(3.238.186.43) 您好!臺灣時間:2021/02/28 12:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳瑞穗
研究生(外文):Jui-Shui Chen
論文名稱:聚乳酸-二氧陸環-水溶液系統之相分離行為研究
論文名稱(外文):Phase Separation Behavior in DLPLA-1,4 Dioxane-Water System
指導教授:蔡瑞瑩
指導教授(外文):Ruey-Yug Tsay
學位類別:博士
校院名稱:國立陽明大學
系所名稱:醫學工程研究所
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:98
中文關鍵詞:相分離聚集行為聚乳酸
外文關鍵詞:phase separationcoarsening behaviorpolylactide
相關次數:
  • 被引用被引用:0
  • 點閱點閱:168
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
立體多孔性聚乳酸細胞支架可由溫度誘導相分離技術製備,藉由改變製程參數控制誘發液-液相分離機制及其後期動態聚集程序可製得俱適當孔洞特性之多孔支架。一般而言,後期動態機制有Ostwald ripening、coalescence、hydrodynamic flow等,各機制中分離液相微泡尺寸(L)與相分離時間(t)可藉由 描述,其中A與溶液系統之物性參數如界面張力、黏度、密度等相關,而成長速率係數(α)與聚集動態機制有關。根據聚集理論,Ostwald ripening與coalescence機制之成長速率常數(α)為1/3,此為擴散機制;當聚集機制為hydrodynamic flow時,則成長速率常數增加至1。分離相聚集程序之後期大致可分為intermediate stage、flow stage、gravitational dominate stage,其中受到重力影響後,微泡尺寸成長行為則不再符合power law的關係。
依據相分離及聚集理論,分離液相之物性對液滴的成長影響顯著,因此本研究首先針對聚乳酸-二氧陸環-水相分離系統,於各項熱力學條件下,如:高分子濃度、溶劑/非溶劑比率、聚集溫度等,量測平衡後兩分離液相之物性,探討熱力學參數影響物性之程度。由三成份等溫平衡相圖結果得知,兩分離液相間的組成差異增大,導致溶液界面張力上升。隨著聚乳酸濃度或非溶劑-水比率的增加,高分子富相中含聚乳酸濃度亦會增加,導致該液相黏度與密度上升。然而,高分子貧相含有極少的聚乳酸,因此該相之物性受水比率及聚乳酸含量主導,因此15℃下貧相內水含量增加,其黏度上升而密度微幅上升;當溫度提升至40℃時,平衡態中貧相之聚乳酸含量提升,並且濃度隨初始高分子濃度與水比率增加而下降,故黏度及密度呈現微幅下降的趨勢。此外,研究中建立動態聚集觀察系統,以光學顯微鏡取像並搭配2D-FFT影像分析,在不同熱力學條件下,探討分離相尺寸與時間關係,並了解系統之聚集行為與機制,使得在製備多孔性支架時,可幫助調控操作條件而達到預期成效。研究結果發現,被誘發產生液-液相分離之聚乳酸-二氧陸環-水三成份系統,液相俱有快速聚集特性。當系統驟冷至不穩定區(unstable region),相分離初期可由顯微影像中觀察到連續且交錯之微結構,經短時間之合併與成長,分離相尺寸漸增且趨於不均勻,經分析液滴尺寸結果得知,增加溶液聚乳酸濃度、非溶劑-水之比率及驟冷深度,將導致溶液黏度上升,流動性下降,成長速率常數(α)相對較低。研究亦將兩分離液相之物性(界面張力、黏度、密度)結果代入聚集理論中,比較微觀實驗結果與理論分析之聚集行為。研究發現,分離相聚集成長之影響靈敏度,可藉由界面張力與黏度增加之程度得知;當黏度上升幅度大於界面張力時,故分離相成長較符合緩慢成長的擴散機制(t1/3),相反地,黏度上升幅度小於界面張力時,分離相成長較符合快速的hydrodynamic flow機制。此外,由於兩分離液相間具有明顯之密度差時,動態聚集行為將無法避免重力之影響。研究中於非溶劑相中加入第二非溶劑-乙醇,以降低兩分離相間性質之差異,有利於延緩重力效應之早期介入,唯因兩相相溶性增加,故其相分離溫度顯著降低,此不利於多孔基值之成型製備。本研究發現於系統中添加第五成份界面活性分子F127後,可適當提升相分離溫度,同時保有延緩重力效應之性質,故有利於均勻且大尺寸多孔性基材之成型。

The poly(DL-lactide) porous 3D scaffold can be prepared by thermally induced phase separation (TIPS) technique. Porous structure with appropriate domain size could be obtained by properly controlling the liquid-liquid phase separation mechanism and the kinetics of late-stage phase separation. In general, late-stage phase separation is governed by mechanisms of Ostwald ripening, coalescence and hydrodynamic flow and satisfies a power law relationship between the domain size (L) and the coarsening time (t), ie,. ,where A is correlate with physical properties in polymer solution system, such as interfacial tension, viscosity, and density. α represents the growth rate constant which relates with coarsening mechanism . Due to the coarsening theory, the theoretical value of growth rate constant (α) for coarsening driven by Ostwald ripening and coalescence, diffusive process, is 1/3 and increases to 1 for hydrodynamic flow. The late-stage of phase separation is divided into intermediate stage, flow stage, and gravitational dominate stage. The relationship between demixing domain size and coarsening time disagree with power law as the gravity influences the coarsening behavior.
According to phase separation and coarsening theory, the physical properties of separated liquid phases strong influence the growth of demixing domain. Therefore, in this study we measured the physical properties of two separated liquid phases first in DLPLA-dioxane-water system with various thermally parameters, such as polymer concentration, solvent/nonsolvent ratio, and coarsening temperature. Based on the isothermal ternary phase diagram results, the interfacial tension were increased with increment of composition difference between two-separated phases. In high polymer concentration and in high nonsolvent ratio system, more DLPLA was dissolve into the polymer-rich phase. It caused increasing viscosity and density of polymer-rich phase. However, there was view DLPLA dissolved in polymer-lean phase that represented the physical properties of polymer-lean phase depended on the ratio of water and DLPLA concentration. When water content was increased in lean-phase at 15℃, viscosity and density results showed slight rise. At 40℃, the DLPLA amount was increased in polymer-lean phase, and polymer concentration in lean-phase was decreased with increment of initial polymer concentration and water content. Therefore, viscosity and density results tended to slight decreased. In addition, we established an in-situ observation system for a DLPLA-1,4dioxane-water solution and quantitatively determined the relation between demixing domain size and time by 2D-FFT with various thermodynamic properties Therefore, understanding the coarsening behavior and process in solution system could help to manipulate thermally parameters and to expect result. The results show there was a fast coarsening behavior in DLPLA-1,4dioxane-water system. The bicontinuous morphology was obtained in the earlier stage of phase separation. Furthermore, large domain size and un-uniform droplet structure was observed in a short period of coarsening. For the result of droplet size by analysis, a high viscosity caused decreasing of mobility when the solution had high polymer concentration, high nonsolvent content, and high quench depth. A small growth rate constant (α) was obtained. Also, this study was aimed to estimated the theoretical coarsening model in DLPLA-1,4 dioxane-water system by physical properties. The comparison between experimental data and theoretical model shows the droplet growth was dominate by the diffusive coarsening process, satisfies t1/3 relationship, attribute to the increment of viscosity and interfacial tension. It is shown the big and uniform structure could be easily manufactured by prevent gravitational influence. Besides, the coarsening process could not avoid the gravity effect when the density between two-separated liquid phases. Therefore, we added the ethanod to decrease the difference of physical propterties between two phases. The results shows the gravity would influence the coarsening process at very late stage of phase separated. Nevertheless, the phase separation temperature would decreased with increasing of solubility of two-separated liquid phases that is unfavorable to fabricate the porous scaffolds. Therefore, we try to add the five component-F127 for rising the phase separation temperature, and the coarsening process could avoid the gravity effect simultaneously. Finally, the scaffolds with uniform and large pore size cloud be manufacture by coarsening process.

摘要 I
Abstract III
目錄 V
表 目 錄 VIII
圖 目 錄 IX
第一章 緒論 1
1.1 簡介…... 1
1.2 研究背景 4
1.2.1 相分離特性 4
1.2.2熱力學分析 5
1.2.3 相分離之動態機制 7
1.3 研究目的 10
第二章 液-液相分離物性研究 12
2.1 分離液相之物性 12
2.2 研究目的 14
2.3 儀器 ………………………………………………………………………….14
2.4 實驗方法 15
2.4.1 熱力學相圖 15
2.4.2 分離相黏度(viscosity)之量測 15
2.4.3 界面張力(interfacial tension)之量測 16
2.4.4 分離液相密度(density)之量測 16
2.5 結果與討論 16
2.5.1 熱力學相圖分析 16
2.5.2 液-液相分離兩相物性分析 17
2.6 結論 ………………………………………………………………………….20
第三章 液-液相分離聚集行為研究 21
3.1 動態聚集行為 21
3.2 研究目的 23
3.3 材料與儀器 24
3.3.1 化學藥品 24
3.3.2 儀器 24
3.4 實驗方法 25
3.4.1 動態相分離偵測系統 25
3.4.2 影像擷取及相分離尺寸大小分析 25
3.4.3 相分離動態機制探討 27
3.5 結果與討論 28
3.5.1 二維傅利葉轉換分析與分離相微泡之成長行為 28
3.5.2 高分子濃度效應 29
3.5.3 溶劑/非溶劑比率效應 30
3.6 結論 ………………………………………………………………………….30
第四章 聚集機制與聚集行為研究 32
4.1 聚集機制 32
4.2 研究目的 34
4.3 實驗方法 34
4.3.1. 聚集機制理論分析 34
4.3.2. 液-液相分離巨觀觀察 36
4.4 結果與討論 36
4.4.1 聚集動態機制之理論分析 36
4.4.2 動態聚集之理論物性效應分析 38
4.4.3 巨觀及顯微影像重力效應分析 40
4.5 四成份溶液系統 46
4.6五成份溶液系統 48
4.7 結論 ………………………………………………………………………….49
符號說明 91
參考文獻 93


1. Athanasiou KA, Niederauer GG, Agrawal CM. Sterilization,toxicity,biocompatibility and clinical applications of polylactic acid/polyglycolic acid copolymers. Biomaterials 1996;17:93-102.
2. von Schroeder HP, Kwan M, Amiel D, Coutts RD. The use of polylactic acid matrix and periosteal grafts for the reconstruction of rabbit knee articular defects. J Biomed Mater Res 1991;25(3):329-339.
3. Freed LE, Marquis JC, Nohria A, Emmanual J, Mikos AG, Langer R. Neocartilage formation in vitro and in vivo using cells cultured on synthetic biodegradable polymers. J Biomed Mater Res 1993;27:11-23.
4. Lanza RP, Langer R, Vacanti J. Principles of Tissue Engineering: ACADEMIC PRESS, 2000.
5. Whang K, Thomas CH, Healy KE. A novel method to fabricate bioabsorbable scaffolds. Polymer 1995;36(4):837-842.
6. Widmer MS, Gupta PK, Lu L, Meszlenyi RK. Manufacture of porous biodegradable polymer conduits by an extrusion process for guided tissue regeneration. Biomaterials 1998;19:1945-1955.
7. Nam YS, Park TG. Porous biodegradable polymeric scaffolds prepared by thermally induced phase separation. J Biomed Mater Res 1999;47:8-17.
8. Nam YS, Park TG. Biodegradable polymeric microcellular foams by modified thermally induced phase separation method. Biomaterials 1999;20:1783-1790.
9. Schugens C. Polylactide macroporous biodegradable implants for cell transplantation 2. preparation of polylactide foams by liquid-liquid phase separation. J Biomed Mater Res 1996;30:449-461.
10. Schugens C. Biodegradable and macroporous polylactide implants for cell transplantation:1 preparation of macroporous polylactide supports by solid-liquid phase separation. Polymer 1996;37(6):1027-1038.
11. Mooney DJ, Baldwin DF, Suh NP. Novel approach to fabricate porous sponges of poly(D,L-lactic-co-glycolic acid) without the use of organic solvents. Biomaterials 1996;17:1417-1422.
12. Harris LD, Kim BS, Mooney DJ. Open pore biodegradable matrices formed with gas foaming. J Biomed Mater Res 1998;42:396-402.
13. Tsai FJ, Torkelson JM. Roles of phase separation mechanism and coarsening in the formation of poly(methyl methacrylate) asymmetric membranes. Macromolecules 1990;23:775-784.
14. Sperling LH. Concentrated solutions and phase separation behavior. Introduction to physical polymer science. 2 ed. Singapore: John Willey and Sons, 2003.
15. Matsuyama H, Teramoto M, Kuwana M, Kitamura Y. Formation of polypropylene particles via thermally induced phase separation. Polymer 2000;41:8673-8679.
16. Tsai FJ, Torkelson JM. Microporous poly(methyl methacrylate)membranes:effect of a low-viscosity solvent on the formation mechanism. Macromolecules 1990;23:4983-4989.
17. Cahn JW. Phase separation by spinodal decomposition in isotropic systems. J Chem Phys 1965;42:93-99.
18. Rosen SL. Fundamental principles of polymeric materials. New york: John Wiley & Sons, Inc., 1993.
19. Mulder M. Basic Principles of Membrane Technology Dordrecht/Boston/London: Kluwer Academic 1991.
20. Willams JM, Moore JE. Microcellular foams: phase behavior of poly(4-methyl-1-pentene) in diisoporopylbenzene. Polymer 1987;28:1950-1958.
21. van de Witte P, Boorsma A, Esselbrugge H, Dijkstra PJ. Differential scanning calorimetry study of phase transitions in poly(lactide)-chloroform-methanol systems. Macromolecules 1996;29:212-219.
22. van de Witte P, Dijkstra PJ, van den Berg JWA, Feijen J. Phase behavior of polylactides in solvent-nonsolvent mixtures. Journal of polymer science: part B:polymer physics 1996;34:2553-2568.
23. Lifshitz IM, Slyozov VV. The kinetics of precipitation from supersaturated solid solutions. The journal of physics and chemistry of solids 1961;19:35-50.
24. Scholten E, Sagis LMC, van der Linden E. Coarsening rates of biocontinous structures in polymer mixtures. Macromolecules 2005;38:3515-3518.
25. Siggia ED. Late stages of spinodal decomposition in binary mixtures. Phys Rev A 1979;20(2):595-605.
26. Bates FS, Wiltzius P. Spinodal decomposition of a symmetric critical mixture of deuterated and protonated polymer. J Chem Phys 1989;91(5):3258-3274.
27. Furukawa H. A dynamic scaling assumption for phase separation. Advances in physics 1985;34(6):703-750.
28. McGuire KS, Laxminarayan A, Lloyd DR. Kinetics of droplet growth in liquid-liquid phase separation of polyemr-diluent systems:experimental results. Polymer 1995;36(26):4951-4960.
29. McGuire KS, Laxminarayan A, Martula DS, Lloyd DR. Kinetics of droplet growth in liquid-liquid phase separation of polymer- diluent systems: model development. J Colloid Interface Sci 1996;182:46-58.
30. Tanaka H. New coarsening mechanisms for spinodal decomposition having droplet pattern in binary fluid mixture: collision-induced collisions. Phys Rev Lett 1994;72(11):1702-1705.
31. Wagner AJ, Yeomans JM. Breakdown of scale invariance in the coarsening of phase-separating binary fluids. Phys Rev Lett 1998;80(7):1429-1432.
32. Haas CK, Torkelson JM. Two-dimensional coarsening and phase separation in thin polymer solution films. Physical Review E 1997;55(3):3191-3201.
33. Matsuyama H, Teramoto M, Kudari S, Kitamura Y. Effect of diluents on membrane formation via thermally induced phase separation. J Appl Polym Sci 2001;82:169-177.
34. Beysens D, Guenoun P, Perrot F. Phase separation of critical binary fluids under microgravity: Comparison with matched-density conditions. Phys Rev A 1988;38(8):4173-4185.
35. Song SW, Torkelson JM. Coarsening effects on microstructure formation in isopycnic polymer solutions and membranes produced via thermally induced phase separation. Macromolecules 1994;27:6389-6397.
36. Shinozaki K, Abe M, Nose T. Interfacial tension of demixed polymer solutions over a wide range of reduced temperature. Polymer 1982;23:722-727.
37. Shinozaki K, Saito Y, Nose T. Interfacial tension between demixed symmetrical polymer solutions: polystyrene-poly(dimethysiloxane)-proppylbenzene system. Polymer 1982;23:1937-1943.
38. Shinozaki K, van Tan T, Saito Y, Nose T. Interfacial tension of demixed polymer solutions near the critical temperature :polystyrene+methylcyclohexane. Polymer 1982;23:728-734.
39. Heinrich M, Wolf BA. Interfacial tension between solutions of polystyrenes:establishment of a useful master curve. Polymer 1992;33(9):1926-1931.
40. Ding P, Wolf B, Frith WJ, Clark AH, Norton IT, Pacek AW. Interfacial tension in phase-separated gelatin/dextran aqueous mixtures. J Colloid Interface Sci 2002;253(2):367-376.
41. de Hoog EHA, Lekkerkerker HNW. Measurement of the Interfacial Tension of a Phase-Separated Colloid- Polymer Suspension. The journal of physical chemistry B 1999;103(25):5274-5279.
42. Wolf BA, Sezen MC. Viscometric determination of thermodynamic demixing data for polymer solutions. Macromolecules 1977;10(5):1010-1014.
43. Martula DS, Bonnecaze RT, Lloyd DR. The effects of viscosity on coalescence-induced coalescence. International Journal of Multiphase Flow 2003;29:1265-1282.
44. Xia KQ, Franck C, Widom B. Interfacial tensions of phase separated polymer solutions. The Journal of Chemical physics 1992;97:1446-1454.
45. de Hoog EHA, Lekkerkerker HNW. Breakup of an Elongated Droplet in a Centrifugal Field. The Journal of Physical Chemistry B 2001;105(47):11636-11640.
46. Lai SH. A Study on the Phase Separation Behavior of the DLPLA-Solvent-Nonsolvent System. Taipei: National Yang-Ming University; 2005.
47. van de Witte P, Dijkstra PJ, van den Berg JWA, Feijen J. Phase separation processes in polymer solutions in relation to membrane formation. J Membr Sci 1996;117:1-31.
48. Wu FC. Dynamic Surface Tension of PEO-PPO-PEO Tri-block Copolymers at the Air/water Interface by Pendant Bubble Tensiometry Taipei: National Yang-Ming University; 2008.
49. Lin SY, Chen LJ, Xyu JW, Wang WJ. An examination on the accuracy of interfacial tension measurement from pendant drop profiles. Langmuir 1995;11(10):4159-4166.
50. Geddes JA. The Fluidity of Dioxane-Water Mixtures. J Am Chem Soc 1933;55(12):4832-4837.
51. Hovorka F, Schaefer RA, Dreisbach D. The system dioxane and water. Journal of the American Chemical Society 1936;58(11):2264-2267.
52. Gong Y, Ma Z, Gao C, Wang W, Shen J. Specially elaborated thermally induced phase separation to fabricate poly(L-lactic acid) scaffolds with ultra large pores and good interconnectivity. J Appl Polym Sci 2006;101:3336-3342.
53. Song SW, Torkelson JM. Coarsening effects on the formation of microporous membranes produced via thermally induced phase separation of polystyrene-cyclohexanol solutions. J Membr Sci 1995;98:209-222.
54. Rullmann M. Scaling behavior of nonisothermal phase separation. J Chem Phys 2004;120:7801-7810.
55. Takenaka M, Kojima J, Nakayama Y, Hashimoto T. Later-stage spinodal decomposition in polymer solution under high pressure-analyses of qm and Im. Polymer 2005;46:10782-10787.
56. Loren N, Langton M, Hermansson AM. Determination of temperature dependent structure evolution by fast-Fourier transform at late stage spinodal decomposition in bicontinuous biopolymer mixtures. J Chem Phys 2002;116(23):10536-10546.
57. Nojima S, Shioshita K, Nose T. Phase separation process in polymer systems.II. microscopic studies on a polystyrene and diisodecyl phthalate mixture. Polymer journal 1982;14(4):289-294.
58. Sung L, Karim A, Douglas JF, Han CC. Dimensional crossover in the phase separation kinetic of Thin polymer blend films. Phys Rev Lett 1996;76(23):4368-4371.
59. Liu H. Network domain structure in phase-separating polymer solutions. J Chem Phys 1999;111(24):11183-11191.
60. Termonia Y. Molecular modeling of structure development upon quenching of a polymer solution. Macromolecules 1997;30:5367-5371.
61. Hua FJ, Kim GE, Lee JD, Son YK, Lee DS. Macroporous poly(L-lactide)scaffold 1. Preparation of a macroporous scaffold by liquid-liquid phase separation of PLLA-Dioxane-Water system. J Biomed Mater Res 2002;63:161-167.
62. Chowdhury AH, Russo PS. Direct observation of the gelation of rodlike polymers. Polymer materials science and engineering 1988;59:1045-1053.
63. Chowdhury AH, Russo PS. Late stages of phase separation/gelation fo isotropic solutions of rod-like polymers by video microscopy. J Chem Phys 1990;92(9):5744-5750.
64. Aubert JH. Structural coarsening of demixed polymer solution. Macromolecules 1990;23(5):1446-1452.
65. Kim WK, Char K, Kim CK. Control of droplet size of polymer-diluent blends through thermally induced phase separation. Journal of polymer science: part B:polymer physics 2000;38:3042-3052.
66. Troian SM. Coalescence induced domain Growth near a wall during spinodal decomposition. Phys Rev Lett 1993;71:1399-1402.
67. Wang H, Composto RJ. Thin film polymer blends undergoing phase separation and wetting:identification of early, intermediate, and late stages. J Chem Phys 2000;113(22):10386-10397.
68. Haas CKaT, J.M. 2D Coarsening in Phase-Separated Polymer Solutions: Dependence on Distance from Criticality. Phys Rev Lett 1995;75(17):3134-3137.
69. Chen JS. Porous Polylactide Scaffolds Prepared by Thermally-induced Phase Separation. Taipei: National Yang-Ming University; 2002.
70. Gonzalez RCaW, R.E. Image Enhancement in the Frequency Domain. Digital Image Processing: Prentice-Hall 2002. p. 147.
71. Chen CH. A Study on the Effects of Fabrication Parameters of Porous PLA Scaffolds Fabricated by Thermally-induced Phase Separation. Taipei: National Yang-Ming University; 2003.
72. Califano F, Mauri,R. Drop size evolution during the phase separation of liquid mixtures. Industrial and Engineering Chemistry Research 2004;43(2):349-353.
73. Cau F, Lacelle S. Late-stage phase separation and sedimentation in a binary liquid mixture. Physical review E 1993;47(2):1429-1432.
74. Chan CK, Goldburg WI. Late-stage phase separation and hydrodynamic flow in a binary liquid mixture. Phys Rev Lett 1987;58(7):674-677.
75. Colombani J, Bert J. Early sedimentation and crossover kinetics in an off-critical phase-separating liquid mixture. Physical review E 2004;69:01104021-01114026.
76. Mauri R, Califano F, Calvi E, Gupta R, Shinnar R. Convection-driven phase segregation of deeply quenched liquid mixtures. The Journal of Chemical physics 2003;118:8841-8846.
77. Aart DGAL, Dullens RPA, Lekkerkerker HNW. Interfacial dynamics in demixing systems with ultralow interfacial tension. New Journal of Physics 2005;7:40-.
78. Cahn JW, Hilliard JE. Free energy of a nonuniform system.III nucleation in a Two-component incompressible fluid. The journal of chemical physics 1959;31(3):688-699.
79. Bailey AE, Poon WCK, Christianson RJ, Schofield AB, Gasser U, Prasad V, et al. Spinodal decomposition in a model colloid-polymer mixture in microgravity. Phys Rev Lett 2007;99(20):205701-205704.
80. Poesio P, Cominarde G, Lezzi MA. Effects of quenching rate and viscosity on spinodal decomposition. Physical review E 2006;74:0115071-01150713.
81. van de Witte P, Esselbrugge H, Dijkstra PJ, van den Berg JWA, Feijen J. Phase transitions during membrane formation of polylactides.I A morphological study of membranes obtained from the system polylactide-chloroform-methanol. J Membr Sci 1996;113:223-236.


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔