堡型微球...................................15
2-7-4 洋蔥型微球................................16
2-7-5 高爾夫球型微球...............................16
2-7-6 親水-疏水微區交替排列型微球........................16
2-7-7 章魚型微球.............................16
2-7-8 有機一無機複合微球..................................17
2-8 無電解電鍍(Electroless plating)......................17
2-8-2 化學鍍銅溶液的配方組成.............................19
2-8-3 微球金屬化基本製程................................21
2-9文獻回顧...............................................22
2-10 研究動機.............................................24
第三章 實驗部份...........................................25
3-1 實驗藥品.............................................25
3-2 實驗儀器設備..........................................27
3-3 實驗步驟.............................................28
3-3-1 利用微波輔助加熱聚合法製備共聚合高分子微球......28
3-3-2 無電解電鍍銅於高分子微球之製備及方法..............28
3-4 實驗總架構......................................29
第四章 結果與討論....................................30
4-1傳統合成加熱法製備高分子微球之探討.....................34
4-2微波輔助合成製備高分子微球之探討.......................39
4-3利用紅外光譜儀(FTIR)分析Poly(MMA-co-EM-261)、
Poly(MMA-co-EM-235)共聚合高分子.....................58
4-4利用熱重損失分析儀(TGA)分析Poly(MMA-co-EM-261)、
Poly(MMA-co-EM-235)共聚合高分子.....................59
4-5導電高分子微球之製備...............................60
第五章結論.......................................63
參 考 文 獻................................65
表目錄
表一:以傳統加熱合成法製備高分子微球之實驗配方............35
表二:以MMA與各種共單體以微波輔助合成製備高分子微球之實驗
配方.............................................40
表三:不同分散劑(PVA)濃度下MMA與EM-261以微波輔助合成製備
高分子微球之實驗配方............................45
表四:不同主單體(MMA)濃度下與EM-261以微波輔助合成製備高分
子微球之實驗配方.................................49
表五:不同均質時間下MMA與EM-261以微波輔助合成製備高分子微
球之實驗配方....................................52
表六:不同均質轉速速率下MMA與EM-261以微波輔助合成製備高分
子微球之實驗配方.............................55
表七:無電解電鍍銅之製備微球..........................60
圖目錄
圖2-1化學鍍銅反應式..................................22
圖4-1 MMA/HEMA 微波加熱製備合成高分子微球合成圖...........31
圖4-2 MMA/EM-235 微波加熱製備合成高分子微球合成圖.........32
圖4-3 MMA/EM-261 微波加熱製備合成高分子微球合成圖.........33
圖4-1-1 由SEM 於500倍觀察A1-1,Poly ( MMA-co-HEMA ),AIBN
0.1 g的表面形態變化...............................36
圖4-1-2 由SEM 於500倍觀察A1-2,Poly ( MMA-co-HEMA ),AIBN
0.5 g的表面形態變化..................................36
圖4-1-3 由SEM 於500倍觀察A1-3,Poly ( MMA-co-EM-235 ),AIBN
0.1 g的表面形態變化...............................37
圖4-1-4 由SEM 於500倍觀察A1-4,Poly ( MMA-co-EM-235 ),AIBN
0.5 g的表面形態變化..............................37
圖4-1-5 由SEM 於500倍觀察A1-5,Poly ( MMA-co-EM-261 ) ,
AIBN 0.1 g的表面形態變化........................38
圖4-1-6 由SEM 於500倍觀察A1-6,Poly ( MMA-co-EM-261 ),AIBN
0.5 g的表面形態變化...............................38
圖4-2-1 由SEM 於500倍觀察B1-1,Poly ( MMA-co-HEMA ),AIBN
0.1 g的表面形態變化......................................41
圖4-2-2 由SEM 於500倍觀察B1-2,Poly ( MMA-co-HEMA ),AIBN
0.5 g的表面形態變化......................................41
圖4-2-3 由SEM 於500倍觀察B1-3,Poly ( MMA-co-EM-235 ),AIBN
0.1 g的表面形態及粒徑變化...........................42
圖4-2-4 由SEM 於500倍觀察B1-4,Poly ( MMA-co-EM-235 ),AIBN
0.5 g的表面形態及粒徑變化.........................42
圖4-2-5 由SEM 於500倍觀察B1-5,Poly ( MMA-co-EM-261 ),AIBN
0.1 g的表面形態及粒徑變化...............................43
圖4-2-6 由SEM 於500倍觀察B1-6,Poly ( MMA-co-EM-261 ),AIBN
0.5 g的表面形態及粒徑變化..........................43
圖4-2-8 由SEM 於500倍觀察B2-1,Poly ( MMA-co-EM-261 ),PVA
0.01 wt%的表面形態及粒徑變化........................46
圖4-2-9 由SEM 於500倍觀察B2-2,Poly ( MMA-co-EM-261 ),PVA
0.05 wt%的表面形態及粒徑變化.........................46
圖4-2-10 由SEM 於500倍觀察B2-3 .,Poly ( MMA-co-EM-261 ),
PVA 0.1 wt%的表面形態及粒徑變化.....................47
圖4-2-11 由SEM 於500倍觀察B2-4..,Poly ( MMA-co-EM-261 ),
PVA 0.3 wt%的表面形態及粒徑變化......................47
圖4-2-12 由SEM 於500倍觀察B2-5 .,Poly ( MMA-co-EM-261 ),PVA 0.5 wt%的表面形態及粒徑變化.......................48
圖4-2-13 由SEM 於2500倍觀察B2-6,Poly ( MMA-co-EM-261 ),
PVA 1.0 wt%的表面形態及粒徑變化..........................48
圖4-2-14 由SEM 於1000倍觀察B3-1,Poly ( MMA-co-EM-261 ),
MMA 5g的表面形態變化...............................50
圖4-2-15 由SEM 於1000倍觀察B3-2,Poly ( MMA-co-EM-261 ),
MMA 10g的表面形態變化..............................50
圖4-2-16 由SEM 於1000倍觀察B3-3,Poly ( MMA-co-EM-261 ),
MMA 15g的表面形態變化..............................51
圖4-2-17 由SEM 於1000倍觀察B3-4,Poly ( MMA-co-EM-261 ),
MMA 20g的表面形態變化.............................51
圖4-2-18 均質機時間對微球平均粒徑的影響..................52
圖4-2-19 由SEM 於300倍觀察B4-1,Poly ( MMA-co-EM-261 ),
均質機攪拌10 min 的表面形態及粒徑變化..............53
圖4-2-20 由SEM 於500倍觀察B4-2,Poly ( MMA-co-EM-261 ),
均質機攪拌30 min 的表面形態及粒徑變化...............53
圖4-2-21 由SEM 於1000倍觀察B4-3,Poly ( MMA-co-EM-261 ),
均質機攪拌60 min 的表面形態及粒徑變化..............54
圖4-2-22 由SEM 於5000倍觀察B4-4,Poly ( MMA-co-EM-261 ),均質機攪拌120 min的表面形態及粒徑變化.....................54
圖4-2-23均質機速率對微球平均粒徑的影響...................55
圖4-2-24 由SEM 於500倍觀察B5-1,Poly ( MMA-co-EM-261 ),
均質機轉速3400 rpm的表面形態及粒徑變化...................56
圖4-2-25 由SEM 於500倍觀察B5-2,Poly ( MMA-co-EM-261 ),
均質機轉速5000 rpm的表面形態及粒徑變化...................56
圖4-2-26 由SEM 於500倍觀察B5-3,Poly ( MMA-co-EM-261 ),
均質機轉速7500 rpm的表面形態及粒徑變化...................57
圖4-2-27 由SEM 於500倍觀察B5-4,Poly ( MMA-co-EM-261 ),
均質機轉速10000 rpm的表面形態及粒徑變化.................57
圖4-3-1 Poly(MMA-co-EM-235/EM-261)紅外線IR光譜圖.........58
圖4-4-1 Poly(MMA-co-EM-235) 熱分析 TGA 分析圖............59
圖4-4-2 Poly(MMA-co-EM-261)熱分析 TGA分析圖...............59
圖4-5-1 由OM 於500倍觀察鍍銅微球的表面形態及粒徑變化.....61
圖4-5-2 由OM 於500倍觀察鍍銅微球的表面形態及粒徑變化.....61
圖4-5-3 化學鍍銅微球之EDX分析圖......................62
[1] Vanderhof J W , Bradford E B. Polymer ColloidI [M ](Filch R M. Ed).NewYork:Plenum Press,1 971,1 02116
[2] Ugelstad J, Berge A, Ellingsen T, Schmid R, Nilsen T N, Mork P C, Stenstad P,Homes E, Olsvik O .Preparation and application of newMonosized polymer particles[J]. Prog Polym Sci,1992,17:87.
[3] Chen Mingqing, Kishida A, Serizawa T, et al. Particle Size Control of PEG Coated Polystyrene Nanoparticles by Macromonomer Method[J].Polym Sci PartA:Polym Chem,1999, 37 (13):2155~2166
[4] 陈明清,陈瑜,刘晓亚等.热敏性聚(N-乙烯基异丁酸胺)接枝高分子微球的合成[J].高分子学报,2002,(4):447~451
[5] Chen Mingqing, ChenYu, KanekoT, et al. Pb 2+-Specific Adsorption/Desorption onto Core- Corona Type Polymeric Nanospheres Bearing Special Anionic Azo-Chromophore[J]. Polym J, 2003,35 (8):68 8~690
[6] Rahul Sharma,R.C. Agarwala,V.Agarwala,Development of copper coatings on ceramic powder by electroless technique,Available online 6 January 2006:1-7
[7] Deckert Cheryl A. ,Electroless copper plating a review :part I,Plating and Surface Finishing,1995,82(2): 48-55
[8] Palacios F, Valverde C. New Polymeric Materials,1996,5:93.
[9] Correa R, Gonzalez G, Dongar V. Emulsion polymerization in a microwavereactor Polymer,1998,39:147l~1474.
[10] Xu X, Zhang A. The 14th Annual Meeting of Polymer Processing Socicty (PPS-14).Yokohama, Japan:June 8.12,1998.
[11] Xu X, Zhang A. The 37th IUPAC International Symposium on Macromolecules. Gold Coast, Australia:July 12.17,1998.
[12] 张爱民,李惠林,何其佳,等.微波辐照增韧高密度聚乙烯共混材料的研究【J】. 高分子材料科学与工程,2002,18(3):98~101.
[13] Boey F Y C, Yap B H, Chia L. Poly Tes,1999,18:93..
[14] Fang X, Ronald H, Scola D A. J Polym Sci, Part A, Polym Chem, 2000,38:2526.
[15] Marry M, Charlesworth D, Swires,et a1.J Chem Soc Faraday Trans,1994,90:1999.
[16] 张文敏,唐业仓,张洪涛,等.微波合成均分散胶体高分子微球【J】.物理化学学 报,1996,12(10):943~945.
[17] Correa R,Gonzalez G, Dougar V Emulsion polymerization in a microwave【J】. Polymer,1998,39:147l~1474.
[18] 汤勇铮,唐业仓,罗时忠,等.微波制备均分散无皂高分子纳米微球【J】.物学学报,1998,14(7):620.
[19] 唐业仓,傅中,孙益民,等.无皂乳液聚合合成均分散PMMA微球【J】.应用化学,2002, 19(10):98l~984.
[20] He W D, Pan C, Lu T Y. Soapless emulsion polymerization of butyl methacrylate through microwave heating【J】. J Appl Polym Sci, 2001, 80:
2455~2459.
[21] 包建军,张爱民.甲基丙烯酸甲酯的微波聚合特性和产物结构【J】.高分子材料科学与工程,2002,18(2):78~81.
[22] 顾梅,朱秀林,路建美,等.微波法合成两性高吸水性树脂【J】.高分子材料科学与工程,I 997,l 3(5):36~39.
[23] Chia H L, Jacob J, Boey F Y C.J Polym Sci, PartA : Polym Chem, 1996, 34:2087.
[24] Jacob J, Chia H L, Boey FYC. Microwave polymerization of poly(methyl acrylate):Conversion studies at variable power【J】. J Appl Po1ym Sci, l997,63:787~797.
[25] 李杰, 赵建青, 沈家瑞.微波作用下的甲基丙烯酸甲酯的本体聚合【J】.高分子材料科学与工程,1999,15:l~5.
[26] Zhu X L, Zhou N C, He X M, et al. Atom transfer radical bulk polymerization of methyl methacrylate under microwave irradiation【J】. J Appl Polym Sci,2003, 88:1787~1793.
[27] Cheng Z P, Zhu X L, Chen G J, et a1. J Polm Sci, Part A:Polym chem,2002,40: 3823.
[28] Chen Z P, Zhu X L, Chen M, et al. Atom transfer radical polymerization of methyl methacrylate with low concentration of initiating system under microwave irradiation【J】. Polymer, 2003, 44:2243~2247.
[29] Chen Z P, Zhu X L, Zhang L F, et al. RATRP of MMA in AIBN/FeCl3/PPh3 initiation system under microwave irradiation 【J】. Polymer Bulletin, 2003, 49:363~369.
[30] Xiao Bing WANG,Zhao Hui ZHENG,Xiao Bin DING,etal.Synthesis of Molecularly Imprinted Polymer Particles by Suspension Polymerization in
Sillicom Oil.Chinese Chemical Letters,2006,17(9):1243~1246
[31] 胡建华,吕绪良,杨武利,等。.单分散聚合物微球的制备及其影响因素.复旦学报(自然科学版) ,1997,36(4):464~468
[32] 高建平,于九皋,王为,等单分散性聚苯乙烯微球的研究一反应介质和引发剂浓度的影响天津大学学报,1999,32(1):127~129
[33] 王为,郭鹤桐,高建平。单分散性聚苯乙烯微球的研究一稳定剂、反应温度和单体浓度的影响。天津大学学报,1999,32(2):145~148
[34] 张凯,傅强,黄渝鸿,等。反应条件对聚合物微球粒径及其分布影响.离子交换与吸附,2004,20(6):555~561
[35] 孙蓉,袁小亚,黄锦霞.交联剂和后滴加法对微米级聚合物均球属性和粒径的影响。2004,26(2):141~143
[36] 周洪,黄光速,何和阳,等.交联聚苯乙烯单分散微球的制备.化学研究与应用,2005,17(1):107~ 109
[37] 张凯,傅强,黄渝鸿,等.异方向导电膜用交联聚苯乙烯微球的研制绝缘材料,2005,3:1~4
[38] 张洪涛,黄锦霞,江兵兵,等.制备单分散交联聚苯乙烯微球共聚合动力学和粒径的研究.应用化学,2001,18(9):726~730
[39] 张凯,雷毅,王宇光,等.单分散聚苯乙烯微球的制备及影响因素研究功能高分子学报,002V15(2):189~192
[40] 李红,张礼林,关燕霞,等.葡萄糖水溶液分散物系悬浮聚合法制备微米级单分散交联聚苯乙烯微球.石油化工,2006,35(6):70~73
[41] 丁先锋,段海宝,李秋萍,等.单分散交联聚苯乙烯的合成化工进展,2003,22(11):1207~1209
[42] 高建平,于九皋,王为,等.苯乙烯分散聚合反应化工进展,1998,3:2~24
[43] 李璐,文秀芳,皮王辉,等.种子溶胀聚合制备苯乙烯一二乙烯苯多孔交联微球.精细化工,2006,23(6):527~531
[44] 罗付生.功能型复合超微粒子的制备研究:博士学位论文.南京:南京理工大学,2002
[45] 段海宝,蔡宇杰,丁先锋,等.粒径单分散高聚物微球制备研究进展高分子材料科学与工程,2003,19(5):28~31
[46] 郝广杰,申小义,梁志武,等乳液法制备中空结构聚合物研究进展.石油化工,2003,32(6):535~538
[47] 刘岚,卢保森,郑军军,等.种子溶胀聚合法制备新型分子烙印聚合物.中山大学学报(自然科学版) ,2004,43(3):45~48
[48] Lin Yi-mao,Yen Shi-chern,Effects of additives and chelating agents on electroless copper plating,Applied Surface Science,2001,178(1-4):116-126
[49] H. Tamai, S. Hamamoto, F. Nishiyama, and H. Yasuda, J. Coll. & Inter. Sci.,171,250, 1995.
[50] Chen, D. H. and Y. Y. Chen, 2001, Synthesis of Strontium Ferrite Nanoparticles Using Microemulsion Processing, J. Colloid Interface Sci., 236,P.41-46
[51] J. G. Park, J. W. Kim, and K. D. Suh, J. Appl. Polym. Sci., 87, 420, 2003.
[52] H.X. Guo, Z.P. Qin, J. Wei, and C.X. Qin, Surface & Coatings Technology,200, 2531, 2005.
[53] 黄菁菁,曾少敏,徐祖顺,易昌凤等.高分子材料科学与工程,2007, (23)6:204~206
[54] 陈明清,陆剑燕,江金强,刘晓亚等.江南大学学报(自然科学版),2008,7(1):123~126
[55] 庄儒彬,高保娇等.过程工程学报,2003,(8)5:1014~1017
[56] Gao Dail, Zhan Mao-Sheng, 2008, “Fabrication and electricity properties of
metal covered acrylate rubber microspheres by electroless plating” J. Beijing University of Aeronautics and Astronautics”, 34(8), P.911-915.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔