( 您好!臺灣時間:2021/03/03 17:38
字體大小: 字級放大   字級縮小   預設字形  


研究生(外文):Wei-Kee Wang
論文名稱(外文):Effects of lactic acid bacteria on amelioration of inflammatory response and ulcerative colitis
指導教授(外文):Ying-Chieh Tsai
外文關鍵詞:lactic acid bacteriainflammationulcerative colitis
  • 被引用被引用:3
  • 點閱點閱:1397
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
發炎為人體免疫系統為了抵抗外來的致病原所產生的一種保護機制。當發炎反應失去控制 (dysregulation) 而持續發生會導致過度發炎,因而引發或輕或重的病理後果 (pathological conditions) 並導致疾病的產生,本論文研究主題潰瘍性結腸炎 (ulcerative colitis; UC) 就是一種腸道持續性發炎的疾病。目前已有許多的研究指出,乳酸菌 (lactic acid bacteria; LAB) 具有免疫調節的能力,因此,我們利用脂多醣 (lipopolysaccharide; LPS) 引發RAW 264.7小鼠巨噬細胞株發炎的細胞模式,及葡聚糖硫酸酯鈉鹽 (dextran sulfate sodium; DSS) 誘發潰瘍性結腸炎疾病產生的動物模式,評估乳酸菌抗發炎及改善UC此發炎性疾病的能力。
首先以LPS誘發RAW 264.7小鼠巨噬細胞株,同時加入熱殺死乳酸菌,以促發炎介質 (pro-inflammatory cytokine),包括一氧化氮 (nitric oxide; NO)、腫瘤壞死因子 (tumor necrosis factor α; TNF-α) 及前列腺素E2 (prostaglandin E2; PGE2)的濃度下降為指標,評估待測乳酸菌的抗發炎能力。從100株待測乳酸菌中篩選出了7株能有效抑制上述促發炎介質產生的乳酸菌,由細胞實驗結果進入潰瘍性結腸炎動物實驗。結果顯示,餵食5048及7036這兩株乳酸菌的實驗小鼠,其潰瘍性結腸炎的症狀,包括:體重減輕、脾臟重量增加及結腸長度縮短的臨床現象,都有明顯改善。同時,其結腸組織中促發炎介質包括:TNF-α、介白質-1β (interleukin-1β; IL-1β) 及介白質-6 (interleukin-6; IL-6) 的濃度也有顯著性的下降。此外,在組織學分析的結果也發現,餵食5048及7036的實驗小鼠可以有效的回復結腸腸壁結構的完整性,同時,骨髓過氧化酶 (myeloperoxidase; MPO) 的活性下降,間接表示結腸組織因發炎產生的嗜中性球浸潤現象也獲得改善。
依據以上實驗結果,顯示5048及7036這兩株乳酸菌,在細胞模式能降低LPS誘發RAW 264.7細胞產生的促發炎介質濃度,包括:NO、TNF-α、PGE2;在DSS誘發小鼠潰瘍性結腸炎的動物模式中,可以改善潰瘍性結腸炎造成小鼠體重減輕、脾臟重量增加及結腸長度縮短等現象。

Inflammation is a kind of protective response triggered by infection or tissue injury. It is generally thought that a controlled inflammatory response is beneficial, but it can become harmful if dysregulated. Ulcerative colitis (UC) is an example of disease causing by excessive inflammation, however, current treatments for it are relatively ineffective. Up to the present, many researchers have demonstrated that lactic acid bacteria (LAB) have immunomodulating potential. Therefore, we evaluated the effect of LABs isolated from variety of sources on lipopolysaccharide (LPS)-stimulated RAW 264.7 inflammatory cell model and dextran sulfate sodium (DSS)-induced UC murine model.
We screened the inhibitory effect of LABs against pro-inflammatory cytokine production, including nitric oxide (NO), tumor necrosis factor α (TNF-α) and prostaglandin E2 (PGE2), induced by LPS. Seven LABs stand out above the rest, due to they can reduce the release of these cytokines effectively. Further, seven candidate LABs were compared the effect by oral administration on the murine model of UC. Among seven LABs, 5048 and 7036, are the most effective in alleviation of UC symptoms, including decrease of body weight loss, inhibition of spleen weight increase and prevention of colon shortening. The concentration of pro-inflammatory cytokines, TNF-α, interleukin-1β (IL-1β), and interleukin-6 (IL-6) in colon tissue are reduced by 5048 and 7036 treatments, too. In histological analysis, the architecture of colonic wall is restored. Furthermore, myeloperoxidase (MPO) activity, the marker of neutrophil infiltration, is also decrease by oral administration of 5048 and 7036.
According to our experiment, we can concluded that 5048 and 7036 can ameliorate the clinical symptoms in mice with UC induced by DSS. Thus, these two LABs could be expected as an auxiliary agent to UC patients.
中英文名詞縮寫對照表                   i
中文摘要                         ii
英文摘要                         iv
第一章 緒論                       1
 一、發炎反應                      1
 二、發炎性細胞激素 (proinflammatory cytokine)  3
 三、潰瘍性結腸炎 (ulcerative colitis; UC)    7
 四、乳酸菌                       9
第二章 實驗材料與方法                  17
一、實驗材料                      17
二、實驗方法                      19
第三章 實驗結果                     28
 一、細胞模式In vitro                 28
 二、動物模式In vivo 第一階段            30
 三、動物模式In vivo 第二階段            32
第四章 討論                       35
第五章 參考文獻                     40
第六章 圖表                       45

1. Medzhitov, R., Origin and physiological roles of inflammation. Nature, 2008. 454(7203): p. 428-35.
2. Nizet, V. and J.D. Esko, Bacterial and Viral Infections. 2009.
3. Hong, Y.H., et al., Ethyl acetate extracts of alfalfa (Medicago sativa L.) sprouts inhibit lipopolysaccharide-induced inflammation in vitro and in vivo. J Biomed Sci, 2009. 16: p. 64.
4. Lassmann, H., Mechanisms of inflammation induced tissue injury in multiple sclerosis. J Neurol Sci, 2008. 274(1-2): p. 45-7.
5. van Zonneveld, A.J., et al., Inflammation, vascular injury and repair in rheumatoid arthritis. Ann Rheum Dis. 69 Suppl 1: p. i57-60.
6. Rao, S. and J. Grigg, New insights into pulmonary inflammation in cystic fibrosis. Arch Dis Child, 2006. 91(9): p. 786-8.
7. Haffner, S.M., The metabolic syndrome: inflammation, diabetes mellitus, and cardiovascular disease. Am J Cardiol, 2006. 97(2A): p. 3A-11A.
8. Surh, Y.J., et al., Molecular mechanisms underlying chemopreventive activities of anti-inflammatory phytochemicals: down-regulation of COX-2 and iNOS through suppression of NF-kappa B activation. Mutat Res, 2001. 480-481: p. 243-68.
9. Moncada, S. and A. Higgs, The L-arginine-nitric oxide pathway. N Engl J Med, 1993. 329(27): p. 2002-12.
10. Beck, K.F., et al., Inducible NO synthase: role in cellular signalling. J Exp Biol, 1999. 202(Pt 6): p. 645-53.
11. Wei, X.Q., et al., Altered immune responses in mice lacking inducible nitric oxide synthase. Nature, 1995. 375(6530): p. 408-11.
12. Ischiropoulos, H., L. Zhu, and J. Beckman, Peroxynitrite formation from macrophage-derived nitric oxide. Arch Biochem Biophys. , 1992. 298(2): p. 446-451.
13. Thiemermann, C., Nitric oxide and septic shock. Gen Pharmacol, 1997. 29(2): p. 159-66.
14. Ersoy, Y., et al., Serum nitrate and nitrite levels in patients with rheumatoid arthritis, ankylosing spondylitis, and osteoarthritis. Ann Rheum Dis, 2002. 61(1): p. 76-8.
15. Pitocco, D., et al., Role of asymmetric-dimethyl-L-arginine (ADMA) and nitrite/nitrate (NOx) in the pathogenesis of oxidative stress in female subjects with uncomplicated type 1 diabetes mellitus. Diabetes Res Clin Pract, 2009. 86(3): p. 173-6.
16. Akishita, M., et al., Effects of estrogen on atherosclerosis formation and serum nitrite/nitrate concentrations in cholesterol-fed ovariectomized rabbits. J Atheroscler Thromb, 1996. 3(2): p. 114-9.
17. Szabo, C., A.L. Salzman, and H. Ischiropoulos, Endotoxin triggers the expression of an inducible isoform of nitric oxide synthase and the formation of peroxynitrite in the rat aorta in vivo. FEBS Lett, 1995. 363(3): p. 235-8.
18. Eigler, A., et al., Endogenous adenosine curtails lipopolysaccharide-stimulated tumour necrosis factor synthesis. Scand J Immunol, 1997. 45(2): p. 132-9.
19. Yamamura, M., [Tumor necrosis factor alpha and beta (TNF-alpha and -beta) in pathogenesis of rheumatoid arthritis]. Nippon Rinsho, 2005. 63 Suppl 1: p. 145-52.
20. Moller, D.E., Potential role of TNF-alpha in the pathogenesis of insulin resistance and type 2 diabetes. Trends Endocrinol Metab, 2000. 11(6): p. 212-7.
21. Melo, M.L., et al., Role of cytokines (TNF-alpha, IL-1beta and KC) in the pathogenesis of CPT-11-induced intestinal mucositis in mice: effect of pentoxifylline and thalidomide. Cancer Chemother Pharmacol, 2008. 61(5): p. 775-84.
22. Wang, Z., [The effect of TNF-alpha & IL-8 in the pathogenesis of allergic rhinitis]. Lin Chuang Er Bi Yan Hou Ke Za Zhi, 2006. 20(23): p. 1060-1.
23. Che, L.M., et al., [Role of TNF-alpha and ICAM-1 in pathogenesis of cerebral malaria]. Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi, 2000. 18(3): p. 138-40.
24. Harris, S.G., et al., Prostaglandins as modulators of immunity. Trends Immunol, 2002. 23(3): p. 144-50.
25. Salvemini, D., et al., Nitric oxide activates cyclooxygenase enzymes. Proc Natl Acad Sci U S A, 1993. 90(15): p. 7240-4.
26. Shivananda, S., et al., Incidence of inflammatory bowel disease across Europe: is there a difference between north and south? Results of the European Collaborative Study on Inflammatory Bowel Disease (EC-IBD). Gut, 1996. 39(5): p. 690-7.
27. Sonnenberg, A., D.J. McCarty, and S.J. Jacobsen, Geographic variation of inflammatory bowel disease within the United States. Gastroenterology, 1991. 100(1): p. 143-9.
28. Ooi, C.J., et al., The Asia-Pacific consensus on ulcerative colitis. J Gastroenterol Hepatol. 25(3): p. 453-68.
29. Hanauer, S.B., Inflammatory bowel disease. N Engl J Med, 1996. 334(13): p. 841-8.
30. Orholm, M., et al., Concordance of inflammatory bowel disease among Danish twins. Results of a nationwide study. Scand J Gastroenterol, 2000. 35(10): p. 1075-81.
31. Jarnerot, G., I. Jarnmark, and K. Nilsson, Consumption of refined sugar by patients with Crohn's disease, ulcerative colitis, or irritable bowel syndrome. Scand J Gastroenterol, 1983. 18(8): p. 999-1002.
32. Lee, J.H., et al., Lactobacillus suntoryeus inhibits pro-inflammatory cytokine expression and TLR-4-linked NF-kappaB activation in experimental colitis. Int J Colorectal Dis, 2009. 24(2): p. 231-7.
33. Ewaschuk, J.B. and L.A. Dieleman, Probiotics and prebiotics in chronic inflammatory bowel diseases. World J Gastroenterol, 2006. 12(37): p. 5941-50.
34. Lilly, D.M. and R.H. Stillwell, Probiotics: Growth-Promoting Factors Produced by Microorganisms. Science, 1965. 147: p. 747-8.
35. Fuller, R., Probiotics in man and animals. J Appl Bacteriol, 1989. 66(5): p. 365-78.
36. Rambaud, J.C., et al., Manipulation of the human gut microflora. Proc Nutr Soc, 1993. 52(2): p. 357-66.
37. Fuller, R. and B.E. Brooker, Lactobacilli which attach to the crop epithelium of the fowl. Am J Clin Nutr, 1974. 27(11): p. 1305-12.
38. Coconnier, M.H., et al., Antibacterial effect of the adhering human Lactobacillus acidophilus strain LB. Antimicrob Agents Chemother, 1997. 41(5): p. 1046-52.
39. Bernet-Camard, M.F., et al., The human Lactobacillus acidophilus strain LA1 secretes a nonbacteriocin antibacterial substance(s) active in vitro and in vivo. Appl Environ Microbiol, 1997. 63(7): p. 2747-53.
40. Barefoot, S.F. and C.G. Nettles, Antibiosis revisited: bacteriocins produced by dairy starter cultures. J Dairy Sci, 1993. 76(8): p. 2366-79.
41. Dahiya, R.S. and M.L. Speck, Hydrogen peroxide formation by lactobacilli and its effect on Staphylococcus aureus. J Dairy Sci, 1968. 51(10): p. 1568-72.
42. Schiffrin, E.J., et al., Immune modulation of blood leukocytes in humans by lactic acid bacteria: criteria for strain selection. Am J Clin Nutr, 1997. 66(2): p. 515S-520S.
43. Montes, R.G., et al., Effect of milks inoculated with Lactobacillus acidophilus or a yogurt starter culture in lactose-maldigesting children. J Dairy Sci, 1995. 78(8): p. 1657-64.
44. Savage, D.C., Mechanisms by which indigenous microorganisms colonize gastrointestinal epithelial surfaces. Prog Food Nutr Sci, 1983. 7(3-4): p. 65-74.
45. Steiner, H., et al., [Comparison of biochemical and Doppler sonographic monitoring of high-risk pregnancies]. Geburtshilfe Frauenheilkd, 1991. 51(7): p. 540-3.
46. Elmer, G.W., C.M. Surawicz, and L.V. McFarland, Biotherapeutic agents. A neglected modality for the treatment and prevention of selected intestinal and vaginal infections. JAMA, 1996. 275(11): p. 870-6.
47. Sanders, M.E., et al., Performance of commercial cultures in fluid milk applications. J Dairy Sci, 1996. 79(6): p. 943-55.
48. Denter, J. and B. Bisping, Formation of B-vitamins by bacteria during the soaking process of soybeans for tempe fermentation. Int J Food Microbiol, 1994. 22(1): p. 23-31.
49. Majamaa, H., et al., Lactic acid bacteria in the treatment of acute rotavirus gastroenteritis. J Pediatr Gastroenterol Nutr, 1995. 20(3): p. 333-8.
50. Klaver, F.A. and R. van der Meer, The assumed assimilation of cholesterol by Lactobacilli and Bifidobacterium bifidum is due to their bile salt-deconjugating activity. Appl Environ Microbiol, 1993. 59(4): p. 1120-4.
51. Jin, L.Z., et al., Growth performance, intestinal microbial populations, and serum cholesterol of broilers fed diets containing Lactobacillus cultures. Poult Sci, 1998. 77(9): p. 1259-65.
52. Goldin, B.R. and S.L. Gorbach, The effect of milk and lactobacillus feeding on human intestinal bacterial enzyme activity. Am J Clin Nutr, 1984. 39(5): p. 756-61.
53. Goldin, B.R., L.J. Gualtieri, and R.P. Moore, The effect of Lactobacillus GG on the initiation and promotion of DMH-induced intestinal tumors in the rat. Nutr Cancer, 1996. 25(2): p. 197-204.
54. Schneider, K.T., et al., [Doppler flow changes in maternal and fetal blood vessels before and during peridural anesthesia]. Geburtshilfe Frauenheilkd, 1991. 51(7): p. 544-8.
55. Liu, Y.W., et al., Immunomodulatory activity of dioscorin, the storage protein of yam (Dioscorea alata cv. Tainong No. 1) tuber. Food Chem Toxicol, 2007. 45(11): p. 2312-8.
56. Okayasu, I., et al., A novel method in the induction of reliable experimental acute and chronic ulcerative colitis in mice. Gastroenterology, 1990. 98(3): p. 694-702.

57. Osman, N., et al., Modulation of the effect of dextran sulfate sodium-induced acute colitis by the administration of different probiotic strains of Lactobacillus and Bifidobacterium. Dig Dis Sci, 2004. 49(2): p. 320-7.
58. Lee, H.S., et al., Lactic acid bacteria inhibit proinflammatory cytokine expression and bacterial glycosaminoglycan degradation activity in dextran sulfate sodium-induced colitic mice. Int Immunopharmacol, 2008. 8(4): p. 574-80.
59. Geier, M.S., et al., Small-intestinal manifestations of dextran sulfate sodium consumption in rats and assessment of the effects of Lactobacillus fermentum BR11. Dig Dis Sci, 2009. 54(6): p. 1222-8.
60. Ohkusa, T., [Production of experimental ulcerative colitis in hamsters by dextran sulfate sodium and changes in intestinal microflora]. Nippon Shokakibyo Gakkai Zasshi, 1985. 82(5): p. 1327-36.
61. Swirski, F.K., et al., Identification of splenic reservoir monocytes and their deployment to inflammatory sites. Science, 2009. 325(5940): p. 612-6.
62. Boyle, R.J., et al., Probiotics for the treatment of eczema: a systematic review. Clin Exp Allergy, 2009. 39(8): p. 1117-27.
63. Brenner, D.M. and W.D. Chey, Bifidobacterium infantis 35624: a novel probiotic for the treatment of irritable bowel syndrome. Rev Gastroenterol Disord, 2009. 9(1): p. 7-15.
64. Borchers, A.T., et al., Probiotics and immunity. J Gastroenterol, 2009. 44(1): p. 26-46.
65. Lebeer, S., J. Vanderleyden, and S.C. De Keersmaecker, Host interactions of probiotic bacterial surface molecules: comparison with commensals and pathogens. Nat Rev Microbiol. 8(3): p. 171-84.
66. Yasuda, E., M. Serata, and T. Sako, Suppressive effect on activation of macrophages by Lactobacillus casei strain Shirota genes determining the synthesis of cell wall-associated polysaccharides. Appl Environ Microbiol, 2008. 74(15): p. 4746-55.
67. Matsumoto, S., et al., Probiotic Lactobacillus-induced improvement in murine chronic inflammatory bowel disease is associated with the down-regulation of pro-inflammatory cytokines in lamina propria mononuclear cells. Clin Exp Immunol, 2005. 140(3): p. 417-26.

註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔