|
七、參考文獻 1. Adari, H., Lowy, D.R., Willumsen, B.M., Der, C.J., and McCormick, F. (1988). Guanosine triphosphatase activating protein (GAP) interacts with the p21 ras effector binding domain. Science 240, 518-521. 2. Adrienne, D.C.and Channing, J.D. (2002) Ras family signaling. Cancer Biol Ther. 1, 599-606. 3. Al-Mulla, F., Milner-White, E.J., Going, J.J., and Birnie, G.D. (1999). Structural differences between valine-12 and aspartate-12 Ras proteins may modify carcinoma aggression. J Pathol 187, 433-438. 4. Alemany, R. (2009). Designing adenoviral vectors for tumor-specific targeting. Methods Mol Biol 542, 57-74. 5. Andreyev, H.J., Norman, A.R., Cunningham, D., Oates, J., Dix, B.R., Iacopetta, B.J., Young, J., Walsh, T., Ward, R., Hawkins, N., et al. (2001). Kirsten ras mutations in patients with colorectal cancer: the 'RASCAL II' study. Br J Cancer 85, 692-696. 6. Anker, P., Lefort, F., Vasioukhin, V., Lyautey, J., Lederrey, C., Chen, X.Q., Stroun, M., Mulcahy, H.E., and Farthing, M.J. (1997). K-ras mutations are found in DNA extracted from the plasma of patients with colorectal cancer. Gastroenterology 112, 1114-1120. 7. Barak, Y., Gottlieb, E., Juven-Gershon, T., and Oren, M. (1994). Regulation of mdm2 expression by p53: alternative promoters produce transcripts with nonidentical translation potential. Genes Dev 8, 1739-1749. 8. Bartkova, J., Zuzana, H., Koed, K., Krämer, A., Tort, F., Zieger, K., Nesland, J.M. Lukas, G., and Bartek, J. (2005).DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature 434, 864–870. 9. Benchimol, S., Lamb, P., Crawford, L.V., Sheer, D., Shows, T.B., Bruns, G.A., and Peacock, J. (1985). Transformation associated p53 protein is encoded by a gene on human chromosome 17. Somat Cell Mol Genet 11, 505-510. 10. Biederer, C., Ries, S., Brandts, C.H., and McCormick, F. (2002). Replication-selective viruses for cancer therapy. J Mol Med 80, 163-175. 11. Bischoff, J.R., Kirn, D.H., Williams, A., Heise, C., Horn, S., Muna, M., Ng, L., Nye, J.A., Sampson-Johannes, A., Fattaey, A., et al. (1996). An adenovirus mutant that replicates selectively in p53-deficient human tumor cells. Science 274, 373-376. 12. Bond, G.L., Hu, W., and Levine, A.J. (2005). MDM2 is a central node in the p53 pathway: 12 years and counting. Curr Cancer Drug Targets 5, 3-8. 13. Bourne, H.R., Sanders, D.A., and McCormick, F. (1990a). The GTPase superfamily: a conserved switch for diverse cell functions. Nature 348, 125-132. 14. Bourne, H.R., Wrischnik, L., and Kenyon, C. (1990b). Ras proteins. Some signal developments. Nature 348, 678-679. 15. Cahilly-Snyder, L., Yang-Feng, T., Francke, U., and George, D.L. (1987). Molecular analysis and chromosomal mapping of amplified genes isolated from a transformed mouse 3T3 cell line. Somat Cell Mol Genet 13, 235-244. 16. Campell, S.L., Khosravi-Far, R., Rossman, K.L., Clark, G.J. and Der, C.J. (1998) Inreasing complexity of Ras signaling. Oncogene. 17, 1395-1413. 17. Cantor, S.B., Urano, T. and Feig, L.A. (1995) Identification and characterization of Ral-binding protein 1, a potential downstream target of Ral GTPases. Mol Cell Biol. 15, 4578-4584. 18. Chan, T.O., Rittenhouse, S.E. and Tsichlis, P.N. (1999) AKT/PKB and other D3 phosphoinositide-regulated kinases: kinase activation by phosphoinositide-dependent phosphorylation. Annu Rev Biochem. 68, 965-1014. 19. Chen, D., Li, M., Luo, J., and Gu, W. (2003) Direct interactions between HIF-1a and Mdm2 modulate p53 function. J. Biol. Chem., 278: 13595 – 13598. 20. Chen, J., Marechal, V., and Levine, A.J. (1993). Mapping of the p53 and mdm-2 interaction domains. Mol Cell Biol 13, 4107-4114. 21. Chen, L., Gilkes, D. M., Pan, Y., Lane, W. S. & Chen, J. (2005) ATM and Chk2-dependent phosphorylation of MDMX contribute to p53 activation after DNA damage. EMBO J. 24, 3411–3422. 22. Chene, P. (2001). Targeting p53 in cancer. Curr Med Chem Anticancer Agents 1, 151-161. 23. Crompton, A.M., and Kirn, D.H. (2007). From ONYX-015 to armed vaccinia viruses: the education and evolution of oncolytic virus development. Curr Cancer Drug Targets 7, 133-139. 24. Das, B., Shu, X., Day, G.J., Han, J., Hrishna, U.M., Falck, J.R. and Broek, D. (2000) Control of intramolecular interactions between the pleckstrin homology and Db1 homology domains of Vav and Sos1 regulates Rac binding. J. Biol. Chem. 275, 15074-15081. 25. Davis, M.A., Chang, S.H. and Trump, B.F. (1996) Differential sensitivity of normal and H-ras oncogene-transformed rat kidney epithelial cells to okadaic acid-induced apoptosis. Toxicol Appl Pharmacol. 141, 93-101. 26. DeCaprio, J.A. (2009). How the Rb tumor suppressor structure and function was revealed by the study of Adenovirus and SV40. Virology 384, 274-284. 27. Dhillon, A.S., Pollock, C., Steen, H., Shaw, P.E., Mischak, H. and Kolch, W. (2002) Cyclic AMP-dependent kinase regulates Raf-1 kinase mainly by phosphorylation of serine 259. Mol Cell Biol. 22, 3237-3246 28. Doronin, K., Toth, K., Kuppuswamy, M., Ward, P., Tollefson, A.E., and Wold, W.S. (2000). Tumor-specific, replication-competent adenovirus vectors overexpressing the adenovirus death protein. J Virol 74, 6147-6155. 29. Drago, L., Esposito, S., De Vecchi, E., Marchisio, P., Blasi, F., Baggi, E., Capaccio, P., and Pignataro, L. (2008). Detection of respiratory viruses and atypical bacteria in children's tonsils and adenoids. J Clin Microbiol 46, 369-370. 30. el-Deiry, W.S., Tokino, T., Velculescu, V.E., Levy, D.B., Parsons, R., Trent, J.M., Lin, D., Mercer, W.E., Kinzler, K.W., and Vogelstein, B. (1993). WAF1, a potential mediator of p53 tumor suppression. Cell 75, 817-825. 31. Elenbaas, B., Dobbelstein, M., Roth, J., Shenk, T., and Levine, A. J. (1996) The MDM2 oncoprotein binds specifically to RNA through its RING finger domain. Mol. Med., 2: 439 – 451. 32. Francoz, S., Froment, P., Bogaerts, S., Clercq, S.D., Maetens, M., and Marine, J.C. (2006) Mdm4 and Mdm2 cooperate to inhibit p53 activity in proliferating and quiescent cells in vivo. Proc. Natl Acad. Sci. USA 103, 3232–3237. 33. Fueyo, J., Gomez-Manzano, C., Alemany, R., Lee, P.S., McDonnell, T.J., Mitlianga, P., Shi, Y.X., Levin, V.A., Yung, W.K., and Kyritsis, A.P. (2000). A mutant oncolytic adenovirus targeting the Rb pathway produces anti-glioma effect in vivo. Oncogene 19, 2-12. 34. Fujiwara, T., Urata, Y., and Tanaka, N. (2008). Diagnostic and therapeutic application of telomerase-specific oncolytic adenoviral agents. Front Biosci 13, 1881-1886. 35. Galanis, E., Okuno, S.H., Nascimento, A.G., Lewis, B.D., Lee, R.A., Oliveira, A.M., Sloan, J.A., Atherton, P., Edmonson, J.H., Erlichman, C., et al. (2005). Phase I-II trial of ONYX-015 in combination with MAP chemotherapy in patients with advanced sarcomas. Gene Ther 12, 437-445. 36. Ganly, I., Kirn, D., Eckhardt, G., Rodriguez, G.I., Soutar, D.S., Otto, R., Robertson, A.G., Park, O., Gulley, M.L., Heise, C., et al. (2000). A phase I study of Onyx-015, an E1B attenuated adenovirus, administered intratumorally to patients with recurrent head and neck cancer. Clin Cancer Res 6, 798-806. 37. Ginsberg, H.S. (1999). The life and times of adenoviruses. Adv Virus Res 54, 1-13. 38. Goldberg, Z., Vogt Sionov, R., Berger, M., Zwang, Y., Perets, R., Van Etten, R.A., Oren, M., Taya, Y., and Haupt, Y. (2002) Tyrosine phosphorylation of Mdm2 by c-Abl: implications for p53 regulation. EMBO J., 21: 3715 – 3727. 39. Goodrum, F.D., and Ornelles, D.A. (1998). p53 status does not determine outcome of E1B 55-kilodalton mutant adenovirus lytic infection. J Virol 72, 9479-9490. 40. Guo, C. S., Degnin, C., Fiddler, T. A., Stauffer, D., and Thayer, M. J. (2003) Regulation of MyoD activity and muscle cell differentiation by MDM2, pRb, and Sp1. J. Biol. Chem., 278: 22615 – 22622. 41. Hall, A. (1990). The cellular functions of small GTP-binding proteins. Science 249, 635-640. 42. Hall, A.R., Dix, B.R., O'Carroll, S.J., and Braithwaite, A.W. (1998). p53-dependent cell death/apoptosis is required for a productive adenovirus infection. Nat Med 4, 1068-1072. 43. Han, J., Luby-Phelps, K., Das, B., Shu, X., Xia, Y., Mosteller, R.D., Krishna, U.M., Falck, J.R., White, M.A. and Broek, D. (1998) Role of substrates and products of PI 3-kinase in regulating activation of Rac-related guanosine triphosphatases by Vav. Science. 279, 558-560. 44. Han, J., Sabbatini, P., Perez, D., Rao, L., Modha, D., and White, E. (1996). The E1B 19K protein blocks apoptosis by interacting with and inhibiting the p53-inducible and death-promoting Bax protein. Genes Dev 10, 461-477. 45. Hancock, J.F., Cadwaller, K., Paterson, H. and Marshall, C.J. (1992). A CAAX or a CAAL motif and a second signal are sufficient for plasma membrane targeting of ras proteins. EMBO J. 10,4033-4039 46. Hancock, J.F., Paterson, H. and Marshall, C.J. (1990). A polybasic domain or palmitoylation is required in addition to the CAAX motif to localize p21ras to the plasma membrane. Cell 63,133-139 47. Hancock, J.F. (2003). Ras proteins: different signals from different locations. Nat Rev Mol Cell Biol. 4,373-384 48. Harada, J.N., and Berk, A.J. (1999). p53-Independent and -dependent requirements for E1B-55K in adenovirus type 5 replication. J Virol 73, 5333-5344. 49. Head, J.E. and Johnson, S.R. (2003) Protein farnesyltransferase inhibitors. Expert Opin Emerg Drugs. 8, 163-178. 50. Heise, C., Hermiston, T., Johnson, L., Brooks, G., Sampson-Johannes, A., Williams, A., Hawkins, L., and Kirn, D. (2000). An adenovirus E1A mutant that demonstrates potent and selective systemic anti-tumoral efficacy. Nat Med 6, 1134-1139. 51. Heise, C., Sampson-Johannes, A., Williams, A., McCormick, F., Von Hoff, D.D., and Kirn, D.H. (1997). ONYX-015, an E1B gene-attenuated adenovirus, causes tumor-specific cytolysis and antitumoral efficacy that can be augmented by standard chemotherapeutic agents. Nat Med 3, 639-645. 52. Heise, C.C., Williams, A.M., Xue, S., Propst, M., and Kirn, D.H. (1999). Intravenous administration of ONYX-015, a selectively replicating adenovirus, induces antitumoral efficacy. Cancer Res 59, 2623-2628. 53. Hekman, M., Hamm, H., Villar, A.V., Bader, B., Kuhlmann, J., Nickel, J. and Rapp, U.R. (2002) Associations of B-and C-Raf with cholesterol, phosphatidylserine, and lipid second messengers:preferential binding of Raf to artificial lipid rafts. J Biol Chem. 277,24090-24102. 54. Hernandez-Munoz, I., Malumbre, M., Leonardi, P. and Pellicer, A. (2000) The Rgr oncogene (homologous to RalGDS) induces transformation and gene expression by activating Ras, Ral and Rho mediated pathway. Oncogene. 19, 2745-2757. 55. Hirao, A. Cheung, A., Duncan, G., Girard, PM., Elia, A.J., Wakeham, A., Okada, H., Sarkissian, T., Wong, J.A., Jeggo, P. A., Elledge,S.J. and Mak T.W. (2002) Chk2 is a tumor suppressor that regulates apoptosis in both an ataxia–telangiectasia mutated (ATM)-dependent and an ATM-independent manner. Mol. Cell. Biol. 22, 6521–6532. 56. Honda, R., Tanaka, H., and Yasuda, H. (1997). Oncoprotein MDM2 is a ubiquitin ligase E3 for tumor suppressor p53. FEBS Lett 420, 25-27. 57. Howe, J.A., Demers, G.W., Johnson, D.E., Neugebauer, S.E., Perry, S.T., Vaillancourt, M.T., and Faha, B. (2000). Evaluation of E1-mutant adenoviruses as conditionally replicating agents for cancer therapy. Mol Ther 2, 485-495. 58. Hsieh, J. K., Chan, F. S., O’Connor, D. J., Mittnacht, S., Zhong, S., and Lu, X. (1999) RB regulates the stability and the apoptotic function of p53 via MDM2. Mol.Cell, 3: 181 – 193. 59. Immonen, A., Vapalahti, M., Tyynelä, K., Hurskainen, H., Sandmair, A., Vanninen, R., and Ylä-Herttuala, S. (2004) AdvHSV-tk Gene Therapy with Intravenous Ganciclovir Improves Survival in Human Malignant Glioma: A Randomised, Controlled Study. Molecular Therapy. 10, 967–972. 60. Ito, A., Lai, C.H., Zhao, X., Saito, S., Hamilton, MH and Yao, T.P. (2001) p300/CBP-mediated p53 acetylation is commonly induced by p53-activating agents and inhibited by MDM2. EMBO J. 20, 1331–1340. 61. Iwakuma, T. and Lozano, G. (2003) MDM2, An Introduction. Molecular Cancer Research. 1, 993–1000. 62. Jeon, C.H., Lee, H.I., Shin, I.H. and Park, J.W. (2008) Genetic alterations of APC, K-ras, p53, MSI, and MAGE in Korean colorectal cancer patients. Int J Colorectal Dis. 23, 29-35. 63. Jin, J., Liu, H., and Yang, C., Li, G., Liu, X., Qian, Q. and Qian, W. (2009) Effective gene-viral therapy of leukemia by a new fiber chimeric oncolytic adenovirus expressing TRAIL: in vitro and in vivo evaluation. Mol Cancer Ther. 8, 1387-1397. 64. Jullien-Flores, V., Dorseuil, O., Romero, F., Letourneur, F., Saragosti, S., Berger, R., Tavitian, A., Gacon, G. and Camonis, J.H. (1995) Bridging Ral GTPase to Rho pathways. RLP76, a Ral effector with CDC42/Rac GTPase-activating protein activity. J. Biol. Chem. 270,22473-22477. 65. Kasuya, H., Takeda, S., Shimoyama, S., Shikano, T., Nomura, N., Kanazumi, N., Nomoto, S., Sugimoto, H., and Nakao, A. (2007). Oncolytic virus therapy--foreword. Curr Cancer Drug Targets 7, 123-125. 66. Kirn, D. (2001a). Oncolytic virotherapy for cancer with the adenovirus dl1520 (Onyx-015): results of phase I and II trials. Expert Opin Biol Ther 1, 525-538. 67. Kirn, D., Martuza, R.L., and Zwiebel, J. (2001b). Replication-selective virotherapy for cancer: Biological principles, risk management and future directions. Nat Med 7, 781-787. 68. Klein, C., and Vassilev, L.T. (2004). Targeting the p53-MDM2 interaction to treat cancer. Br J Cancer 91, 1415-1419. 69. Lakin, N.D., Hann, B.C. and Jackson, S.P. (1999) The ataxia–telangiectasia related protein ATR mediates DNA-dependent phosphorylation of p53. Oncogene 18, 3989–3995. 70. Lea, I.A., Jackson, M.A., Li, X., Bailey, S., Peddada, S.D., and Dunnick, J.K. (2007). Genetic pathways and mutation profiles of human cancers: site- and exposure-specific patterns. Carcinogenesis 28, 1851-1858. 71. Leach, F.S., Tokino, T., Meltzer, P., Burrell, M., Oliner, J.D., Smith, S., Hill, D.E., Sidransky, D., Kinzler, K.W., and Vogelstein, B. (1993). p53 Mutation and MDM2 amplification in human soft tissue sarcomas. Cancer Res 53, 2231-2234. 72. Lee, G.H. (2008). The Kras2 oncogene and mouse lung carcinogenesis. Med Mol Morphol 41, 199-203. 73. Lee, M., Sup Han, W., Kyoung Kim, O., Hee Sung, S., Sun Cho, M., Lee, S.N., and Koo, H. (2006). Prognostic value of p16INK4a and p14ARF gene hypermethylation in human colon cancer. Pathol Res Pract 202, 415-424. 74. Lenaerts, L., De Clercq, E., and Naesens, L. (2008). Clinical features and treatment of adenovirus infections. Rev Med Virol 18, 357-374. 75. Levine, A.J. (1997). p53, the cellular gatekeeper for growth and division. Cell 88, 323-331. 76. Levine, A.J. (2009). The common mechanisms of transformation by the small DNA tumor viruses: The inactivation of tumor suppressor gene products: p53. Virology 384, 285-293. 77. Liu, H.L., and Chen, J. (2009). Oncolytic virus as an agent for the treatment of malignant ascites. Cancer Biother Radiopharm 24, 99-102. 78. Lohrum, M.A., Ludwig, R.L., Kubbutat, M.H., Hanlon, M., and Vousden, K.H. (2003) Regulation of HDM2 activity by the ribosomal protein L11. Cancer Cell, 3, 577 – 587. 79. Loughran, O. and La Thangue, N.B. (2000) Apoptotic and growth-promoting activity of E2F modulated by MDM2. Mol. Cell. Biol., 20: 2186 – 2197. 80. Lowe, S.W., and Sherr, C.J. (2003). Tumor suppression by Ink4a-Arf: progress and puzzles. Curr Opin Genet Dev 13, 77-83. 81. Lukashok, S.A., Tarassishin, L., Li, Y. and Horwitz, M.S. (2000) An adenovirus inhibitor of tumor necrosis factor alpha-induced apoptosis complexes with dynein and a small GTPase. J Virol. 74, 4705-4709. 82. Marais, R. and Marshall, C.J. (1996) Control of the ERK MAP kinase cascade by Ras and Raf. Cancer Surv. 27,101-125. 83. McCormick, F. (2000). ONYX-015 selectivity and the p14ARF pathway. Oncogene 19, 6670-6672. 84. Meek, D.W. (2009) Tumour suppression by p53: a role for the DNA damage response? Nature Reviews Cancer 9, 714-723. 85. Menendez, D., Inga, A., and Resnick, M.A. (2009) The expanding universe of p53 targets, Nature Reviews Cancer. 9, 724-737. 86. Meulmeester, E., Pereg, Y., Shiloh, Y. and Jochemsen, A.G. (2005) ATM-mediated phosphorylations inhibit Mdmx/Mdm2 stabilization by HAUSP in favor of p53 activation. Cell Cycle 4, 1166–1170. 87. Mills, A.A. (2005). p53: link to the past, bridge to the future. Genes Dev 19, 2091-2099. 88. Moll, U.M., and Petrenko, O. (2003). The MDM2-p53 interaction. Mol Cancer Res 1, 1001-1008. 89. Nehls, O., Okech, T., Hsieh, C.J., Enzinger, T., Sarbia, M., Borchard, F., Gruenagel, H.H., Gaco, V., Hass, H.G., Arkenau, H.T., et al. (2007). Studies on p53, BAX and Bcl-2 protein expression and microsatellite instability in stage III (UICC) colon cancer treated by adjuvant chemotherapy: major prognostic impact of proapoptotic BAX. Br J Cancer 96, 1409-1418. 90. Nemunaitis, J., Ganly, I., Khuri, F., Arseneau, J., Kuhn, J., McCarty, T., Landers, S., Maples, P., Romel, L., Randlev, B., et al. (2000). Selective replication and oncolysis in p53 mutant tumors with ONYX-015, an E1B-55kD gene-deleted adenovirus, in patients with advanced head and neck cancer: a phase II trial. Cancer Res 60, 6359-6366. 91. Nimnual, A.S., Yatsula, B.A. and Bar-Sagi, D. (1998) Coupling of Ras and Rac guanosine triphosphatases through the Ras exchanger Sos. Sceience, 279, 560-563. 92. Ogawara, Y., Kishishita, S., Obata, T., Isazawa, Y., Suzuki, T., Tanaka, K., Masuyama, N., and Gotoh, Y. (2002) Akt enhances Mdm2-mediated ubiquitination and degradation of p53. J. Biol. Chem., 277: 21843 – 21850. 93. Oliner, J.D. (1993). Discerning the function of p53 by examining its molecular interactions. Bioessays 15, 703-707. 94. Op De Beeck, A., and Caillet-Fauquet, P. (1997). Viruses and the cell cycle. Prog Cell Cycle Res 3, 1-19. 95. Opyrchal, M., Aderca, I., and Galanis, E. (2009). Phase I clinical trial of locoregional administration of the oncolytic adenovirus ONYX-015 in combination with mitomycin-C, doxorubicin, and cisplatin chemotherapy in patients with advanced sarcomas. Methods Mol Biol 542, 705-717. 96. Peyssonnaux, C., and Eychene, A. (2001). The Raf/MEK/ERK pathway: new concepts of activation. Biol Cell 93, 53-62. 97. Phelps, M., Darley, M., Primrose, J.N., and Blaydes, J.P. (2003). p53-independent activation of the hdm2-P2 promoter through multiple transcription factor response elements results in elevated hdm2 expression in estrogen receptor alpha-positive breast cancer cells. Cancer Res 63, 2616-2623. 98. Plesec, T.P., and Hunt, J.L. (2009). KRAS mutation testing in colorectal cancer. Adv Anat Pathol 16, 196-203. 99. Querido, E., Marcellus, R.C., Lai, A., Charbonneau, R., Teodoro, J.G., Ketner, G., and Branton, P.E. (1997). Regulation of p53 levels by the E1B 55-kilodalton protein and E4orf6 in adenovirus-infected cells. J Virol 71, 3788-3798. 100. Quilliam, L.A., Rebhun, J.F., and Castro, A.F. (2002) A growing family of guanine nucleotide exchange factors is responsible for activation of Ras-family GTPase. Prog Nucleic Acid Res Mol Biol. 71, 391-444. 101. Rageul, J., Mottier, S., Jarry, A., Shah, Y., Théoleyre, S., Masson, D., Gonzalez, F.J., Laboisse, C.L. and Denis, M.G. (2009) KLF4-dependent, PPARgamma-induced expression of GPA33 in colon cancer cell lines. Int J Cancer. 125, 2802-2809. 102. Reuther, G.W. and Der, C.J. (2000) The Ras branch of small GTPases: Ras family members don't fall far from the tree. Curr Opin Cell Biol. 12, 157-165. 103. Riely, G.J., Marks, J., and Pao, W. (2009). KRAS mutations in non-small cell lung cancer. Proc Am Thorac Soc 6, 201-205. 104. Ries, S., Biederer, C., Woods, D., Shifman, O., Shirasawa, S., Sasazuki, T., McMahon, M., Oren, M., and McCormick, F. (2000). Opposing effects of Ras on p53: transcriptional activation of mdm2 and induction of p19ARF. Cell 103, 321-330. 105. Rodriguez-Viciana P., Wame, P.H., Vanhaesebroeck, B., Waterfield, M.D. and Downward, J. (1996) Activation of phosphoinositide 3-kinase by interaction with Ras and by point mutation. EMBO J. 15, 2442-2451. 106. Rogulski, K.R., Freytag, S.O., Zhang, K., Gilbert, J.D., Paielli, D.L., Kim, J.H., Heise, C.C., and Kirn, D.H. (2000). In vivo antitumor activity of ONYX-015 is influenced by p53 status and is augmented by radiotherapy. Cancer Res 60, 1193-1196. 107. Rothmann, T., Hengstermann, A., Whitaker, N.J., Scheffner, M., and zur Hausen, H. (1998). Replication of ONYX-015, a potential anticancer adenovirus, is independent of p53 status in tumor cells. Journal of Virology 72, 9470-9478. 108. Russel, W.C. (2000) Update on adenovirus and its vector. J Gen Virol. 81, 2573-2604. 109. Sagawa, M., Saito, Y., Fujimura, S., and Linnoila, R.I. (1998). K-ras point mutation occurs in the early stage of carcinogenesis in lung cancer. Br J Cancer 77, 720-723. 110. Scheffzek, K., Ahmadian, M.R., Kabsch, W., Wiesmuller, L., Lautwein, A., Schmitz, F., and Wittinghofer, A. (1997). The Ras-RasGAP complex: structural basis for GTPase activation and its loss in oncogenic Ras mutants. Science 277, 333-338. 111. Sebolt-Leopold, J.S. (2000) Development of anticancer drugs targeting the MAP kinase pathway. Oncogene. 19, 6594-6599. 112. Stommel, J.M. and Wahl, G.M. (2004) Accelerated MDM2 auto-degradation induced by DNA-damage kinases is required for p53 activation. EMBO J. 23, 1547–1556 113. Sui, X., Shin, S., Zhang, R., Firozi, P.F., Yang, L., Abbruzzese, J.L., Reddy, S.A., and Reddy, S.A.G. (2009). Hdm2 is regulated by K-Ras and mediates p53-independent functions in pancreatic cancer cells. Oncogene 28, 709-720. 114. Tatsis, N., and Ertl, H.C. (2004). Adenoviruses as vaccine vectors. Mol Ther 10, 616-629. 115. van Beusechem, V.W., van den Doel, P.B., and Gerritsen, W.R. (2005). Conditionally replicative adenovirus expressing degradation-resistant p53 for enhanced oncolysis of human cancer cells overexpressing murine double minute 2. Mol Cancer Ther 4, 1013-1018. 116. Vorburger, S.A., and Hunt, K.K. (2002). Adenoviral gene therapy. Oncologist 7, 46-59. 117. Voss, R.H., Lotz, C., Cellary, A., and Theobald, M. (2000). Targeting p53, hdm2, and CD19: vaccination and immunologic strategies. Bone Marrow Transplant 25 Suppl 2, S43-45. 118. Wang, X., Su, C., Cao, H., Li, K., Chen, J., Jiang, L., Zhang, Q., Wu, X., Jia, X., Liu, Y., et al. (2008). A novel triple-regulated oncolytic adenovirus carrying p53 gene exerts potent antitumor efficacy on common human solid cancers. Mol Cancer Ther 7, 1598-1603. 119. Wu, X., Bayle, J.H., Olson, D., and Levine, A.J. (1993). The p53-mdm-2 autoregulatory feedback loop. Genes Dev 7, 1126-1132. 120. Xiao, Z.X., Chen, J., Levine, A.J., Modjtahedi, N., Xing, J., Sellers, W.R., and Livingston, D.M. (1995). Interaction between the retinoblastoma protein and the oncoprotein MDM2. Nature 375, 694-698. 121. Yang, Y., Li, C.C., and Weissman, A.M. (2004). Regulating the p53 system through ubiquitination. Oncogene 23, 2096-2106. 122. Yogosawa, S., Miyauchi, Y., Honda, R., Tanaka, H., and Yasuda, H. (2003) Mammalian Numb is a target protein of Mdm2, ubiquitin ligase. Biochem. Biophys. Res. Commun., 302: 869 – 872. 123. Yordy, J.S. and Muise-Helmericks, R.C. (2000) Signal transduction and the Ets family of transcription factors. Oncogene. 19, 6503-6513. 124. Yotnda, P., Davis, A.R., Hicks, M.J., Templeton, N.S., Benner, M.K. (2004) Liposomal Enhancement of the Antitumor Activity of Conditionally Replication-Competent Adenoviral Plasmids.Molecular Therapy 9, 489-495. 125. Yu, D.C., Chen, Y., Seng, M., Dilley, J., and Henderson, D.R. (1999). The addition of adenovirus type 5 region E3 enables calydon virus 787 to eliminate distant prostate tumor xenografts. Cancer Res 59, 4200-4203. 126. Zauberman, A., Flusberg, D., Haupt, Y., Barak, Y., and Oren, M. (1995). A functional p53-responsive intronic promoter is contained within the human mdm2 gene. Nucleic Acids Res 23, 2584-2592. 127. Zhao, R.Y., and Elder, R.T. (2005). Viral infections and cell cycle G2/M regulation. Cell Res 15, 143-149.
|