(3.235.108.188) 您好!臺灣時間:2021/02/28 00:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:賴柏穎
研究生(外文):Bo-Ying Lai
論文名稱:探討Y-boxbindingprotein1受到SUMO轉譯後修飾之機轉
論文名稱(外文):Study on the sumoylation of Y-box binding protein 1
指導教授:吳研華
指導教授(外文):Yan-Hwa Wu Lee
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:生化暨分子生物研究所
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:79
中文關鍵詞:轉譯後修飾Y-box binding protein
外文關鍵詞:posttranslational modificationY-box binding proteinSumoylation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:186
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Y-box binding protein 1 (YB-1) 為一能與 DNA/RNA 結合的蛋白,其可參與在細胞的各種生理過程,包括:基因轉錄調控、蛋白質轉譯調控、DNA 修復等細胞生理途徑,因此,了解 YB-1 功能如何受到調控是重要的研究主題。本實驗室先前的結果指出在 HEK293T 細胞中,YB-1 可能發生 sumoylation 修飾作用。為了進一步了解 YB-1 是否受到 sumoylation 修飾作用並藉此調控 YB-1 的功能,本論文首先利用 in vivo sumoylation 分析實驗,確認 YB-1 可受到 SUMO1、SUMO2 與 SUMO3 的修飾,且 SUMO2、SUMO3 修飾作用的程度較 SUMO1 明顯。接著利用 domain mapping 的方式找尋 YB-1 受到 SUMO 修飾的胺基酸位置,in vivo sumoylation 分析結果顯示 YB-1 發生 sumoylation 修飾作用的胺基酸可能位於胺基酸序列 61~324 片段中且 YB-1 可能不具 ψKXD/E (ψ 指疏水性胺基酸,如:Val、Leu 及 Ile,X 指任何胺基酸) 形式之 SUMO 修飾胺基酸。此外,透過 site-directed mutagenesis 的方式搜尋 YB-1 蛋白中可影響其 SUMO 修飾之重要胺基酸,將 YB-1 突變蛋白進行 in vivo sumoylation 分析,結果指出部份 YB-1 突變蛋白受到 sumoylation 之現象有降低的情形。藉由螢光顯微鏡觀察,發現部份 YB-1 突變蛋白在細胞內分布位置有明顯差異;綜合以上結果可知,YB-1 之特定胺基酸於其 SUMO 修飾作用及細胞分布位置之調控扮演重要的角色。
Y-box binding protein 1 (YB-1), a DNA/RNA-binding protein, has been proved to be involved in diverse cellular biological processes, including transcription, translation and DNA repair. However, how the functions of YB-1 are regulated remains unknown. Previous results in our laboratory suggested that YB-1 might serve as a substrate for sumoylation pathway in HEK293T cells. Sumoylation is an important posttranslational modification mechanism, which affects many biological processes. Thus, we are interested to know the molecular mechanism of YB-1 sumoylation and whether sumoylation plays any role in regulation of YB-1 functions. In this study, an in vivo sumoylation assay was performed to confirm the sumoylation of YB-1. We found that YB-1 can be modified by SUMO1, SUMO2 and SUMO3, and it is worthy to note that YB-1 might be preferentially modified by SUMO3. Additionally, three YB-1 protein fragments, amino-acid sequences 1-60, 1-125, and 126-318 were used to map sumoylation sites of YB-1. We observed that sumoylation sites of YB-1 probobly locate in amino-acid sequence from 61 to 324. Nevertheless, YB-1 does not contain consensus sumoylation sequence, ψKXD/E, which mediates the interaction between SUMO conjugating enzyme E2 and target proteins. Accordingly, the exact SUMO acceptor lysine residue of YB-1 might not be characterized by ψKXD/E sequence. By using site-directed mutagenesis, we discovered that the sumoylation status of some YB-1 mutant proteins was reduced, and the subcellular localization of these YB-1 mutant proteins was altered. Thus, our results reveal that mutations at specific amino acid residues affect the sumoylation and subcellular localization of YB-1.
目錄………………………………………………………………1

中文摘要…………………………………………………………………………5
Abstract………………………………………………………………6
壹、緒論…………………………………………………………………………7
一、Y-box binding protein 1………………………………………………….7
(ㄧ)YB-1 之簡介………………………………………………………….…7
(二)YB-1 之生理功能…………………………………………………….…8
(1) YB-1 參與基因轉錄調控 (Transcription regulation)………………....8
(2) YB-1 參與蛋白質轉譯調控 (Translation regulation)………………...9
(3) YB-1 參與 DNA 修復 (DNA repair)…………………………………10
(4) YB-1 促進細胞產生抗藥性 (Drug resistance)……………………….11
(5) YB-1 參與調控病毒基因表現…………………………………………12
(6) YB-1 與癌症 (Cancer)…………………………………………………12
(三)YB-1 的轉譯後修飾 (post-translational modification)…………….13
二、Small Ubiquitin-related Modifier (SUMO)……………………………14
(一)SUMO 蛋白家族之簡介………………………………………………14
(二)Sumoylation 之機制……………………………………………….…15
(三)Sumoylation 之生理功能………………………………………….…17
三、 SUMO–interacting motif (SIM)…………………………………….….18
(一)SIM 之簡介………………………………………………………….…18
(二)SIM 之生理功能…………………………………………………….…19
貳、研究目的與策略………………………………………………………….21
參 實驗材料與方法……………………………………………….……...22
一、實驗材料……………………………………………………………..22
1、細胞株…………………………………………………………………….22
2、菌株………………………………………………………………………..22
3、培養基與培養液…………………………………………………………..22
4、質體………………………………………………………………………..23
5、溶液………………………………………………………………………..29
6、抗體………………………………………………………………………..32
7、化學藥品…………………………………………………………………..33
8、酵素………………………………………………………………………..33
9、引子合成…………………………………………………………………..33
二、實驗方法…………………………………………………………………..33
1、大腸桿菌質體之轉型 (Transformation)………………………………...33
2、大腸桿菌質體之製備……………………………………………………..33
(1) 小量製備 (Mini-preparation)…………..……………...………………33
(2) 大量製備 (Maxi-preparation)…………………………...………...…..34
3、細胞培養…………………………………………...……………………...35
4、細胞轉染 (Transfection)-磷酸鈣沈澱法 (Calcium phosphate–DNA coprecipitation)…………………………………………………………..35
5、聚合酶連鎖反應 (Polymerase chain reaction, PCR)………….…….…35
6、質體核酸點突變 (site-directed mutagenesis)……………….…………36
7、Glutathione S transferase 融合蛋白之表現與純化……………..….….37
8、His-tagged SUMO 融合蛋白之表現與純化…………...……………….38
9、SDS-聚丙醯胺凝膠電泳 (SDS dodecyl sulfate-polyacrylamide gel electrophoresis, SDS-PAGE)………………..………………………..…38
10、西方墨點法 (Western blot)……………………….…………………....39
11、In vivo sumoylation 分析試驗 (In vivo sumoylation assay) ………..39
12、蛋白結合試驗 (Pull-down assay)………………………………….…..40
13、In vitro GST 結合試驗 (In vitro GST-pull down assay)……………...40
14、In vitro His合試驗 (In vitro His-pull down assay)………….………..41
15、螢光染色試驗 (fluorescence microscopy)…………………………….41
肆、實驗結果………………………………………………………..…………42
一、在 HEK293T 細胞株中,YB-1 可能受到 SUMO1、SUMO2 或 SUMO3 之轉譯後鍵結修飾…………………………….……………....42
二、YB-1 可能具有兩個以上發生 sumoylation 轉譯後修飾作用之胺基酸,位於胺基酸序列 61 ~ 324 片段之中……………………………....42
三、YB-1 發生 sumoylation 作用之胺基酸不在特定 lysine 胺基酸上 ,且不具 ψKXD/E 特徵………………………………………….…………43
四、YB-1 與 SUMO3 產生直接的交互作用………………………………..44
五、YB-1 藉由兩個於不同位置的 SIM 直接與 His-SUMO3 產生交互作用…………………………………………………………………………45
六、SIM 對 YB-1 sumoylation 修飾作用的影響……………………….….46
七、Sumoylation and SIM 對 YB-1 於細胞分布位置的影響……………..47
伍、討論………………………………………………………………………...48
一、YB-1 受到 SUMO1、SUMO2、SUMO3 不同程度的修飾作用……..48
二、YB-1 可能具有兩個以上發生 sumoylation 轉譯後修飾作用之胺基酸,位於胺基酸序列 61 ~ 324 片段之中……………………………....49
三、YB-1 發生 sumoylation 修飾作用的位置不具 ψKXD/E 之特徵,且不在特定 lysine 胺基酸上………………………………………...……….50
四、YB-1 可藉由兩個 SIM 與 SUMO3 產生交互作用………………...…..51
五、YB-1 藉由兩個於不同位置的 SIM 直接與 His-SUMO3 產生交互作用…………………………………………………………………………51
六、YB-1 之 SIM 對 YB-1 細胞分布情形及其功能的影響……….………..52
陸、參考文獻…………………………………………………………………..54
柒、Figures and Tables…………………………………………………….....65
Table 1. primer used in the thesis. ……………………………………...66
Figure 1. YB-1 is modified by SUMO1, 2 and 3 in vivo. ………………68
Figure 2. SUMO-sites of YB-1 locate in amino-acid sequence from aa.61 ~ 324. ……………………………………………………................................69
Figure 3. Lys81 and Lys170 are not specific SUMO-sites of YB-1. …….70
Figure 4. Sumoylation of YB-1 might be not occurred on specific lysine residue. ………………………………………………....71
Figure 5. YB-1 interacts with His-SUMO3. …………………………….73
Figure 6. YB-1 directly interacts with His-SUMO3. …………………..74
Figure 7. YB-1 directly interacts with His-SUMO3 through two SIMs. ……………………………………………………………75
Figure 8. Val113 and Val114 are important for the sumoylation of
YB-1. …………………………………………………………….76
Figure 9. SIM is important for cellular localization of YB-1. ………....78

Ansari, S.A., Safak, M., Gallia, G.L., Sawaya, B.E., Amini, S., and Khalili, K. (1999). Interaction of YB-1 with human immunodeficiency virus type 1 Tat and TAR RNA modulates viral promoter activity. J Gen Virol 80 ( Pt 10), 2629-2638.
Asakuno, K., Kohno, K., Uchiumi, T., Kubo, T., Sato, S., Isono, M., and Kuwano, M. (1994). Involvement of a DNA binding protein, MDR-NF1/YB-1, in human MDR1 gene expression by actinomycin D. Biochem Biophys Res Commun 199, 1428-1435.
Ashizuka, M., Fukuda, T., Nakamura, T., Shirasuna, K., Iwai, K., Izumi, H., Kohno, K., Kuwano, M., and Uchiumi, T. (2002). Novel translational control through an iron-responsive element by interaction of multifunctional protein YB-1 and IRP2. Mol Cell Biol 22, 6375-6383.
Astanehe, A., Finkbeiner, M.R., Hojabrpour, P., To, K., Fotovati, A., Shadeo, A., Stratford, A.L., Lam, W.L., Berquin, I.M., Duronio, V., et al. (2009). The transcriptional induction of PIK3CA in tumor cells is dependent on the oncoprotein Y-box binding protein-1. Oncogene 28, 2406-2418.
Baba, D., Maita, N., Jee, J.G., Uchimura, Y., Saitoh, H., Sugasawa, K., Hanaoka, F., Tochio, H., Hiroaki, H., and Shirakawa, M. (2005). Crystal structure of thymine DNA glycosylase conjugated to SUMO-1. Nature 435, 979-982.
Bae, S.H., Jeong, J.W., Park, J.A., Kim, S.H., Bae, M.K., Choi, S.J., and Kim, K.W. (2004). Sumoylation increases HIF-1alpha stability and its transcriptional activity. Biochem Biophys Res Commun 324, 394-400.
Bernier-Villamor, V., Sampson, D.A., Matunis, M.J., and Lima, C.D. (2002). Structural basis for E2-mediated SUMO conjugation revealed by a complex between ubiquitin-conjugating enzyme Ubc9 and RanGAP1. Cell 108, 345-356.
Bylebyl, G.R., Belichenko, I., and Johnson, E.S. (2003). The SUMO isopeptidase Ulp2 prevents accumulation of SUMO chains in yeast. J Biol Chem 278, 44113-44120.
Chattopadhyay, R., Das, S., Maiti, A.K., Boldogh, I., Xie, J., Hazra, T.K., Kohno, K., Mitra, S., and Bhakat, K.K. (2008). Regulatory role of human AP-endonuclease (APE1/Ref-1) in YB-1-mediated activation of the multidrug resistance gene MDR1. Mol Cell Biol 28, 7066-7080.
Chen, N.N., and Khalili, K. (1995). Transcriptional regulation of human JC polyomavirus promoters by cellular proteins YB-1 and Pur alpha in glial cells. J Virol 69, 5843-5848.
Chibi, M., Meyer, M., Skepu, A., DJ, G.R., Moolman-Smook, J.C., and Pugh, D.J. (2008). RBBP6 interacts with multifunctional protein YB-1 through its RING finger domain, leading to ubiquitination and proteosomal degradation of YB-1. J Mol Biol 384, 908-916.
Cobbold, L.C., Spriggs, K.A., Haines, S.J., Dobbyn, H.C., Hayes, C., de Moor, C.H., Lilley, K.S., Bushell, M., and Willis, A.E. (2008). Identification of internal ribosome entry segment (IRES)-trans-acting factors for the Myc family of IRESs. Mol Cell Biol 28, 40-49.
Coles, L.S., Diamond, P., Lambrusco, L., Hunter, J., Burrows, J., Vadas, M.A., and Goodall, G.J. (2002). A novel mechanism of repression of the vascular endothelial growth factor promoter, by single strand DNA binding cold shock domain (Y-box) proteins in normoxic fibroblasts. Nucleic Acids Res 30, 4845-4854.
Coles, L.S., Diamond, P., Occhiodoro, F., Vadas, M.A., and Shannon, M.F. (1996). Cold shock domain proteins repress transcription from the GM-CSF promoter. Nucleic Acids Res 24, 2311-2317.
Coles, L.S., Lambrusco, L., Burrows, J., Hunter, J., Diamond, P., Bert, A.G., Vadas, M.A., and Goodall, G.J. (2005). Phosphorylation of cold shock domain/Y-box proteins by ERK2 and GSK3beta and repression of the human VEGF promoter. FEBS Lett 579, 5372-5378.
Comerford, K.M., Leonard, M.O., Karhausen, J., Carey, R., Colgan, S.P., and Taylor, C.T. (2003). Small ubiquitin-related modifier-1 modification mediates resolution of CREB-dependent responses to hypoxia. Proc Natl Acad Sci U S A 100, 986-991.
Cortazar, D., Kunz, C., Saito, Y., Steinacher, R., and Schar, P. (2007). The enigmatic thymine DNA glycosylase. DNA Repair (Amst) 6, 489-504.
David, G., Neptune, M.A., and DePinho, R.A. (2002). SUMO-1 modification of histone deacetylase 1 (HDAC1) modulates its biological activities. J Biol Chem 277, 23658-23663.
de Souza-Pinto, N.C., Mason, P.A., Hashiguchi, K., Weissman, L., Tian, J., Guay, D., Lebel, M., Stevnsner, T.V., Rasmussen, L.J., and Bohr, V.A. (2009). Novel DNA mismatch-repair activity involving YB-1 in human mitochondria. DNA Repair (Amst) 8, 704-719.
Deng, Z., Wan, M., and Sui, G. (2007). PIASy-mediated sumoylation of Yin Yang 1 depends on their interaction but not the RING finger. Mol Cell Biol 27, 3780-3792.
Derry, M.C., Yanagiya, A., Martineau, Y., and Sonenberg, N. (2006). Regulation of poly(A)-binding protein through PABP-interacting proteins. Cold Spring Harb Symp Quant Biol 71, 537-543.
Didier, D.K., Schiffenbauer, J., Woulfe, S.L., Zacheis, M., and Schwartz, B.D. (1988). Characterization of the cDNA encoding a protein binding to the major histocompatibility complex class II Y box. Proc Natl Acad Sci U S A 85, 7322-7326.
Evdokimova, V., Ruzanov, P., Anglesio, M.S., Sorokin, A.V., Ovchinnikov, L.P., Buckley, J., Triche, T.J., Sonenberg, N., and Sorensen, P.H. (2006). Akt-mediated YB-1 phosphorylation activates translation of silent mRNA species. Mol Cell Biol 26, 277-292.
Evdokimova, V., Ruzanov, P., Imataka, H., Raught, B., Svitkin, Y., Ovchinnikov, L.P., and Sonenberg, N. (2001). The major mRNA-associated protein YB-1 is a potent 5' cap-dependent mRNA stabilizer. EMBO J 20, 5491-5502.
Evdokimova, V., Tognon, C., Ng, T., and Sorensen, P.H. (2009). Reduced proliferation and enhanced migration: two sides of the same coin? Molecular mechanisms of metastatic progression by YB-1. Cell Cycle 8, 2901-2906.
Evdokimova, V.M., Kovrigina, E.A., Nashchekin, D.V., Davydova, E.K., Hershey, J.W., and Ovchinnikov, L.P. (1998). The major core protein of messenger ribonucleoprotein particles (p50) promotes initiation of protein biosynthesis in vitro. J Biol Chem 273, 3574-3581.
Fei, E., Jia, N., Yan, M., Ying, Z., Sun, Q., Wang, H., Zhang, T., Ma, X., Ding, H., Yao, X., et al. (2006). SUMO-1 modification increases human SOD1 stability and aggregation. Biochem Biophys Res Commun 347, 406-412.
Gaudreault, I., Guay, D., and Lebel, M. (2004). YB-1 promotes strand separation in vitro of duplex DNA containing either mispaired bases or cisplatin modifications, exhibits endonucleolytic activities and binds several DNA repair proteins. Nucleic Acids Res 32, 316-327.
Geiss-Friedlander, R., and Melchior, F. (2007). Concepts in sumoylation: a decade on. Nat Rev Mol Cell Biol 8, 947-956.
Girdwood, D., Bumpass, D., Vaughan, O.A., Thain, A., Anderson, L.A., Snowden, A.W., Garcia-Wilson, E., Perkins, N.D., and Hay, R.T. (2003). P300 transcriptional repression is mediated by SUMO modification. Mol Cell 11, 1043-1054.
Girdwood, D.W., Tatham, M.H., and Hay, R.T. (2004). SUMO and transcriptional regulation. Semin Cell Dev Biol 15, 201-210.
Gonzalez-Angulo, A.M., Stemke-Hale, K., Palla, S.L., Carey, M., Agarwal, R., Meric-Berstam, F., Traina, T.A., Hudis, C., Hortobagyi, G.N., Gerald, W.L., et al. (2009). Androgen receptor levels and association with PIK3CA mutations and prognosis in breast cancer. Clin Cancer Res 15, 2472-2478.
Gregoire, S., Tremblay, A.M., Xiao, L., Yang, Q., Ma, K., Nie, J., Mao, Z., Wu, Z., Giguere, V., and Yang, X.J. (2006). Control of MEF2 transcriptional activity by coordinated phosphorylation and sumoylation. J Biol Chem 281, 4423-4433.
Guay, D., Garand, C., Reddy, S., Schmutte, C., and Lebel, M. (2008). The human endonuclease III enzyme is a relevant target to potentiate cisplatin cytotoxicity in Y-box-binding protein-1 overexpressing tumor cells. Cancer Sci 99, 762-769.
Hammer, E., Heilbronn, R., and Weger, S. (2007). The E3 ligase Topors induces the accumulation of polysumoylated forms of DNA topoisomerase I in vitro and in vivo. FEBS Lett 581, 5418-5424.
Hannich, J.T., Lewis, A., Kroetz, M.B., Li, S.J., Heide, H., Emili, A., and Hochstrasser, M. (2005). Defining the SUMO-modified proteome by multiple approaches in Saccharomyces cerevisiae. J Biol Chem 280, 4102-4110.
Hardeland, U., Steinacher, R., Jiricny, J., and Schar, P. (2002). Modification of the human thymine-DNA glycosylase by ubiquitin-like proteins facilitates enzymatic turnover. EMBO J 21, 1456-1464.
Hecker, C.M., Rabiller, M., Haglund, K., Bayer, P., and Dikic, I. (2006). Specification of SUMO1- and SUMO2-interacting motifs. J Biol Chem 281, 16117-16127.
Hietakangas, V., Anckar, J., Blomster, H.A., Fujimoto, M., Palvimo, J.J., Nakai, A., and Sistonen, L. (2006). PDSM, a motif for phosphorylation-dependent SUMO modification. Proc Natl Acad Sci U S A 103, 45-50.
Hochstrasser, M. (2001). SP-RING for SUMO: new functions bloom for a ubiquitin-like protein. Cell 107, 5-8.
Hong, Y., Rogers, R., Matunis, M.J., Mayhew, C.N., Goodson, M.L., Park-Sarge, O.K., and Sarge, K.D. (2001). Regulation of heat shock transcription factor 1 by stress-induced SUMO-1 modification. J Biol Chem 276, 40263-40267.
Ise, T., Nagatani, G., Imamura, T., Kato, K., Takano, H., Nomoto, M., Izumi, H., Ohmori, H., Okamoto, T., Ohga, T., et al. (1999). Transcription factor Y-box binding protein 1 binds preferentially to cisplatin-modified DNA and interacts with proliferating cell nuclear antigen. Cancer Res 59, 342-346.
Johnson, E.S. (2004). Protein modification by SUMO. Annu Rev Biochem 73, 355-382.
Johnson, P.R., and Hochstrasser, M. (1997). SUMO-1: Ubiquitin gains weight. Trends Cell Biol 7, 408-413.
Kagey, M.H., Melhuish, T.A., and Wotton, D. (2003). The polycomb protein Pc2 is a SUMO E3. Cell 113, 127-137.
Kerr, D., Chang, C.F., Chen, N., Gallia, G., Raj, G., Schwartz, B., and Khalili, K. (1994). Transcription of a human neurotropic virus promoter in glial cells: effect of YB-1 on expression of the JC virus late gene. J Virol 68, 7637-7643.
Kerscher, O. (2007). SUMO junction-what's your function? New insights through SUMO-interacting motifs. EMBO Rep 8, 550-555.
Kim, J., Cantwell, C.A., Johnson, P.F., Pfarr, C.M., and Williams, S.C. (2002). Transcriptional activity of CCAAT/enhancer-binding proteins is controlled by a conserved inhibitory domain that is a target for sumoylation. J Biol Chem 277, 38037-38044.
Klimas, N., Koneru, A.O., and Fletcher, M.A. (2008). Overview of HIV. Psychosom Med 70, 523-530.
Kohno, K., Izumi, H., Uchiumi, T., Ashizuka, M., and Kuwano, M. (2003). The pleiotropic functions of the Y-box-binding protein, YB-1. Bioessays 25, 691-698.
Krejci, L., Van Komen, S., Li, Y., Villemain, J., Reddy, M.S., Klein, H., Ellenberger, T., and Sung, P. (2003). DNA helicase Srs2 disrupts the Rad51 presynaptic filament. Nature 423, 305-309.
Kuwano, M., Oda, Y., Izumi, H., Yang, S.J., Uchiumi, T., Iwamoto, Y., Toi, M., Fujii, T., Yamana, H., Kinoshita, H., et al. (2004). The role of nuclear Y-box binding protein 1 as a global marker in drug resistance. Mol Cancer Ther 3, 1485-1492.
Li, W.W., Hsiung, Y., Wong, V., Galvin, K., Zhou, Y., Shi, Y., and Lee, A.S. (1997). Suppression of grp78 core promoter element-mediated stress induction by the dbpA and dbpB (YB-1) cold shock domain proteins. Mol Cell Biol 17, 61-68.
Lin, D.Y., Huang, Y.S., Jeng, J.C., Kuo, H.Y., Chang, C.C., Chao, T.T., Ho, C.C., Chen, Y.C., Lin, T.P., Fang, H.I., et al. (2006). Role of SUMO-interacting motif in Daxx SUMO modification, subnuclear localization, and repression of sumoylated transcription factors. Mol Cell 24, 341-354.
Lin, X., Liang, M., Liang, Y.Y., Brunicardi, F.C., and Feng, X.H. (2003). SUMO-1/Ubc9 promotes nuclear accumulation and metabolic stability of tumor suppressor Smad4. J Biol Chem 278, 31043-31048.
Lois, L.M., and Lima, C.D. (2005). Structures of the SUMO E1 provide mechanistic insights into SUMO activation and E2 recruitment to E1. EMBO J 24, 439-451.
Mahajan, R., Delphin, C., Guan, T., Gerace, L., and Melchior, F. (1997). A small ubiquitin-related polypeptide involved in targeting RanGAP1 to nuclear pore complex protein RanBP2. Cell 88, 97-107.
Marenstein, D.R., Ocampo, M.T., Chan, M.K., Altamirano, A., Basu, A.K., Boorstein, R.J., Cunningham, R.P., and Teebor, G.W. (2001). Stimulation of human endonuclease III by Y box-binding protein 1 (DNA-binding protein B). Interaction between a base excision repair enzyme and a transcription factor. J Biol Chem 276, 21242-21249.
Meulmeester, E., Kunze, M., Hsiao, H.H., Urlaub, H., and Melchior, F. (2008). Mechanism and consequences for paralog-specific sumoylation of ubiquitin-specific protease 25. Mol Cell 30, 610-619.
Meulmeester, E., and Melchior, F. (2008). Cell biology: SUMO. Nature 452, 709-711.
Mihailovich, M., Militti, C., Gabaldon, T., and Gebauer, F. (2010). Eukaryotic cold shock domain proteins: highly versatile regulators of gene expression. Bioessays 32, 109-118.
Minty, A., Dumont, X., Kaghad, M., and Caput, D. (2000). Covalent modification of p73alpha by SUMO-1. Two-hybrid screening with p73 identifies novel SUMO-1-interacting proteins and a SUMO-1 interaction motif. J Biol Chem 275, 36316-36323.
Mo, Y.Y., Yu, Y., Theodosiou, E., Ee, P.L., and Beck, W.T. (2005). A role for Ubc9 in tumorigenesis. Oncogene 24, 2677-2683.
Mouneimne, G., and Brugge, J.S. (2009). YB-1 translational control of epithelial-mesenchyme transition. Cancer Cell 15, 357-359.
Mukhopadhyay, D., and Dasso, M. (2007). Modification in reverse: the SUMO proteases. Trends Biochem Sci 32, 286-295.
Ohga, T., Koike, K., Ono, M., Makino, Y., Itagaki, Y., Tanimoto, M., Kuwano, M., and Kohno, K. (1996). Role of the human Y box-binding protein YB-1 in cellular sensitivity to the DNA-damaging agents cisplatin, mitomycin C, and ultraviolet light. Cancer Res 56, 4224-4228.
Ohga, T., Uchiumi, T., Makino, Y., Koike, K., Wada, M., Kuwano, M., and Kohno, K. (1998). Direct involvement of the Y-box binding protein YB-1 in genotoxic stress-induced activation of the human multidrug resistance 1 gene. J Biol Chem 273, 5997-6000.
Okamoto, T., Izumi, H., Imamura, T., Takano, H., Ise, T., Uchiumi, T., Kuwano, M., and Kohno, K. (2000). Direct interaction of p53 with the Y-box binding protein, YB-1: a mechanism for regulation of human gene expression. Oncogene 19, 6194-6202.
Ouyang, J., Shi, Y., Valin, A., Xuan, Y., and Gill, G. (2009). Direct binding of CoREST1 to SUMO-2/3 contributes to gene-specific repression by the LSD1/CoREST1/HDAC complex. Mol Cell 34, 145-154.
Pacheco, A., and Martinez-Salas, E. (2010). Insights into the biology of IRES elements through riboproteomic approaches. J Biomed Biotechnol 2010, 458927.
Papouli, E., Chen, S., Davies, A.A., Huttner, D., Krejci, L., Sung, P., and Ulrich, H.D. (2005). Crosstalk between SUMO and ubiquitin on PCNA is mediated by recruitment of the helicase Srs2p. Mol Cell 19, 123-133.
Paranjape, S.M., and Harris, E. (2007). Y box-binding protein-1 binds to the dengue virus 3'-untranslated region and mediates antiviral effects. J Biol Chem 282, 30497-30508.
Pfander, B., Moldovan, G.L., Sacher, M., Hoege, C., and Jentsch, S. (2005). SUMO-modified PCNA recruits Srs2 to prevent recombination during S phase. Nature 436, 428-433.
Pichler, A., Gast, A., Seeler, J.S., Dejean, A., and Melchior, F. (2002). The nucleoporin RanBP2 has SUMO1 E3 ligase activity. Cell 108, 109-120.
Rodriguez, M.S., Desterro, J.M., Lain, S., Midgley, C.A., Lane, D.P., and Hay, R.T. (1999). SUMO-1 modification activates the transcriptional response of p53. EMBO J 18, 6455-6461.
Ross, S., Best, J.L., Zon, L.I., and Gill, G. (2002). SUMO-1 modification represses Sp3 transcriptional activation and modulates its subnuclear localization. Mol Cell 10, 831-842.
Saitoh, H., and Hinchey, J. (2000). Functional heterogeneity of small ubiquitin-related protein modifiers SUMO-1 versus SUMO-2/3. J Biol Chem 275, 6252-6258.
Saitoh, H., Pu, R., Cavenagh, M., and Dasso, M. (1997). RanBP2 associates with Ubc9p and a modified form of RanGAP1. Proc Natl Acad Sci U S A 94, 3736-3741.
Sapetschnig, A., Rischitor, G., Braun, H., Doll, A., Schergaut, M., Melchior, F., and Suske, G. (2002). Transcription factor Sp3 is silenced through SUMO modification by PIAS1. EMBO J 21, 5206-5215.
Sawaya, B.E., Khalili, K., and Amini, S. (1998). Transcription of the human immunodeficiency virus type 1 (HIV-1) promoter in central nervous system cells: effect of YB-1 on expression of the HIV-1 long terminal repeat. J Gen Virol 79 ( Pt 2), 239-246.
Seeler, J.S., and Dejean, A. (2003). Nuclear and unclear functions of SUMO. Nat Rev Mol Cell Biol 4, 690-699.
Shen, Z., Pardington-Purtymun, P.E., Comeaux, J.C., Moyzis, R.K., and Chen, D.J. (1996). UBL1, a human ubiquitin-like protein associating with human RAD51/RAD52 proteins. Genomics 36, 271-279.
Shiota, M., Izumi, H., Onitsuka, T., Miyamoto, N., Kashiwagi, E., Kidani, A., Yokomizo, A., Naito, S., and Kohno, K. (2008). Twist promotes tumor cell growth through YB-1 expression. Cancer Res 68, 98-105.
Song, J., Durrin, L.K., Wilkinson, T.A., Krontiris, T.G., and Chen, Y. (2004). Identification of a SUMO-binding motif that recognizes SUMO-modified proteins. Proc Natl Acad Sci U S A 101, 14373-14378.
Steinacher, R., and Schar, P. (2005). Functionality of human thymine DNA glycosylase requires SUMO-regulated changes in protein conformation. Curr Biol 15, 616-623.
Sternsdorf, T., Jensen, K., and Will, H. (1997). Evidence for covalent modification of the nuclear dot-associated proteins PML and Sp100 by PIC1/SUMO-1. J Cell Biol 139, 1621-1634.
Stratford, A.L., Fry, C.J., Desilets, C., Davies, A.H., Cho, Y.Y., Li, Y., Dong, Z., Berquin, I.M., Roux, P.P., and Dunn, S.E. (2008). Y-box binding protein-1 serine 102 is a downstream target of p90 ribosomal S6 kinase in basal-like breast cancer cells. Breast Cancer Res 10, R99.
Stratford, A.L., Habibi, G., Astanehe, A., Jiang, H., Hu, K., Park, E., Shadeo, A., Buys, T.P., Lam, W., Pugh, T., et al. (2007). Epidermal growth factor receptor (EGFR) is transcriptionally induced by the Y-box binding protein-1 (YB-1) and can be inhibited with Iressa in basal-like breast cancer, providing a potential target for therapy. Breast Cancer Res 9, R61.
Sutherland, B.W., Kucab, J., Wu, J., Lee, C., Cheang, M.C., Yorida, E., Turbin, D., Dedhar, S., Nelson, C., Pollak, M., et al. (2005). Akt phosphorylates the Y-box binding protein 1 at Ser102 located in the cold shock domain and affects the anchorage-independent growth of breast cancer cells. Oncogene 24, 4281-4292.
Svitkin, Y.V., Evdokimova, V.M., Brasey, A., Pestova, T.V., Fantus, D., Yanagiya, A., Imataka, H., Skabkin, M.A., Ovchinnikov, L.P., Merrick, W.C., et al. (2009). General RNA-binding proteins have a function in poly(A)-binding protein-dependent translation. EMBO J 28, 58-68.
Takahashi, H., Hatakeyama, S., Saitoh, H., and Nakayama, K.I. (2005). Noncovalent SUMO-1 binding activity of thymine DNA glycosylase (TDG) is required for its SUMO-1 modification and colocalization with the promyelocytic leukemia protein. J Biol Chem 280, 5611-5621.
Takahashi, M., Shimajiri, S., Izumi, H., Hirano, G., Kashiwagi, E., Yasuniwa, Y., Wu, Y., Han, B., Akiyama, M., Nishizawa, S., et al. (2010). Y-box binding protein-1 is a novel molecular target for tumor vessels. Cancer Sci.
Tatham, M.H., Jaffray, E., Vaughan, O.A., Desterro, J.M., Botting, C.H., Naismith, J.H., and Hay, R.T. (2001). Polymeric chains of SUMO-2 and SUMO-3 are conjugated to protein substrates by SAE1/SAE2 and Ubc9. J Biol Chem 276, 35368-35374.
Tempe, D., Piechaczyk, M., and Bossis, G. (2008). SUMO under stress. Biochem Soc Trans 36, 874-878.
Van Der Kelen, K., Beyaert, R., Inze, D., and De Veylder, L. (2009). Translational control of eukaryotic gene expression. Crit Rev Biochem Mol Biol 44, 143-168.
Veaute, X., Jeusset, J., Soustelle, C., Kowalczykowski, S.C., Le Cam, E., and Fabre, F. (2003). The Srs2 helicase prevents recombination by disrupting Rad51 nucleoprotein filaments. Nature 423, 309-312.
Vertegaal, A.C., Andersen, J.S., Ogg, S.C., Hay, R.T., Mann, M., and Lamond, A.I. (2006). Distinct and overlapping sets of SUMO-1 and SUMO-2 target proteins revealed by quantitative proteomics. Mol Cell Proteomics 5, 2298-2310.
Wang, Y., and Dasso, M. (2009). SUMOylation and deSUMOylation at a glance. J Cell Sci 122, 4249-4252.
Yang, X.J., and Gregoire, S. (2006). A recurrent phospho-sumoyl switch in transcriptional repression and beyond. Mol Cell 23, 779-786.
Zhao, J. (2007). Sumoylation regulates diverse biological processes. Cell Mol Life Sci 64, 3017-3033.
Zhao, X., Sternsdorf, T., Bolger, T.A., Evans, R.M., and Yao, T.P. (2005). Regulation of MEF2 by histone deacetylase 4- and SIRT1 deacetylase-mediated lysine modifications. Mol Cell Biol 25, 8456-8464.
Zhu, J., Zhu, S., Guzzo, C.M., Ellis, N.A., Sung, K.S., Choi, C.Y., and Matunis, M.J. (2008). Small ubiquitin-related modifier (SUMO) binding determines substrate recognition and paralog-selective SUMO modification. J Biol Chem 283, 29405-29415.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔