(3.231.29.122) 您好!臺灣時間:2021/02/25 22:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:廖宜真
研究生(外文):Yi-Jen Liao
論文名稱:探討甘胺酸氮甲基轉移酶在脂肪肝與肝癌形成過程中所扮演的角色
論文名稱(外文):A Study of the Role of Glycine N-methyltransferase Gene in Hepatosteatosis and Hepatocellular Carcinoma
指導教授:陳宜民陳宜民引用關係
指導教授(外文):Yi-Ming Arthur Chen
學位類別:博士
校院名稱:國立陽明大學
系所名稱:公共衛生研究所
學門:醫藥衛生學門
學類:公共衛生學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:英文
論文頁數:180
中文關鍵詞:甘胺酸氮甲基轉移&甘胺酸氮甲基轉移&甘胺酸氮甲基轉移&甘胺酸氮甲基轉移&甘胺酸氮甲基轉移&
外文關鍵詞:Glycine N-methyltransferaseHepatosteatosisHepatocellular Carcinoma
相關次數:
  • 被引用被引用:0
  • 點閱點閱:289
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:16
  • 收藏至我的研究室書目清單書目收藏:0
肝細胞癌是世界上第五大常見癌症,主要好發於男性。肝癌的形成牽涉到多種病因與階段,流行病學研究顯示:B或C型肝炎病毒感染、脂肪肝、肝硬化、黃麴毒素的攝取與基因突變等都可能是導致肝癌的危險因子。甘胺酸氮甲基轉移酶 (簡稱GNMT)在正常肝臟中含量豐富,但是在肝細胞癌組織中的表現卻被抑制。過去研究指出GNMT能與環境致癌物 (多環芳香族碳氫化合物:benao[a]pyrene,簡稱BaP) 結合,並拮抗這些致癌物所產生的細胞毒性。為了進一步研究GNMT在肝癌的形成中所扮演的角色,我們實驗室建立一個GNMT基因剔除鼠模式,發現GNMT基因剔除會產生慢性肝炎與肝醣堆積。
在本研究中,我們持續追蹤這些小鼠長達兩年,並觀察到「自發性肝癌」的產生。100%的GNMT基因剔除母鼠有自發性的肝細胞癌產生;但只有二分之ㄧ的公鼠產生肝癌。我們也發現,GNMT基因剔除造成DNA甲基化程度的改變,也影響DNA甲基轉移酵素基因、致癌基因與抑癌基因的表現。在微陣列分析的研究中顯示,MAPK訊息傳導路徑在GNMT基因剔除母鼠的表現較高。利用二維凝膠電泳分析研究發現,11周齡的GNMT基因剔除鼠肝臟中,與解毒路徑與抗氧化功能相關的蛋白質表現降低,肝臟中的氧化壓力也較高。若將細胞大量表現GNMT,則能抑制過氧化物所產生的細胞毒性。此外,我們同時將野生型與GNMT基因剔除鼠施打BaP,來研究GNMT與環境致癌物之間的關係,結果顯示:GNMT基因剔除會藉由影響小鼠肝臟的解毒路徑與抗氧化功能,而使GNMT基因剔除鼠對於環境致癌物(BaP)的感受性變高,進而促使肝癌的發生。
除此之外,本研究也發現GNMT基因剔除鼠有高脂血症與脂肪肝等症狀。在人類脂肪肝組織與小鼠誘發脂肪肝模式均發現,GNMT在脂肪肝的表現顯著降低。為了進一步探討GNMT在脂肪代謝與脂肪肝形成過程中所扮演的角色,我們利用酵母菌雙雜合系統發現GNMT會與Niemann-Pick C2 (簡稱 NPC2) 蛋白結合。NPC2是一個膽固醇的結合蛋白,主要分布於溶小體,在膽固醇的運送及維持恆定上扮演重要角色。我們利用免疫沉澱法、間接免疫螢光染色與溶小體萃取實驗發現,GNMT在細胞質與NPC2有交互作用,並能延長NPC2蛋白的穩定度。進一步將低密度脂蛋白與黃體素處理細胞,結果發現當細胞大量表現GNMT時,能降低膽固醇累積在細胞內。此外,GNMT基因剔除鼠對缺乏甲硫胺酸與膽鹼(簡稱MCD)飼料所誘發產生的脂肪肝與肝損傷均較野生型小鼠來的嚴重,在本實驗中也發現,醣基化NPC2在脂肪肝形成過程中會顯著上升,有研究報導指出此醣基化NPC2會加速膽固醇的運輸速率。利用GNMT基因轉殖鼠餵食MCD飼料後顯示,GNMT會藉由增加醣基化NPC2蛋白的表現,而促進膽固醇運輸並減緩肝臟損傷與脂肪肝的形成。
綜合本研究的結果,我們推測GNMT除了透過影響肝臟甲基化程度、解毒功能與抗氧化能力,也會經由調節膽固醇代謝來維持肝細胞正常的功能。ㄧ旦GNMT的表現降低,就會導致細胞內許多訊息傳遞路徑失去平衡,進而促使肝癌發生。

Hepatocellular carcinoma (HCC) is the fifth common cancer in the world and its incidence in male is higher than in the women. The risk factors associated with HCC development are including chronic hepatitis virus infection (HBV and HCV), toxic exposure (alcohol consumption, aflatoxin and possibly smoking) and metabolic syndrome (non-alcoholic steatohepatitis). Glycine N-methyltransferase (GNMT) expresses abundantly in liver, but is down-regulated in HCC. Previously, we reported that GNMT interacts with benzo[a]pyrene (BaP) and alters the liver detoxification pathway and prevents DNA adducts formation and subsequent cytotoxicity. In order to clarify the role GNMT in the development of HCC, our lab generated a Gnmt knockout (Gnmt-/-) mouse model and showed that both genders of Gnmt-/- mice developed chronic hepatitis and glycogen storage disease.
In this study, we continuously followed up these Gnmt-/- mice to 24 months old and showed that all female and half of male Gnmt-/- mice developed HCC spontaneously. Global DNA hypomethylation and aberrant expression of oncogenes and tumor suppressor genes were involved in the tumorigenesis of Gnmt-/- mice. Microarray and real-time PCR analyses confirmed that mitogen-activated protein kinase (MAPK) pathway was activated in Gnmt-/- mice, especially in the female mice.
The two-dimensional gel electrophoresis coupled with mass spectrometry analyses also demonstrated that proteins involved in the detoxification and anti-oxidation response were significantly down-regulated in the 11 weeks of Gnmt-/- mice. In addition, lipid peroxidation was enhanced in Gnmt-/- mice. H2O2 treatment demonstrated that GNMT can antagonize H2O2-induced cytotoxic effects. Besides, BaP challenge experiments showed that Gnmt-/- mice is more susceptible to BaP-induced liver tumorigenesis.
In addition, loss of GNMT causes the progression of hyperlipidemia, steatosis and steatohepatitis before HCC development. In human and animal fatty liver tissues, the expression of GNMT is down-regulated. In order to elucidate the role of GNMT in the pathogenesis of steatosis and HCC, yeast two hybrid screening system was conducted and identified Niemann-Pick type C2 protein (NPC2) as a GNMT interacting protein. NPC2 is a lysosomal glycoprotein and involves in the regulating intracellular cholesterol homeostasis through direct binding with free cholesterol. Co-immunoprecipitation and immunofluorescence staining showed that NPC2 interacts and co-localizes with GNMT in cytosol. Low density lipoprotein and progesterone treatment demonstrated that NPC2 can release from lysosome into cytosol and co-localize with GNMT. In the meanwhile, GNMT doubled the half life of NPC2 isoforms and reduced cholesterol accumulation. In methionine and choline deficient (MCD) diet induced steatosis and steatohepatitis model, Gnmt-/- mice is more susceptible to MCD-induced steatosis and liver damage. On the contrary, Gnmt-transgenic mice attenuates MCD-induced liver damage and steatohepatitis through enhance glycosylated-NPC2. Accordingly, our data suggest that the development of hepatosteatosis may due to the effect of GNMT deficiency on the function of NPC2. Therefore, we proposed that the interaction between GNMT and NPC2 play an important role in the regulating of the pathogenesis for steatosis and HCC.
Taken together, multiple pathways may involve in the tumorigenesis of Gnmt-/- mice: (1) Global DNA hypomethylation and aberrant expression of oncogenes and tumor suppressor genes. (2) Down-regulation of detoxification and antioxidant-related proteins, which may trigger oxidative stress and increase the susceptibility of carcinogen (ex. BaP) induced liver damage and HCC. (3) Accumulate cholesterol in the hepatocytes and trigger the development of fatty liver through attenuate NPC2 protein stability.

Chinese Abstract-----------------------------------------1
English Abstract-----------------------------------------3
Contents-------------------------------------------------5
List of Figures------------------------------------------8
List of Tables------------------------------------------10
Chapter 1 General Introduction-------------------------11
1.1 Epidemiology of human hepatocellular carcinoma-----12
1.2 The mechanisms of steatosis to steatohepatitis (two-hits hypothesis)----------------------------------------15
1.3 Mouse models for steatohepatitis and HCC-----------17
1.4 Glycine N-methyltransferase (GNMT)-----------------22
1.5 Niemann-Pick Type C2 (NPC2)------------------------26
1.6 Objective and specific aims------------------------29

Chapter 2 Characterization of a glycine N-methyltransferase gene knockout mouse model for hepatocellular carcinoma---------------------------------30
2.1 Introduction----------------------------------------31
2.2 Materials andMethods--------------------------------31
2.2.1 Animal experiments--------------------------------31
2.2.2 Global DNA methylation----------------------------32
2.2.3 Dnmt activity-------------------------------------32
2.2.4 Microarray analysis and real-time PCR-------------32
2.3 Results---------------------------------------------33
2.3.1 The gender differences of HCC formation in Gnmt-/- mice-----------------------------------------------------33
2.3.2 Sexually dimorphic expression of Gnmt perturbs DNA methylation----------------------------------------------35
2.3.3 Aberrant expression of oncogenes and tumor suppressor in Gnmt-/- mice-------------------------------36
2.3.4 Microarray analysis of genes involved in various pathways at different stages of
tumorigenesis in Gnmt-/- mice-----------------------------36
2.3.5 MAPK pathway was activated in female Gnmt-/- mice--38
2.4 Discussion -------------------------------------- 38

Chapter 3 Deficiency of glycine N-methyltransferase results in deterioration of cellular defense to stress in mouse liver----------------------------------------------41
3.1 Introduction----------------------------------------42
3.2 Materials and Methods-------------------------------42
3.2.1 Sample preparation--------------------------------42
3.2.2 Two-DE gel electrophoresis, scanning and image analysis-------------------------------------------------43
3.2.3 In-gel digestion, mass spectrometry and database searching------------------------------------------------43
3.2.4 Real-time PCR and western blot--------------------45
3.2.5 Superoxide dismutase activity and lipid peroxidation----------------------------------------------------------45
3.2.6 H2O2 treatment and cytotoxicity assay-------------45
3.2.7 Benzo[a]pyrene treatment--------------------------46
3.3 Results---------------------------------------------46
3.3.1 Overall patterns of changes in proteomics analyses-46
3.3.2 Alteration of anti-oxidation, detoxification, one-carbon and glycolytic energy metabolism pathways in Gnmt-/- mice-----------------------------------------------------47
3.3.3 Liver damage and lipid peroxidation in Gnmt-/- mice-----------------------------------------------------------49
3.3.4 GNMT antagonizes H2O2-induced cytotoxic effects---------------------------------------------------------------49
3.3.5 Gross and pathological examination of BaP treated mice-----------------------------------------------------50
3.4 Discussion------------------------------------------51

Chapter 4 GNMT is involved in the intracellular trafficking of cholesterol through interacting with Niemann-Pick Disease Type C2 protein-----------------------------55
4.1 Introduction----------------------------------------55
4.2 Materials and Methods-------------------------------57
4.2.1 Mice maintenance and autopsy----------------------57
4.2.2 Serum and hepatic lipids measurement--------------57
4.2.3 Western blot and real-time PCR analysis-----------57
4.2.4 LDL and progesterone treatment--------------------58
4.2.5 Cycloheximide treatment---------------------------58
4.2.6 IHC staining of human fatty liver and HCC tissues-59
4.2.7 Statistical analyses------------------------------59
4.3 Results---------------------------------------------59
4.3.1 GNMT is down-regulated in human fatty liver and HCC tissues--------------------------------------------------59
4.3.2 GNMT is down-regulated in methionine and choline deficient diet induced hepatosteatosis model-------------60
4.3.3 Gnmt-/- mice develop hepatosteatosis and hyperlipidemia-------------------------------------------60
4.3.4 Cholesterol metabolism is impaired in the Gnmt-/- mice-----------------------------------------------------61
4.3.5 Identification of NPC2 as a GNMT binding protein--62
4.3.6 GNMT influences intracellular cholesterol trafficking through co-localizing with NPC2 in cytosol --63
4.3.7 GNMT enhances the stability of NPC2---------------64
4.3.8 GNMT attenuates MCD-induced steatohepatitis and liver damage through enhance glycosylated-NPC2-----------65
4.4 Discussion------------------------------------------66

Chapter 5 Conclusion------------------------------------68
Figures--------------------------------------------------69
Tables--------------------------------------------------114
References----------------------------------------------128
Appendices----------------------------------------------139

Adams, L. A., and Lindor, K. D. (2007). Nonalcoholic fatty liver disease. Ann Epidemiol 17, 863-869.
Aghazadeh, S., and Yazdanparast, R. Inhibition of JNK along with activation of ERK1/2 MAPK pathways improve steatohepatitis among the rats. Clin Nutr 29, 381-385.
Aida, K., Tawata, M., Negishi, M., and Onaya, T. (1997). Mouse glycine N-methyltransferase is sexually dimorphic and regulated by growth hormone. Horm Metab Res 29, 646-649.
Anezaki, Y., Ohshima, S., Ishii, H., Kinoshita, N., Dohmen, T., Kataoka, E., Sato, W., Iizuka, M., Goto, T., Sasaki, J., et al. (2009). Sex difference in the liver of hepatocyte-specific Pten-deficient mice: A model of nonalcoholic steatohepatitis. Hepatol Res 39, 609-618.
Anstee, Q. M., and Goldin, R. D. (2006). Mouse models in non-alcoholic fatty liver disease and steatohepatitis research. Int J Exp Pathol 87, 1-16.
Aouadi, M., Binetruy, B., Caron, L., Le Marchand-Brustel, Y., and Bost, F. (2006). Role of MAPKs in development and differentiation: lessons from knockout mice. Biochimie 88, 1091-1098.
Arlt, V. M., Stiborova, M., Henderson, C. J., Thiemann, M., Frei, E., Aimova, D., Singh, R., Gamboa da Costa, G., Schmitz, O. J., Farmer, P. B., et al. (2008). Metabolic activation of benzo[a]pyrene in vitro by hepatic cytochrome P450 contrasts with detoxification in vivo: experiments with hepatic cytochrome P450 reductase null mice. Carcinogenesis 29, 656-665.
Augoustides-Savvopoulou, P., Luka, Z., Karyda, S., Stabler, S. P., Allen, R. H., Patsiaoura, K., Wagner, C., and Mudd, S. H. (2003). Glycine N -methyltransferase deficiency: a new patient with a novel mutation. J Inherit Metab Dis 26, 745-759.
Banerjee, A., Russell, W. K., Jayaraman, A., and Ramaiah, S. K. (2008). Identification of proteins to predict the molecular basis for the observed gender susceptibility in a rat model of alcoholic steatohepatitis by 2-D gel proteomics. Proteomics 8, 4327-4337.
Beck, J., and Nassal, M. (2007). Hepatitis B virus replication. World J Gastroenterol 13, 48-64.
Blumenstein, J., and Williams, G., R., (1960). The enzymic N-methylation of glycine. Biochemical and Biophysical Research Communications 3, 259-263.
Brookheart, R. T., Michel, C. I., and Schaffer, J. E. (2009). As a matter of fat. Cell Metab 10, 9-12.
Bugianesi, E. (2007). Non-alcoholic steatohepatitis and cancer. Clin Liver Dis 11, 191-207, x-xi.
Butler, J. D., Blanchette-Mackie, J., Goldin, E., O'Neill, R. R., Carstea, G., Roff, C. F., Patterson, M. C., Patel, S., Comly, M. E., Cooney, A., and et al. (1992). Progesterone blocks cholesterol translocation from lysosomes. J Biol Chem 267, 23797-23805.
Caldwell, S. H., Crespo, D. M., Kang, H. S., and Al-Osaimi, A. M. (2004). Obesity and hepatocellular carcinoma. Gastroenterology 127, S97-103.
Calle, E. E., Rodriguez, C., Walker-Thurmond, K., and Thun, M. J. (2003). Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults. N Engl J Med 348, 1625-1638.
Calvisi, D. F., Ladu, S., Gorden, A., Farina, M., Lee, J. S., Conner, E. A., Schroeder, I., Factor, V. M., and Thorgeirsson, S. S. (2007). Mechanistic and prognostic significance of aberrant methylation in the molecular pathogenesis of human hepatocellular carcinoma. J Clin Invest 117, 2713-2722.
Castegnaro, M., and Wild, C. P. (1995). IARC activities in mycotoxin research. Nat Toxins 3, 327-331; discussion 341.
Chaerkady, R., Harsha, H. C., Nalli, A., Gucek, M., Vivekanandan, P., Akhtar, J., Cole, R. N., Simmers, J., Schulick, R. D., Singh, S., et al. (2008). A quantitative proteomic approach for identification of potential biomarkers in hepatocellular carcinoma. J Proteome Res 7, 4289-4298.
Chen, C. J., Yu, M. W., and Liaw, Y. F. (1997). Epidemiological characteristics and risk factors of hepatocellular carcinoma. J Gastroenterol Hepatol 12, S294-308.
Chen, F., Beezhold, K., and Castranova, V. (2009a). JNK1, a potential therapeutic target for hepatocellular carcinoma. Biochim Biophys Acta 1796, 242-251.
Chen, F. W., Gordon, R. E., and Ioannou, Y. A. (2005). NPC1 late endosomes contain elevated levels of non-esterified ('free') fatty acids and an abnormally glycosylated form of the NPC2 protein. Biochem J 390, 549-561.
Chen, S. Y., Lin, J. R., Darbha, R., Lin, P., Liu, T. Y., and Chen, Y. M. (2004). Glycine N-methyltransferase tumor susceptibility gene in the benzo(a)pyrene-detoxification pathway. Cancer Res 64, 3617-3623.
Chen, Y. M., Chen, L. Y., Wong, F. H., Lee, C. M., Chang, T. J., and Yang-Feng, T. L. (2000). Genomic structure, expression, and chromosomal localization of the human glycine N-methyltransferase gene. Genomics 66, 43-47.
Chen, Y. M., Liao, Y. J., Liu, S. P., and Tsai, T. F. (2009b). Phenotypic differences between two Gnmt-/- mouse models for hepatocellular carcinoma. Hepatology 49, 2130-2131; author reply 2131.
Chen, Y. M., Shiu, J. Y., Tzeng, S. J., Shih, L. S., Chen, Y. J., Lui, W. Y., and Chen, P. H. (1998). Characterization of glycine-N-methyltransferase-gene expression in human hepatocellular carcinoma. Int J Cancer 75, 787-793.
Cherng, S. H., Hsu, S. L., Yang, J. L., Yu, C. T., and Lee, H. (2006). Suppressive effect of 1-nitropyrene on benzo[a]pyrene-induced CYP1A1 protein expression in HepG2 cells. Toxicol Lett 161, 236-243.
Cheruku, S. R., Xu, Z., Dutia, R., Lobel, P., and Storch, J. (2006). Mechanism of cholesterol transfer from the Niemann-Pick type C2 protein to model membranes supports a role in lysosomal cholesterol transport. J Biol Chem 281, 31594-31604.
Chikh, K., Rodriguez, C., Vey, S., Vanier, M. T., and Millat, G. (2005). Niemann-Pick type C disease: subcellular location and functional characterization of NPC2 proteins with naturally occurring missense mutations. Hum Mutat 26, 20-28.
Chikh, K., Vey, S., Simonot, C., Vanier, M. T., and Millat, G. (2004). Niemann-Pick type C disease: importance of N-glycosylation sites for function and cellular location of the NPC2 protein. Mol Genet Metab 83, 220-230.
Ching, Y. P., Leong, V. Y., Lee, M. F., Xu, H. T., Jin, D. Y., and Ng, I. O. (2007). P21-activated protein kinase is overexpressed in hepatocellular carcinoma and enhances cancer metastasis involving c-Jun NH2-terminal kinase activation and paxillin phosphorylation. Cancer Res 67, 3601-3608.
Codarin, E., Renzone, G., Poz, A., Avellini, C., Baccarani, U., Lupo, F., di Maso, V., Croce, S. L., Tiribelli, C., Arena, S., et al. (2009). Differential proteomic analysis of subfractioned human hepatocellular carcinoma tissues. J Proteome Res 8, 2273-2284.
Cook, R. J., and Wagner, C. (1984). Glycine N-methyltransferase is a folate binding protein of rat liver cytosol. Proc Natl Acad Sci U S A 81, 3631-3634.
Day, C. P. (2002). Pathogenesis of steatohepatitis. Best Pract Res Clin Gastroenterol 16, 663-678.
Day, C. P., and James, O. F. (1998). Steatohepatitis: a tale of two "hits"? Gastroenterology 114, 842-845.
Devries-Seimon, T., Li, Y., Yao, P. M., Stone, E., Wang, Y., Davis, R. J., Flavell, R., and Tabas, I. (2005). Cholesterol-induced macrophage apoptosis requires ER stress pathways and engagement of the type A scavenger receptor. J Cell Biol 171, 61-73.
Dhillon, A. S., Hagan, S., Rath, O., and Kolch, W. (2007). MAP kinase signalling pathways in cancer. Oncogene 26, 3279-3290.
Donato, F., Gelatti, U., Limina, R. M., and Fattovich, G. (2006). Southern Europe as an example of interaction between various environmental factors: a systematic review of the epidemiologic evidence. Oncogene 25, 3756-3770.
El-Serag, H. B., and Rudolph, K. L. (2007). Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology 132, 2557-2576.
Elchuri, S., Oberley, T. D., Qi, W., Eisenstein, R. S., Jackson Roberts, L., Van Remmen, H., Epstein, C. J., and Huang, T. T. (2005). CuZnSOD deficiency leads to persistent and widespread oxidative damage and hepatocarcinogenesis later in life. Oncogene 24, 367-380.
Esteller, M. (2007). Cancer epigenomics: DNA methylomes and histone-modification maps. Nat Rev Genet 8, 286-298.
Fan, C. Y., Pan, J., Chu, R., Lee, D., Kluckman, K. D., Usuda, N., Singh, I., Yeldandi, A. V., Rao, M. S., Maeda, N., and Reddy, J. K. (1996). Hepatocellular and hepatic peroxisomal alterations in mice with a disrupted peroxisomal fatty acyl-coenzyme A oxidase gene. J Biol Chem 271, 24698-24710.
Fan, C. Y., Pan, J., Usuda, N., Yeldandi, A. V., Rao, M. S., and Reddy, J. K. (1998). Steatohepatitis, spontaneous peroxisome proliferation and liver tumors in mice lacking peroxisomal fatty acyl-CoA oxidase. Implications for peroxisome proliferator-activated receptor alpha natural ligand metabolism. J Biol Chem 273, 15639-15645.
Fan, J. G., and Qiao, L. (2009). Commonly used animal models of non-alcoholic steatohepatitis. Hepatobiliary Pancreat Dis Int 8, 233-240.
Fan, J. G., Saibara, T., Chitturi, S., Kim, B. I., Sung, J. J., and Chutaputti, A. (2007). What are the risk factors and settings for non-alcoholic fatty liver disease in Asia-Pacific? J Gastroenterol Hepatol 22, 794-800.
Fang, Y. Z., Yang, S., and Wu, G. (2002). Free radicals, antioxidants, and nutrition. Nutrition 18, 872-879.
Farazi, P. A., and DePinho, R. A. (2006). Hepatocellular carcinoma pathogenesis: from genes to environment. Nat Rev Cancer 6, 674-687.
Friedland, N., Liou, H. L., Lobel, P., and Stock, A. M. (2003). Structure of a cholesterol-binding protein deficient in Niemann-Pick type C2 disease. Proc Natl Acad Sci U S A 100, 2512-2517.
Ghebranious, N., and Sell, S. (1998). Hepatitis B injury, male gender, aflatoxin, and p53 expression each contribute to hepatocarcinogenesis in transgenic mice. Hepatology 27, 383-391.
Ghoshal, A. K., and Farber, E. (1984). The induction of liver cancer by dietary deficiency of choline and methionine without added carcinogens. Carcinogenesis 5, 1367-1370.
Goldstein, L. S., Weyand, E. H., Safe, S., Steinberg, M., Culp, S. J., Gaylor, D. W., Beland, F. A., and Rodriguez, L. V. (1998). Tumors and DNA adducts in mice exposed to benzo[a]pyrene and coal tars: implications for risk assessment. Environ Health Perspect 106 Suppl 6, 1325-1330.
Gorg, A., Weiss, W., and Dunn, M. J. (2004). Current two-dimensional electrophoresis technology for proteomics. Proteomics 4, 3665-3685.
Harrison, K. D., Miao, R. Q., Fernandez-Hernando, C., Suarez, Y., Davalos, A., and Sessa, W. C. (2009). Nogo-B receptor stabilizes Niemann-Pick type C2 protein and regulates intracellular cholesterol trafficking. Cell Metab 10, 208-218.
Hers, H. G., and Hue, L. (1983). Gluconeogenesis and related aspects of glycolysis. Annu Rev Biochem 52, 617-653.
Hirosumi, J., Tuncman, G., Chang, L., Gorgun, C. Z., Uysal, K. T., Maeda, K., Karin, M., and Hotamisligil, G. S. (2002). A central role for JNK in obesity and insulin resistance. Nature 420, 333-336.
Hoffmann, D., Rivenson, A., Chung, F. L., and Wynder, E. L. (1993). Potential inhibitors of tobacco carcinogenesis. Ann N Y Acad Sci 686, 140-160.
Horie, Y., Suzuki, A., Kataoka, E., Sasaki, T., Hamada, K., Sasaki, J., Mizuno, K., Hasegawa, G., Kishimoto, H., Iizuka, M., et al. (2004). Hepatocyte-specific Pten deficiency results in steatohepatitis and hepatocellular carcinomas. J Clin Invest 113, 1774-1783.
Huang, Y. C., Chen, M., Shyr, Y. M., Su, C. H., Chen, C. K., Li, A. F., Ho, D. M., and Chen, Y. M. (2008). Glycine N-methyltransferase is a favorable prognostic marker for human cholangiocarcinoma. J Gastroenterol Hepatol 23, 1384-1389.
Huang, Y. C., Lee, C. M., Chen, M., Chung, M. Y., Chang, Y. H., Huang, W. J., Ho, D. M., Pan, C. C., Wu, T. T., Yang, S., et al. (2007). Haplotypes, loss of heterozygosity, and expression levels of glycine N-methyltransferase in prostate cancer. Clin Cancer Res 13, 1412-1420.
Hussain, S. P., Schwank, J., Staib, F., Wang, X. W., and Harris, C. C. (2007). TP53 mutations and hepatocellular carcinoma: insights into the etiology and pathogenesis of liver cancer. Oncogene 26, 2166-2176.
IARC (2004). Tobacco smoke and involuntary smoking. IARC Monogr Eval Carcinog Risks Hum 83, 1-1438.
Jacobs, R. L., Stead, L. M., Brosnan, M. E., and Brosnan, J. T. (2001). Hyperglucagonemia in rats results in decreased plasma homocysteine and increased flux through the transsulfuration pathway in liver. J Biol Chem 276, 43740-43747.
Kerr, S. J. (1972). Competing methyltransferase systems. J Biol Chem 247, 4248-4252.
Kirchhoff, C., Osterhoff, C., and Young, L. (1996). Molecular cloning and characterization of HE1, a major secretory protein of the human epididymis. Biol Reprod 54, 847-856.
Kirsch, R., Clarkson, V., Shephard, E. G., Marais, D. A., Jaffer, M. A., Woodburne, V. E., Kirsch, R. E., and Hall Pde, L. (2003). Rodent nutritional model of non-alcoholic steatohepatitis: species, strain and sex difference studies. J Gastroenterol Hepatol 18, 1272-1282.
Klein, A., Amigo, L., Retamal, M. J., Morales, M. G., Miquel, J. F., Rigotti, A., and Zanlungo, S. (2006). NPC2 is expressed in human and murine liver and secreted into bile: potential implications for body cholesterol homeostasis. Hepatology 43, 126-133.
Ko, D. C., Binkley, J., Sidow, A., and Scott, M. P. (2003). The integrity of a cholesterol-binding pocket in Niemann-Pick C2 protein is necessary to control lysosome cholesterol levels. Proc Natl Acad Sci U S A 100, 2518-2525.
Koike, K. (2009). Steatosis, liver injury, and hepatocarcinogenesis in hepatitis C viral infection. J Gastroenterol 44 Suppl 19, 82-88.
Larter, C. Z., and Yeh, M. M. (2008). Animal models of NASH: getting both pathology and metabolic context right. J Gastroenterol Hepatol 23, 1635-1648.
Lee, C. M., Chen, S. Y., Lee, Y. C., Huang, C. Y., and Chen, Y. M. (2006). Benzo[a]pyrene and glycine N-methyltransferse interactions: gene expression profiles of the liver detoxification pathway. Toxicol Appl Pharmacol 214, 126-135.
Lee, C. M., Shih, Y. P., Wu, C. H., and Chen, Y. M. (2009). Characterization of the 5' regulatory region of the human Glycine N-methyltransferase gene. Gene 443, 151-157.
Liao, Y. J., Liu, S. P., Lee, C. M., Yen, C. H., Chuang, P. C., Chen, C. Y., Tsai, T. F., Huang, S. F., Lee, Y. H., and Chen, Y. M. (2009). Characterization of a glycine N-methyltransferase gene knockout mouse model for hepatocellular carcinoma: Implications of the gender disparity in liver cancer susceptibility. Int J Cancer 124, 816-826.
Lin, T., and Yang, M. S. (2007). Benzo[a]pyrene-induced elevation of GSH level protects against oxidative stress and enhances xenobiotic detoxification in human HepG2 cells. Toxicology 235, 1-10.
Liou, H. L., Dixit, S. S., Xu, S., Tint, G. S., Stock, A. M., and Lobel, P. (2006). NPC2, the protein deficient in Niemann-Pick C2 disease, consists of multiple glycoforms that bind a variety of sterols. J Biol Chem 281, 36710-36723.
Liska, D. J. (1998). The detoxification enzyme systems. Altern Med Rev 3, 187-198.
Liu, H. H., Chen, K. H., Shih, Y. P., Lui, W. Y., Wong, F. H., and Chen, Y. M. (2003). Characterization of reduced expression of glycine N-methyltransferase in cancerous hepatic tissues using two newly developed monoclonal antibodies. J Biomed Sci 10, 87-97.
Liu, S. P., Li, Y. S., Chen, Y. J., Chiang, E. P., Li, A. F., Lee, Y. H., Tsai, T. F., Hsiao, M., Hwang, S. F., and Chen, Y. M. (2007). Glycine N-methyltransferase-/- mice develop chronic hepatitis and glycogen storage disease in the liver. Hepatology 46, 1413-1425.
London, R. M., and George, J. (2007). Pathogenesis of NASH: animal models. Clin Liver Dis 11, 55-74, viii.
Lu, S. C., Alvarez, L., Huang, Z. Z., Chen, L., An, W., Corrales, F. J., Avila, M. A., Kanel, G., and Mato, J. M. (2001). Methionine adenosyltransferase 1A knockout mice are predisposed to liver injury and exhibit increased expression of genes involved in proliferation. Proc Natl Acad Sci U S A 98, 5560-5565.
Luedde, T., Beraza, N., Kotsikoris, V., van Loo, G., Nenci, A., De Vos, R., Roskams, T., Trautwein, C., and Pasparakis, M. (2007). Deletion of NEMO/IKKgamma in liver parenchymal cells causes steatohepatitis and hepatocellular carcinoma. Cancer Cell 11, 119-132.
Luka, Z., Capdevila, A., Mato, J. M., and Wagner, C. (2006a). A glycine N-methyltransferase knockout mouse model for humans with deficiency of this enzyme. Transgenic Res 15, 393-397.
Luka, Z., Cerone, R., Phillips, J. A., 3rd, Mudd, H. S., and Wagner, C. (2002). Mutations in human glycine N-methyltransferase give insights into its role in methionine metabolism. Hum Genet 110, 68-74.
Luka, Z., Ham, A. J., Norris, J. L., Yeo, E. J., Yermalitsky, V., Glenn, B., Caprioli, R. M., Liebler, D. C., and Wagner, C. (2006b). Identification of phosphorylation sites in glycine N-methyltransferase from rat liver. Protein Sci 15, 785-794.
Malhi, H., Bronk, S. F., Werneburg, N. W., and Gores, G. J. (2006). Free fatty acids induce JNK-dependent hepatocyte lipoapoptosis. J Biol Chem 281, 12093-12101.
Martinez-Chantar, M. L., Corrales, F. J., Martinez-Cruz, L. A., Garcia-Trevijano, E. R., Huang, Z. Z., Chen, L., Kanel, G., Avila, M. A., Mato, J. M., and Lu, S. C. (2002). Spontaneous oxidative stress and liver tumors in mice lacking methionine adenosyltransferase 1A. Faseb J 16, 1292-1294.
Martinez-Chantar, M. L., Vazquez-Chantada, M., Ariz, U., Martinez, N., Varela, M., Luka, Z., Capdevila, A., Rodriguez, J., Aransay, A. M., Matthiesen, R., et al. (2008). Loss of the glycine N-methyltransferase gene leads to steatosis and hepatocellular carcinoma in mice. Hepatology 47, 1191-1199.
McGlynn, K. A., and London, W. T. (2005). Epidemiology and natural history of hepatocellular carcinoma. Best Pract Res Clin Gastroenterol 19, 3-23.
Moller, M. T., Samari, H. R., Fengsrud, M., Stromhaug, P. E., oStvold, A. C., and Seglen, P. O. (2003). Okadaic acid-induced, naringin-sensitive phosphorylation of glycine N-methyltransferase in isolated rat hepatocytes. Biochem J 373, 505-513.
Moradpour, D., Penin, F., and Rice, C. M. (2007). Replication of hepatitis C virus. Nat Rev Microbiol 5, 453-463.
Moriya, K., Fujie, H., Shintani, Y., Yotsuyanagi, H., Tsutsumi, T., Ishibashi, K., Matsuura, Y., Kimura, S., Miyamura, T., and Koike, K. (1998). The core protein of hepatitis C virus induces hepatocellular carcinoma in transgenic mice. Nat Med 4, 1065-1067.
Moriya, K., Yotsuyanagi, H., Shintani, Y., Fujie, H., Ishibashi, K., Matsuura, Y., Miyamura, T., and Koike, K. (1997). Hepatitis C virus core protein induces hepatic steatosis in transgenic mice. J Gen Virol 78 (Pt 7), 1527-1531.
Mudd, S. H., Cerone, R., Schiaffino, M. C., Fantasia, A. R., Minniti, G., Caruso, U., Lorini, R., Watkins, D., Matiaszuk, N., Rosenblatt, D. S., et al. (2001). Glycine N-methyltransferase deficiency: a novel inborn error causing persistent isolated hypermethioninaemia. J Inherit Metab Dis 24, 448-464.
Mukherjee, S., and Maxfield, F. R. (2004). Lipid and cholesterol trafficking in NPC. Biochim Biophys Acta 1685, 28-37.
Mutka, A. L., Lusa, S., Linder, M. D., Jokitalo, E., Kopra, O., Jauhiainen, M., and Ikonen, E. (2004). Secretion of sterols and the NPC2 protein from primary astrocytes. J Biol Chem 279, 48654-48662.
Naureckiene, S., Sleat, D. E., Lackland, H., Fensom, A., Vanier, M. T., Wattiaux, R., Jadot, M., and Lobel, P. (2000). Identification of HE1 as the second gene of Niemann-Pick C disease. Science 290, 2298-2301.
Obenauer, J. C., Cantley, L. C., and Yaffe, M. B. (2003). Scansite 2.0: Proteome-wide prediction of cell signaling interactions using short sequence motifs. Nucleic Acids Res 31, 3635-3641.
Ogawa, H., Gomi, T., and Fujioka, M. (1993). Mammalian glycine N-methyltransferases. Comparative kinetic and structural properties of the enzymes from human, rat, rabbit and pig livers. Comp Biochem Physiol B 106, 601-611.
Ong, J. P., Pitts, A., and Younossi, Z. M. (2008). Increased overall mortality and liver-related mortality in non-alcoholic fatty liver disease. J Hepatol 49, 608-612.
Ong, J. P., and Younossi, Z. M. (2007). Epidemiology and natural history of NAFLD and NASH. Clin Liver Dis 11, 1-16, vii.
Pacher, P., Beckman, J. S., and Liaudet, L. (2007). Nitric oxide and peroxynitrite in health and disease. Physiol Rev 87, 315-424.
Paradis, V., Zalinski, S., Chelbi, E., Guedj, N., Degos, F., Vilgrain, V., Bedossa, P., and Belghiti, J. (2009). Hepatocellular carcinomas in patients with metabolic syndrome often develop without significant liver fibrosis: a pathological analysis. Hepatology 49, 851-859.
Park, S. Y., Lee, S. M., Ye, S. K., Yoon, S. H., Chung, M. H., and Choi, J. (2006). Benzo[a]pyrene-induced DNA damage and p53 modulation in human hepatoma HepG2 cells for the identification of potential biomarkers for PAH monitoring and risk assessment. Toxicol Lett 167, 27-33.
Parkin, D. M., Bray, F., Ferlay, J., and Pisani, P. (2005). Global cancer statistics, 2002. CA Cancer J Clin 55, 74-108.
Raha, A., Wagner, C., MacDonald, R. G., and Bresnick, E. (1994). Rat liver cytosolic 4 S polycyclic aromatic hydrocarbon-binding protein is glycine N-methyltransferase. J Biol Chem 269, 5750-5756.
Rangnekar, A. S., Lammert, F., Igolnikov, A., and Green, R. M. (2006). Quantitative trait loci analysis of mice administered the methionine-choline deficient dietary model of experimental steatohepatitis. Liver Int 26, 1000-1005.
Rodriguez, L. V., Dunsford, H. A., Steinberg, M., Chaloupka, K. K., Zhu, L., Safe, S., Womack, J. E., and Goldstein, L. S. (1997). Carcinogenicity of benzo[a]pyrene and manufactured gas plant residues in infant mice. Carcinogenesis 18, 127-135.
Rowling, M. J., McMullen, M. H., and Schalinske, K. L. (2002). Vitamin A and its derivatives induce hepatic glycine N-methyltransferase and hypomethylation of DNA in rats. J Nutr 132, 365-369.
Rowling, M. J., and Schalinske, K. L. (2003). Retinoic acid and glucocorticoid treatment induce hepatic glycine N-methyltransferase and lower plasma homocysteine concentrations in rats and rat hepatoma cells. J Nutr 133, 3392-3398.
Sasaki, Y. (2006). Does oxidative stress participate in the development of hepatocellular carcinoma? J Gastroenterol 41, 1135-1148.
Sato, W., Horie, Y., Kataoka, E., Ohshima, S., Dohmen, T., Iizuka, M., Sasaki, J., Sasaki, T., Hamada, K., Kishimoto, H., et al. (2006). Hepatic gene expression in hepatocyte-specific Pten deficient mice showing steatohepatitis without ethanol challenge. Hepatol Res 34, 256-265.
Schrader, M., and Fahimi, H. D. (2006). Peroxisomes and oxidative stress. Biochim Biophys Acta 1763, 1755-1766.
Sell, S. (2003). Mouse models to study the interaction of risk factors for human liver cancer. Cancer Res 63, 7553-7562.
Sherman, M. (2005). Hepatocellular carcinoma: epidemiology, risk factors, and screening. Semin Liver Dis 25, 143-154.
Shimada, M., Hashimoto, E., Taniai, M., Hasegawa, K., Okuda, H., Hayashi, N., Takasaki, K., and Ludwig, J. (2002). Hepatocellular carcinoma in patients with non-alcoholic steatohepatitis. J Hepatol 37, 154-160.
Sleat, D. E., Wiseman, J. A., El-Banna, M., Price, S. M., Verot, L., Shen, M. M., Tint, G. S., Vanier, M. T., Walkley, S. U., and Lobel, P. (2004). Genetic evidence for nonredundant functional cooperativity between NPC1 and NPC2 in lipid transport. Proc Natl Acad Sci U S A 101, 5886-5891.
Sreekumar, A., Poisson, L. M., Rajendiran, T. M., Khan, A. P., Cao, Q., Yu, J., Laxman, B., Mehra, R., Lonigro, R. J., Li, Y., et al. (2009). Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature 457, 910-914.
Starley, B. Q., Calcagno, C. J., and Harrison, S. A. (2010). Nonalcoholic fatty liver disease and hepatocellular carcinoma: a weighty connection. Hepatology 51, 1820-1832.
Stiles, B., Wang, Y., Stahl, A., Bassilian, S., Lee, W. P., Kim, Y. J., Sherwin, R., Devaskar, S., Lesche, R., Magnuson, M. A., and Wu, H. (2004). Liver-specific deletion of negative regulator Pten results in fatty liver and insulin hypersensitivity [corrected]. Proc Natl Acad Sci U S A 101, 2082-2087.
Storch, J., and Xu, Z. (2009). Niemann-Pick C2 (NPC2) and intracellular cholesterol trafficking. Biochim Biophys Acta 1791, 671-678.
Sun, W., Xing, B., Sun, Y., Du, X., Lu, M., Hao, C., Lu, Z., Mi, W., Wu, S., Wei, H., et al. (2007). Proteome analysis of hepatocellular carcinoma by two-dimensional difference gel electrophoresis: novel protein markers in hepatocellular carcinoma tissues. Mol Cell Proteomics 6, 1798-1808.
Tien Kuo, M., and Savaraj, N. (2006). Roles of reactive oxygen species in hepatocarcinogenesis and drug resistance gene expression in liver cancers. Mol Carcinog 45, 701-709.
Tseng, T. L., Shih, Y. P., Huang, Y. C., Wang, C. K., Chen, P. H., Chang, J. G., Yeh, K. T., Chen, Y. M., and Buetow, K. H. (2003). Genotypic and phenotypic characterization of a putative tumor susceptibility gene, GNMT, in liver cancer. Cancer Res 63, 647-654.
Uchiyama, S., Shimizu, T., and Shirasawa, T. (2006). CuZn-SOD deficiency causes ApoB degradation and induces hepatic lipid accumulation by impaired lipoprotein secretion in mice. J Biol Chem 281, 31713-31719.
Uthus, E. O., and Brown-Borg, H. M. (2006). Methionine flux to transsulfuration is enhanced in the long living Ames dwarf mouse. Mech Ageing Dev 127, 444-450.
Vance, J. E. (2006). Lipid imbalance in the neurological disorder, Niemann-Pick C disease. FEBS Lett 580, 5518-5524.
Vanier, M. T., and Millat, G. (2003). Niemann-Pick disease type C. Clin Genet 64, 269-281.
Vanier, M. T., and Millat, G. (2004). Structure and function of the NPC2 protein. Biochim Biophys Acta 1685, 14-21.
Verot, L., Chikh, K., Freydiere, E., Honore, R., Vanier, M. T., and Millat, G. (2007). Niemann-Pick C disease: functional characterization of three NPC2 mutations and clinical and molecular update on patients with NPC2. Clin Genet 71, 320-330.
Wang, Y., Ausman, L. M., Greenberg, A. S., Russell, R. M., and Wang, X. D. (2009). Nonalcoholic steatohepatitis induced by a high-fat diet promotes diethylnitrosamine-initiated early hepatocarcinogenesis in rats. Int J Cancer 124, 540-546.
Watari, H., Blanchette-Mackie, E. J., Dwyer, N. K., Sun, G., Glick, J. M., Patel, S., Neufeld, E. B., Pentchev, P. G., and Strauss, J. F., 3rd (2000). NPC1-containing compartment of human granulosa-lutein cells: a role in the intracellular trafficking of cholesterol supporting steroidogenesis. Exp Cell Res 255, 56-66.
Wittmann-Liebold, B., Graack, H. R., and Pohl, T. (2006). Two-dimensional gel electrophoresis as tool for proteomics studies in combination with protein identification by mass spectrometry. Proteomics 6, 4688-4703.
Wullaert, A., Heyninck, K., and Beyaert, R. (2006). Mechanisms of crosstalk between TNF-induced NF-kappaB and JNK activation in hepatocytes. Biochem Pharmacol 72, 1090-1101.
Wurmbach, E., Chen, Y. B., Khitrov, G., Zhang, W., Roayaie, S., Schwartz, M., Fiel, I., Thung, S., Mazzaferro, V., Bruix, J., et al. (2007). Genome-wide molecular profiles of HCV-induced dysplasia and hepatocellular carcinoma. Hepatology 45, 938-947.
Xu, Z., Chen, L., Leung, L., Yen, T. S., Lee, C., and Chan, J. Y. (2005). Liver-specific inactivation of the Nrf1 gene in adult mouse leads to nonalcoholic steatohepatitis and hepatic neoplasia. Proc Natl Acad Sci U S A 102, 4120-4125.
Yamanaka, H., Yakabe, Y., Saito, K., Sekijima, M., and Shirai, T. (2007). Quantitative proteomic analysis of rat liver for carcinogenicity prediction in a 28-day repeated dose study. Proteomics 7, 781-795.
Yen, C. H., Hung, J. H., Ueng, Y. F., Liu, S. P., Chen, S. Y., Liu, H. H., Chou, T. Y., Tsai, T. F., Darbha, R., Hsieh, L. L., and Chen, Y. M. (2009). Glycine N-methyltransferase affects the metabolism of aflatoxin B1 and blocks its carcinogenic effect. Toxicol Appl Pharmacol 235, 296-304.
Yeo, E. J., and Wagner, C. (1994). Tissue distribution of glycine N-methyltransferase, a major folate-binding protein of liver. Proc Natl Acad Sci U S A 91, 210-214.
Younossi, Z. M., and McCullough, A. J. (2009). Metabolic syndrome, non-alcoholic fatty liver disease and hepatitis C virus: impact on disease progression and treatment response. Liver Int 29 Suppl 2, 3-12.
Zafrani, E. S. (2004). Non-alcoholic fatty liver disease: an emerging pathological spectrum. Virchows Arch 444, 3-12.
Zhang, M., Sun, M., Dwyer, N. K., Comly, M. E., Patel, S. C., Sundaram, R., Hanover, J. A., and Blanchette-Mackie, E. J. (2003). Differential trafficking of the Niemann-Pick C1 and 2 proteins highlights distinct roles in late endocytic lipid trafficking. Acta Paediatr Suppl 92, 63-73; discussion 45.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔