(3.232.129.123) 您好!臺灣時間:2021/03/06 01:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蘇芳儀
研究生(外文):Fang-Yi Su
論文名稱:探討抑癌基因Pten於小鼠單層柱狀上皮之功能性分析
論文名稱(外文):Characterization of the Tumor Suppressive Function of Pten in Simple Epithelium
指導教授:陳俊銘陳俊銘引用關係
指導教授(外文):Chun-Ming Chen
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:生命科學暨基因體科學研究所
學門:生命科學學門
學類:生物訊息學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:107
中文關鍵詞:抑癌基因Pten單層柱狀上皮胰管腺癌膽管癌攝護腺癌
外文關鍵詞:Ptensimple epithelial cellpancreatic ductal adenocarcinomacholangiocarcinomaprostate cancer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:111
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
癌症的生成可能藉由致癌基因的活化或是抑癌基因的突變缺失所導致。在許多癌症發生過程中經常伴隨有Pten基因缺失或突變之現象,顯示Pten基因在抑制癌症生成中扮演了重要的角色。由於大部分的腫瘤是來自上皮細胞的基因突變以及癌化所生成的,我們希望透過小鼠的誘導性組織專一性基因剔除系統來探討上皮細胞當中Pten的功能。我們成功的建立了單層上皮誘導性基因轉殖小鼠株並且進一步分析該小鼠的Cre重組酶活性,證實在許多內臟器官的單層上皮當中皆具有Cre重組酶的活性。同時我們也利用該基因轉殖小鼠來探討在腸道以及乳腺當中上皮細胞的譜系追蹤,證實具有Cre重組酶活性的細胞包含腸道幹細胞群,然而在乳腺當中並不包含幹細胞群。
進一步利用此基因轉殖小鼠將單層上皮中的Pten基因剔除後,發現約50%的小鼠會迅速發展出胰管腺癌和肝內膽道癌。除此之外,我們也檢視了Pten基因剔除公鼠當中攝護腺癌的進展。在為期十三週的研究期間內,大部分Pten基因剔除的攝護腺發展成高度惡性攝護腺增生瘤,僅有一隻小鼠被觀察到有攝護腺癌的產生。我們也發現到在攝護腺柱狀上皮中剔除Pten基因表現除了會造成柱狀上皮細胞的異常增生以外,也會造成基底細胞的增殖。透過細胞譜系追蹤的實驗,證實柱狀上皮細胞同時具有分化為柱狀上皮細胞和基底細胞的能力。而在男性荷爾蒙缺失的Pten基因剔除公鼠當中,我們觀察到荷爾蒙缺少並不能抑制攝護腺癌的發展,甚至會誘導出一群荷爾蒙非依賴性的基底細胞群增生。
總結研究結果,本實驗所建立的單層上皮誘導性Pten基因剔除小鼠可利用於探討在胰管腺癌、肝內膽道癌和攝護腺癌當中,Pten基因突變後所導致的致癌機轉,進一步可做為癌症的動物模式,提供臨床上試藥與治療的研究。

PTEN (phosphatase and tensin homolog deleted on chromosome ten) is an important tumor suppressor gene involving in the progression of several cancers. To investigate the role of PTEN in simple epithelial cell, we have generated a simple-epithelial specific Cre transgenic mouse and evaluated the Cre activity using reporter mice. We also demonstrate the application of this transgenic mouse in studying the epithelial lineage in intestine and mammary gland. Additionally, the simple epithelial-specific Pten-deficient mice develop PDAC and cholangiocarcinoma, which are proceeded in a rapid progression than previous studies. We show that the prostate cancer progression is restricted in the HGPIN stage in these mice during a study period of 13 weeks. Surprisingly, the hyperplasia of both the luminal and the basal compartment are observed and these cells are derived from the Pten-deficient luminal lineage. Finally, we performed the androgen deprivation therapy in the Pten-deficient prostate. However, androgen ablation cannot attenuate the tumor progression and even give rise a androgen-independent basal population.
Taken together, our preliminary results implicated that simple epithelial-specific Pten-deficient mouse can be utilized to gain insight into the role of PTEN in the maintenance of normal epithelial homeostasis and in the pathogenesis of PDAC, cholangiocarcinoma and prostate cancer. Furthermore, this Pten-deficient mouse might provide a mouse model to study the target therapy of these cancers.

Chinese Abstract ……….1
English Abstract ……….2
I. Introduction ……….3
I-1. General introduction of PTEN ……….3
I-2. Physiological role of PTEN in human and mouse ……….4
I-2-1. Germline and somatic mutations of PTEN in human ……….4
I-2-2. Physiological functions of PTEN in mouse tissue ……….5
I-3. The role of PTEN in prostatic tumorigenesis ……….6
I-3-1. Prostate physiology in human and mouse ……….6
I-3-2. Pathogenesis and the role of PTEN in prostate cancer ……….7
I-4. Characteristics of Keratin 8 and Keratin 18 in simple epithelium ……….9
I-4-1. Keratins in epithelial tissues ……….9
I-4-2. Genetic characteristics of K8 and K18 ……...10
I-4-3. Keratin 8 and Keratin 18 in simple epithelium ……...10
I-4-4. K8 and K18 in carcinomas ……...11
II. Materials and Methods ……...13
II-1. Mice ……...13
II-2. Genotyping ……...15
II-3. Pharmacological administration ……...17
II-4. Tissue processing, embedding and section ……...17
II-5. Whole mount X-gal staining ……...18
II-6. Section X-gal staining ……...19
II-7. Hematoxylin and Eosin staining (HE staining) ……...20
II-8. Immunohistochemistry staining (IHC staining) ……...20
II-9. Immunofluorescent staining (IF staining) ……...21
II-10. Indirect immunofluorescence with tyramide signal amplification ……...22
II-11. TUNEL staining ……...23
II-12. Oil-Red O staining ……...24
II-13. Castration and androgen administration ……...24
II-14. Statistical analysis ……...25
III. Results ……...26
III-1. Generation of the K18-EGFP, K8-CreERT transgenic mice ……...26
III-2. Application of the K18-EGFP, K8-CreERT transgenic mice in cell lineage tracing of intestines and mammary glands ……...27
III-3. Establishment of simple epithelia specific Pten knockout mice ……...28
III-4. Loss of Pten causes pancreatic ductal adenocarcinoma in the K18-EGFP, K8-CreERT; Ptenfx/fx mice ……...29
III-5. Loss of Pten causes cholangiocarcinoma in the K18-EGFP, K8-CreERT; Ptenfx/fx mice ……...30
III-6. Activation of Notch signaling in the K18-EGFP, K8-CreERT; Ptenfx/fx mice ……...31
III-7. Loss of Pten causes steatosis in liver in the K18-EGFP, K8-CreERT; Ptenfx/fx mice ……...32
III-8. Prostate tumor progression in the K18-EGFP, K8-CreERT; Ptenfx/fx mice ……...32
III-9. Loss of Pten activates AKT phosphorylation in the Pten-deficient prostate ……...33
III-10. Increased proliferative cells during prostatic cancer progression ……...34
III-11. Characterization of the epithelium compartment in the prostate of Pten-deficient mice ……...35
III-12. Capability of bipotentiality in prostatic luminal cells ……...37
III-13. The hyperplastic luminal cells and basal cells are both derived from luminal cells in Pten-deficient mice ……...38
III-14. Androgen ablation does not retard the prostate cancer progression ……...38
IV. Discussions ……...40
IV-1. Establishment of the K18-EGFP, K8-CreERT transgenic mice ……...40
IV-2. The tumor suppressive functions of Pten in the pancreas and the bile duct ……...41
IV-3. The tumor suppressive functions of Pten in the prostate ……...45
IV-3-1. Loss of Pten in prostatic luminal compartment shows longer tumor latency ……...45
IV-3-2. Capability of bipotentiality in luminal cells of the Pten-deficient prostate ……...45
IV-3-3. Androgen ablation cannot suppress the Pten-deficient prostate cancer progression ……...47
IV-3-4. Hypothesis for the physiological function of Pten in luminal cells ……...48
V. References ……...50
VI. Figures ……...60
VII. Tables ……...99

Abate-Shen, C. and Shen, M. 2000. Molecular genetics of prostate cancer. Genes & development 14(19): 2410-2434.
Abrahamsson, P., Cockett, A., and di Sant'Agnese, P. 1998. Prognostic significance of neuroendocrine differentiation in clinically localized prostatic carcinoma. The Prostate 36(S8): 37-42.
Aguirre, A., Bardeesy, N., Sinha, M., Lopez, L., Tuveson, D., Horner, J., Redston, M., and DePinho, R. 2003. Activated Kras and Ink4a/Arf deficiency cooperate to produce metastatic pancreatic ductal adenocarcinoma. Genes & development 17(24): 3112-3126.
Ali, I., Schriml, L., and Dean, M. 1999. Mutational spectra of PTEN/MMAC1 gene: a tumor suppressor with lipid phosphatase activity. JNCI Journal of the National Cancer Institute 91(22): 1922-1932.
Artavanis-Tsakonas, S., Rand, M., and Lake, R. 1999. Notch signaling: cell fate control and signal integration in development. Science 284(5415): 770.
Asa Apelqvist, H., Lukas Sommer, P., David, J., Tasuku Honjo, M., and de Angelis, U. 1999. Notch signalling controls pancreatic cell differentiation. Nature 400(6747): 877-881.
Ashcroft, M., Ludwig, R., Woods, D., Copeland, T., Weber, H., MacRae, E., and Vousden, K. 2002. Phosphorylation of HDM2 by Akt. Oncogene 21(13): 1955-1962.
Bártek J, V.B., Stasková Z, Bártková J, Kerekés Z, Rejthar A, Kovarík J. 1991. A series of 14 new monoclonal antibodies to keratins: characterization and value in diagnostic histopathology. Journal of pathology 164(21): 215-224.
Backman, S., Ghazarian, D., So, K., Sanchez, O., Wagner, K., Hennighausen, L., Suzuki, A., Tsao, M., Chapman, W., and Stambolic, V. 2004. Early onset of neoplasia in the prostate and skin of mice with tissue-specific deletion of Pten. Proceedings of the National Academy of Sciences of the United States of America 101(6): 1725-1730.
Backman, S., Stambolic, V., Suzuki, A., Haight, J., Elia, A., Pretorius, J., Tsao, M., Shannon, P., Bolon, B., and Ivy, G. 2001. Deletion of Pten in mouse brain causes seizures, ataxia and defects in soma size resembling Lhermitte-Duclos disease. Nature Genetics 29(4): 396-403.
Barker, N., van Es, J., Kuipers, J., Kujala, P., van den Born, M., Cozijnsen, M., Haegebarth, A., Korving, J., Begthel, H., and Peters, P. 2007. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449(7165): 1003-1007.
Bhanot, U., Kohntop, R., Hasel, C., and Moller, P. 2008. Evidence of Notch pathway activation in the ectatic ducts of chronic pancreatitis. The Journal of Pathology 214(3): 312-319.
Blumenberg, M. 1988. Concerted gene duplications in the two keratin gene families. Journal of molecular evolution 27(3): 203-211.
Bosch, F., Leube, R., Achtstatter, T., Moll, R., and Franke, W. 1988. Expression of simple epithelial type cytokeratins in stratified epithelia as detected by immunolocalization and hybridization in situ. Journal of Cell Biology 106(5): 1635-1648.
Bova, G., Carter, B., Bussemakers, M., Emi, M., Fujiwara, Y., Kyprianou, N., Jacobs, S., Robinson, J., Epstein, J., and Walsh, P. 1993. Homozygous deletion and frequent allelic loss of chromosome 8p22 loci in human prostate cancer. Cancer research 53(17): 3869-3873.
Bragulla, H. and Homberger, D. 2009. Structure and functions of keratin proteins in simple, stratified, keratinized and cornified epithelia. Journal of Anatomy 214(4): 516-559.
Brawer, M., Peehl, D., Stamey, T., and Bostwick, D. 1985. Keratin immunoreactivity in the benign and neoplastic human prostate. Cancer research 45(8): 3663.
Brooks, J., Bova, G., Ewing, C., Piantadosi, S., Carter, B., Robinson, J., Epstein, J., and Isaacs, W. 1996. An uncertain role for p53 gene alterations in human prostate cancers. Cancer research 56(16): 3814.
Brunet, A., Bonni, A., Zigmond, M., Lin, M., Juo, P., Hu, L., Anderson, M., Arden, K., Blenis, J., and Greenberg, M. 1999. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96(6): 857-868.
Bui, M. and Reiter, R. 1998. Stem cell genes in androgen-independent prostate cancer. Cancer and Metastasis Reviews 17(4): 391-399.
Cardone, M., Roy, N., Stennicke, H., Salvesen, G., Franke, T., Stanbridge, E., Frisch, S., and Reed, J. 1998. Regulation of cell death protease caspase-9 by phosphorylation. Science 282(5392): 1318-1321.
Cher, M., Macgrogan, D., Bookstein, R., Brown, J., Jenkins, R., and Jensen, R. 1994. Comparative genomic hybridization, allelic imbalance, and fluorescence in situ hybridization on chromosome 8 in prostate cancer. Genes, Chromosomes and Cancer 11(3): 153-162.
Chu, E. and Tarnawski, A. 2004. PTEN regulatory functions in tumor suppression and cell biology. Medical science monitor: international medical journal of experimental and clinical research 10(10).
Chu, P. and Weiss, L. 2002. Keratin expression in human tissues and neoplasms. Histopathology 40(5): 403-439.
Cooney, K., Wetzel, J., Merajver, S., Macoska, J., Singleton, T., and Wojno, K. 1996. Distinct regions of allelic loss on 13q in prostate cancer. Cancer research 56(5): 1142-1145.
Crawford, H., Scoggins, C., Washington, M., Matrisian, L., and Leach, S. 2002. Matrix metalloproteinase-7 is expressed by pancreatic cancer precursors and regulates acinar-to-ductal metaplasia in exocrine pancreas. Journal of Clinical Investigation 109(11): 1437-1444.
Cross, D., Alessi, D., Cohen, P., Andjelkovich, M., and Hemmings, B. 1995. Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 378(6559): 785-789.
Datta, S., Dudek, H., Tao, X., Masters, S., Fu, H., Gotoh, Y., and Greenberg, M. 1997. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 91(2): 231-241.
De Marzo, A., Nelson, W., Meeker, A., and Coffey, D. 1998. Stem cell features of benign and malignant prostate epithelial cells. The Journal of urology 160(6): 2381-2392.
Debes, J. and Tindall, D. 2004. Mechanisms of androgen-refractory prostate cancer. New England Journal of Medicine 351(15): 1488-1490.
Di Cristofano, A., Pesce, B., Cordon-Cardo, C., and Pandolfi, P. 1998. Pten is essential for embryonic development and tumour suppression. Nature Genetics 19(4): 348-355.
Di Sant'Agnese, P. 1992. Neuroendocrine differentiation in carcinoma of the prostate. Diagnostic, prognostic, and therapeutic implications. Cancer 70(S1): 254-268.
Feilotter, H., Nagai, M., Boag, A., Eng, C., and Mulligan, L. 1998. Analysis of PTEN and the 10q23 region in primary prostate carcinomas. Oncogene 16(13): 1743-1748.
Feldman, B. and Feldman, D. 2001. The development of androgen-independent prostate cancer. Nature Reviews Cancer 1(1): 34-45.
Franke, W., Schiller, D., Moll, R., Winter, S., Schmid, E., Engelbrecht, I., Denk, H., Krepler, R., and Platzer, B. 1981. Diversity of cytokeratins. Differentiation specific expression of cytokeratin polypeptides in epithelial cells and tissues. Journal of Molecular Biology 153(4): 933-959.
Fuchs, E. and Green, H. 1978. The expression of keratin genes in epidermis and cultured epidermal cells. Cell 15(3): 887-897.
-. 1980. Changes in keratin gene expression during terminal differentiation of the keratinocyte. Cell 19(4): 1033-1042.
Gao, J., Arnold, J., and Isaacs, J. 2001. Conversion from a paracrine to an autocrine mechanism of androgen-stimulated growth during malignant transformation of prostatic epithelial cells. Cancer research 61(13): 5038-5044.
Goldstein, A., Lawson, D., Cheng, D., Sun, W., Garraway, I., and Witte, O. 2008. Trop2 identifies a subpopulation of murine and human prostate basal cells with stem cell characteristics. Proceedings of the National Academy of Sciences 105(52): 20882-20887.
Gores, G. 2003. Cholangiocarcinoma: current concepts and insights. Hepatology 37(5): 961-969.
Heinlein, C. and Chang, C. 2004. Androgen receptor in prostate cancer. Endocrine reviews 25(2): 276-308.
Horie, Y., Suzuki, A., Kataoka, E., Sasaki, T., Hamada, K., Sasaki, J., Mizuno, K., Hasegawa, G., Kishimoto, H., and Iizuka, M. 2004. Hepatocyte-specific Pten deficiency results in steatohepatitis and hepatocellular carcinomas. Journal of Clinical Investigation 113(12): 1774-1783.
Hresko, R. and Mueckler, M. 2005. mTOR• RICTOR is the Ser473 kinase for Akt/protein kinase B in 3T3-L1 adipocytes. Journal of Biological Chemistry 280(49): 40406-40416.
Isaacs, J. 1984. Antagonistic effect of androgen on prostatic cell death. The Prostate 5(5): 545-557.
Ishimura, N., Bronk, S., and Gores, G. 2005. Inducible nitric oxide synthase up-regulates Notch-1 in mouse cholangiocytes: implications for carcinogenesis. Gastroenterology 128(5): 1354-1368.
Jaffee, E., Hruban, R., Canto, M., and Kern, S. 2002. Focus on pancreas cancer. Cancer Cell 2(1): 25-28.
Jankowski, J., Harrison, R., Perry, I., Balkwill, F., and Tselepis, C. 2000. Barrett's metaplasia. The lancet 356(9247): 2079-2085.
Jemal, A., Siegel, R., Xu, J., and Ward, E. Cancer statistics, 2010. CA: A Cancer Journal for Clinicians.
Kang, Y., Kim, W., and Jang, J. 2002. Expression of G1-S modulators (p53, p16, p27, cyclin D1, Rb) and Smad4/Dpc4 in intrahepatic cholangiocarcinoma. Human pathology 33(9): 877-883.
Khan, S., Taylor-Robinson, S., Toledano, M., Beck, A., Elliott, P., and Thomas, H. 2002. Changing international trends in mortality rates for liver, biliary and pancreatic tumours. Journal of hepatology 37(6): 806-813.
Kiguchi, K., Carbajal, S., Chan, K., Beltran, L., Ruffino, L., Shen, J., Matsumoto, T., Yoshimi, N., and DiGiovanni, J. 2001. Constitutive expression of ErbB-2 in gallbladder epithelium results in development of adenocarcinoma. Cancer research 61(19): 6971-6976.
Kimura, K., Satoh, K., Kanno, A., Hamada, S., Hirota, M., Endoh, M., Masamune, A., and Shimosegawa, T. 2007. Activation of Notch signaling in tumorigenesis of experimental pancreatic cancer induced by dimethylbenzanthracene in mice. Cancer science 98(2): 155-162.
Kleeff, J., Michalski, C., Friess, H., and Buchler, M. 2006. Pancreatic cancer: from bench to 5-year survival. Pancreas 33(2): 111-118.
Klug, D., Carter, C., Crouch, E., Roop, D., Conti, C., and Richie, E. 1998. Interdependence of cortical thymic epithelial cell differentiation and T-lineage commitment. Proceedings of the National Academy of Sciences of the United States of America 95(20): 11822-11827.
Kobayashi, S., Werneburg, N., Bronk, S., Kaufmann, S., and Gores, G. 2005. Interleukin-6 contributes to Mcl-1 up-regulation and TRAIL resistance via an Akt-signaling pathway in cholangiocarcinoma cells. Gastroenterology 128(7): 2054-2065.
Kwon, C., Zhu, X., Zhang, J., Knoop, L., Tharp, R., Smeyne, R., Eberhart, C., Burger, P., and Baker, S. 2001. Pten regulates neuronal soma size: a mouse model of Lhermitte-Duclos disease. Nature Genetics 29(4): 404-411.
Kyprianou, N., English, H., and Isaacs, J. 1990. Programmed cell death during regression of PC-82 human prostate cancer following androgen ablation. Cancer research 50(12): 3748-3753.
Lawson, D., Xin, L., Lukacs, R., Cheng, D., and Witte, O. 2007. Isolation and functional characterization of murine prostate stem cells. Proceedings of the National Academy of Sciences 104(1): 181-186.
Lee, J., Yang, H., Georgescu, M., Di Cristofano, A., Maehama, T., Shi, Y., Dixon, J., Pandolfi, P., and Pavletich, N. 1999. Crystal Structure of the PTEN Tumor Suppressor:: Implications for Its Phosphoinositide Phosphatase Activity and Membrane Association. Cell 99(3): 323-334.
Lesche, R., Groszer, M., Gao, J., Wang, Y., Messing, A., Sun, H., Liu, X., and Wu, H. 2002. Cre/loxP-mediated inactivation of the murinePten tumor suppressor gene. Genesis 32(2): 148-149.
Li, D. and Sun, H. 1997. TEP1, encoded by a candidate tumor suppressor locus, is a novel protein tyrosine phosphatase regulated by transforming growth factor {beta}. Cancer research 57(11): 2124-2129.
Li, G., Robinson, G., Lesche, R., Martinez-Diaz, H., Jiang, Z., Rozengurt, N., Wagner, K., Wu, D., Lane, T., and Liu, X. 2002. Conditional loss of PTEN leads to precocious development and neoplasia in the mammary gland. Development 129(17): 4159-4170.
Li, J., Yen, C., Liaw, D., Podsypanina, K., Bose, S., Wang, S., Puc, J., Miliaresis, C., Rodgers, L., and McCombie, R. 1997. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science 275(5308): 1943-1947.
Liaw, D., Marsh, D., Li, J., Dahia, P., Wang, S., Zheng, Z., Bose, S., Call, K., Tsou, H., and Peacoke, M. 1997. Germline mutations of the PTEN gene in Cowden disease, an inherited breast and thyroid cancer syndrome. Nature Genetics 16(1): 64-67.
Louis, A., Van Eyken, P., Haber, B., Hicks, C., Weinmaster, G., Taub, R., and Rand, E. 1999. Hepatic jagged1 expression studies. Hepatology 30(5): 1269-1275.
Lu, T., Chang, J., Liang, C., You, L., and Chen, C. 2007. Tumor spectrum, tumor latency and tumor incidence of the Pten-deficient mice. PloS one 2(11): e1237.
Ma, X., Ziel-van der Made, A., Autar, B., van der Korput, H., Vermeij, M., van Duijn, P., Cleutjens, K., de Krijger, R., Krimpenfort, P., and Berns, A. 2005. Targeted biallelic inactivation of Pten in the mouse prostate leads to prostate cancer accompanied by increased epithelial cell proliferation but not by reduced apoptosis. Cancer research 65(13): 5730-5739.
Maehama, T. and Dixon, J. 1998. The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3, 4, 5-trisphosphate. Journal of Biological Chemistry 273(22): 13375-13378.
Marsh, D., Dahia, P., Zheng, Z., Liaw, D., Parsons, R., Gorlin, R., and Eng, C. 1997. Germline mutations in PTEN are present in Bannayan-Zonana syndrome. Nature Genetics 16(4): 333-334.
McNeal, J. 1972. The prostate and prostatic urethra: a morphologic synthesis. The Journal of urology 107(6): 1008-1016.
Miyamoto, Y., Maitra, A., Ghosh, B., Zechner, U., Argani, P., Iacobuzio-Donahue, C., Sriuranpong, V., Iso, T., Meszoely, I., and Wolfe, M. 2003. Notch mediates TGF [alpha]-induced changes in epithelial differentiation during pancreatic tumorigenesis. Cancer Cell 3(6): 565-576.
Moll, R., Divo, M., and Langbein, L. 2008. The human keratins: biology and pathology. Histochemistry and cell biology 129(6): 705-733.
Myers, M., Pass, I., Batty, I., Van der Kaay, J., Stolarov, J., Hemmings, B., Wigler, M., Downes, C., and Tonks, N. 1998. The lipid phosphatase activity of PTEN is critical for its tumor supressor function. Proceedings of the National Academy of Sciences of the United States of America 95(23): 13513-13518.
Nagle, R., Ahmann, F., McDaniel, K., Paquin, M., Clark, V., and Celniker, A. 1987. Cytokeratin characterization of human prostatic carcinoma and its derived cell lines. Cancer research 47(1): 281-286.
Nagle, R., Brawer, M., Kittelson, J., and Clark, V. 1991. Phenotypic relationships of prostatic intraepithelial neoplasia to invasive prostatic carcinoma. The American journal of pathology 138(1): 119-128.
Nave, B., Ouwens, M., Withers, D., Alessi, D., and Shepherd, P. 1999. Mammalian target of rapamycin is a direct target for protein kinase B: identification of a convergence point for opposing effects of insulin and amino-acid deficiency on protein translation. Biochemical Journal 344(Pt 2): 427-431.
Owens, D. and Lane, E. 2003. The quest for the function of simple epithelial keratins. Bioessays 25(8): 748-758.
Palomero, T., Dominguez, M., and Ferrando, A. 2008. The role of the PTEN/AKT Pathway in NOTCH1-induced leukemia. Cell cycle 7(8): 965-970.
Pellegata, N., Sessa, F., Renault, B., Bonato, M., Leone, B., Solcia, E., and Ranzani, G. 1994. K-ras and p53 gene mutations in pancreatic cancer: ductal and nonductal tumors progress through different genetic lesions. Cancer research 54(6): 1556-1560.
Ratnacaram, C., Teletin, M., Jiang, M., Meng, X., Chambon, P., and Metzger, D. 2008. Temporally controlled ablation of PTEN in adult mouse prostate epithelium generates a model of invasive prostatic adenocarcinoma. Proceedings of the National Academy of Sciences 105(7): 2521-2526.
Roberts, S., Ludwig, J., and LaRusso, N. 1997. The pathobiology of biliary epithelia. Gastroenterology 112(1): 269-279.
Salmena, L., Carracedo, A., and Pandolfi, P. 2008. Tenets of PTEN tumor suppression. Cell 133(3): 403-414.
Sawey, E., Johnson, J., and Crawford, H. 2007. Matrix metalloproteinase 7 controls pancreatic acinar cell transdifferentiation by activating the Notch signaling pathway. Proceedings of the National Academy of Sciences 104(49): 19327-19332.
Schaffeld, M., Haberkamp, M., Braziulis, E., Lieb, B., and Markl, J. 2002a. Type II keratin cDNAs from the rainbow trout: implications for keratin evolution. Differentiation 70(6): 292-299.
Schaffeld, M., Hoffling, S., Haberkamp, M., Conrad, M., and Markl, J. 2002b. Type I keratin cDNAs from the rainbow trout: independent radiation of keratins in fish. Differentiation 70(6): 282-291.
Shaib, Y. and El-Serag, H. 2004. The epidemiology of cholangiocarcinoma. Seminars in Liver disease 24(2): 115-125.
Soriano, P. 1999. Generalized lacZ expression with the ROSA26 Cre reporter strain. Nature Genetics 21(1): 70-71.
Stanger, B., Stiles, B., Lauwers, G., Bardeesy, N., Mendoza, M., Wang, Y., Greenwood, A., Cheng, K., McLaughlin, M., and Brown, D. 2005. Pten constrains centroacinar cell expansion and malignant transformation in the pancreas. Cancer Cell 8(3): 185-195.
Steck, P., Pershouse, M., Jasser, S., Yung, W., Lin, H., Ligon, A., Langford, L., Baumgard, M., Hattier, T., and Davis, T. 1997. Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23. 3 that is mutated in multiple advanced cancers. Nature Genetics 15(4): 356-362.
Sugimura, Y., Cunha, G., and Donjacour, A. 1986. Morphological and histological study of castration-induced degeneration and androgen-induced regeneration in the mouse prostate. Biology of reproduction 34(5): 973-983.
Suzuki, A., de la Pompa, J., Stambolic, V., Elia, A., Sasaki, T., Barrantes, I., Ho, A., and Wakeham, A. 1998. High cancer susceptibility and embryonic lethality associated with mutation of the PTEN tumor suppressor gene in mice. Current Biology 8(21): 1169-1178.
Suzuki, A., Yamaguchi, M., Ohteki, T., Sasaki, T., Kaisho, T., Kimura, Y., Yoshida, R., Wakeham, A., Higuchi, T., and Fukumoto, M. 2001. T cell-specific loss of Pten leads to defects in central and peripheral tolerance. Immunity 14(5): 523-534.
Tanagho, E. and McAninch, J. 2008. Smith's General Urology, the 17th edition.
Thayer, S., di Magliano, M., Heiser, P., Nielsen, C., Roberts, D., Lauwers, G., Qi, Y., Gysin, S., Fernandez-del Castillo, C., and Yajnik, V. 2003. Hedgehog is an early and late mediator of pancreatic cancer tumorigenesis. Nature 425(6960): 851-856.
Thorey, I., Meneses, J., Neznanov, N., Kulesh, D., Pedersen, R., and Oshima, R. 1993. Embryonic Expression of Human Keratin 18 and K18-[beta]-Galactosidase Fusion Genes in Transgenic Mice. Developmental biology 160(2): 519-534.
Trybus, T., Burgess, A., Wojno, K., Glover, T., and Macoska, J. 1996. Distinct areas of allelic loss on chromosomal regions 10p and 10q in human prostate cancer. Cancer research 56(10): 2263-2267.
Verhagen, A., Aalders, T., Ramaekers, F., Debruyne, F., and Schalken, J. 1988. Differential expression of keratins in the basal and luminal compartments of rat prostatic epithelium during degeneration and regeneration. The Prostate 13(1): 25-38.
Vivanco, I. and Sawyers, C. 2002. The phosphatidylinositol 3-kinase–Akt pathway in human cancer. Nature Reviews Cancer 2(7): 489-501.
Voeller, H., Augustus, M., Madike, V., Bova, G., Carter, K., and Gelmann, E. 1997. Coding region of NKX3. 1, a prostate-specific homeobox gene on 8p21, is not mutated in human prostate cancers. Cancer research 57(20): 4455-4459.
Wagner, M., Luhrs, H., Kloppel, G., Adler, G., and Schmid, R. 1998. Malignant transformation of duct-like cells originating from acini in transforming growth factor [alpha] transgenic mice. Gastroenterology 115(5): 1254-1262.
Wang, S., Gao, J., Lei, Q., Rozengurt, N., Pritchard, C., Jiao, J., Thomas, G., Li, G., Roy-Burman, P., and Nelson, P. 2003. Prostate-specific deletion of the murine Pten tumor suppressor gene leads to metastatic prostate cancer. Cancer Cell 4(3): 209-221.
Wang, S., Garcia, A., Wu, M., Lawson, D., Witte, O., and Wu, H. 2006. Pten deletion leads to the expansion of a prostatic stem/progenitor cell subpopulation and tumor initiation. Proceedings of the National Academy of Sciences of the United States of America 103(5): 1480-1485.
Wang, X., Kruithof-de Julio, M., Economides, K., Walker, D., Yu, H., Halili, M., Hu, Y., Price, S., Abate-Shen, C., and Shen, M. 2009. A luminal epithelial stem cell that is a cell of origin for prostate cancer. Nature 461(7263): 495-500.
Welm, B., Tepera, S., Venezia, T., Graubert, T., Rosen, J., and Goodell, M. 2002. Sca-1pos cells in the mouse mammary gland represent an enriched progenitor cell population. Developmental biology 245(1): 42-56.
Wu, X., Hepner, K., Castelino-Prabhu, S., Do, D., Kaye, M., Yuan, X., Wood, J., Ross, C., Sawyers, C., and Whang, Y. 2000a. Evidence for regulation of the PTEN tumor suppressor by a membrane-localized multi-PDZ domain containing scaffold protein MAGI-2. Proceedings of the National Academy of Sciences of the United States of America 97(8): 4233-4238.
Wu, X., Wu, J., Huang, J., Powell, W., Zhang, J., Matusik, R., Sangiorgi, F., Maxson, R., Sucov, H., and Roy-Burman, P. 2001. Generation of a prostate epithelial cell-specific Cre transgenic mouse model for tissue-specific gene ablation. Mechanisms of development 101(1-2): 61-69.
Wu, Y., Dowbenko, D., Spencer, S., Laura, R., Lee, J., Gu, Q., and Lasky, L. 2000b. Interaction of the tumor suppressor PTEN/MMAC with a PDZ domain of MAGI3, a novel membrane-associated guanylate kinase. Journal of Biological Chemistry 275(28): 21477-21485.
Xu, X., Kobayashi, S., Qiao, W., Li, C., Xiao, C., Radaeva, S., Stiles, B., Wang, R., Ohara, N., and Yoshino, T. 2006. Induction of intrahepatic cholangiocellular carcinoma by liver-specific disruption of Smad4 and Pten in mice. Journal of Clinical Investigation 116(7): 1843-1852.
Zeps, N., Dawkins, H., Papadimitriou, J., Redmond, S., and Walters, M. 1996. Detection of a population of long-lived cells in mammary epithelium of the mouse. Cell and tissue research 286(3): 525-536.
Zhou, B., Liao, Y., Xia, W., Zou, Y., Spohn, B., and Hung, M. 2001. HER-2/neu induces p53 ubiquitination via Akt-mediated MDM2 phosphorylation. Nature cell biology 3(11): 973-982.
Zhu, L., Shi, G., Schmidt, C., Hruban, R., and Konieczny, S. 2007. Acinar cells contribute to the molecular heterogeneity of pancreatic intraepithelial neoplasia. American Journal of Pathology 171(1): 263-273.
行政院衛生署. 2010. 98年度死因統計完整統計表.
陳亭亘. 2007. 國立陽明大學 生命科學系暨基因體科學研究所 碩士論文.
黃翊棻. 2009. 國立陽明大學 生命科學系暨基因體科學研究所 碩士論文.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔