(3.235.11.178) 您好!臺灣時間:2021/02/26 04:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳奕宏
研究生(外文):Yi-Hung Chen
論文名稱:以有限元素分析評估可壓縮式人工頸椎椎間盤之功效
論文名稱(外文):The Evaluation of Compressible Cervical Artificial Disc by Finite Element Method
指導教授:鄭誠功鄭誠功引用關係
指導教授(外文):Cheng-Kung Cheng
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:醫學工程研究所
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:94
中文關鍵詞:人工椎間盤有限元素分析生物力學可壓縮機構
外文關鍵詞:Artificial discFinite element analysisBiomechanicsCompressible mechanism
相關次數:
  • 被引用被引用:0
  • 點閱點閱:240
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
椎間盤退化目前主要的治療方式為椎體融合術。雖然椎體融合術能達到穩定椎節的功能,卻也增加了鄰近椎節的受力。近年來人工椎間盤置換術提供了椎間盤退化另一種治療選擇,保留植入當節的活動度來降低鄰近椎節退化的風險。根據目前人工椎間盤的研究,椎體的破壞、植入物的破壞、植入物的沉陷等皆為人工椎間盤潛在之風險。此外正常椎間盤具有可壓縮性,具保護脊椎結構之作用,然大部分市售產品欠缺此一功能。本研究目的為設計一款新型可壓縮性質之頸椎人工椎間盤,以期能達到降低植入物破壞之風險,並使其生物力學表現得以更接近正常頸椎。研究利用三種不同有限元素模型(正常椎節、可壓縮式頸椎人工椎間盤、不可壓縮式頸椎人工椎間盤),給予一般生理活動所需之負載進行模擬,針對椎體活動度、小面關節接觸正向力、韌帶伸長量進行評估,並就人工椎間盤擺放位置及植入物本身受力等項目進行比較。研究結果顯示,所有植入物在相同負載下之應力數值均於安全範圍內。在單純施加軸向力量的情況下,可壓縮式頸椎人工椎間盤提供了與正常椎節相似的壓縮性;不可壓縮式頸椎人工椎間盤在活動度、小面關節接觸正向力及韌帶伸長量均高於可壓縮式頸椎人工椎間盤以及正常椎節。在植入位置影響方面,可壓縮式頸椎人工椎間盤置放於中央時在屈曲、伸展動作下擁有較接近正常頸椎,而置於後方時在軸向旋轉、側彎動作下較為接近。根據本研究評估,在頸椎人工椎間盤設計加上軸向可壓縮機構可使椎節在承受生理負載下得以更接近正常頸椎的生物力學表現,改善過去欠缺壓縮功能之頸椎人工椎間盤的部分問題。此概念未來應可應用於後續人工椎間盤設計之考量。
Spinal interbody fusion is the main surgical treatment for disc degeneration. Although spinal interbody fusion achieves the goal of spinal stability, it also increases the stress on adjacent level. Disc replacement become an alternative treatment for disc degeneration recently, it decrease the risk of adjacent level degeneration by preserving range of motion of inserted level. Base on previous studies, endplate fracture, implant failure, and implant subsidence are potential risks of artificial disc replacement. Besides, compressibility of intact intervertebral disc is contributive to protect spinal structure. However, certain mechanism was not applied to most of the commercially available products. Purpose of this study was to develop a novel compressible cervical artificial disc to reduce the risk of implant failure, and further to achieve normal biomechanical behavior of cervical spine. Three different finite element models including normal spine segments, artificial disc with or without axial compressible mechanism were reconstructed. With given physical loading on each model, vertebral mobility, facet joint contact force, and ligament lengthening were evaluated. Effect of inserting position and stress on compressible artificial disc were also compared. The results showed that all stresses on implants in simulated models were allowable. Artificial disc with compressible mechanism had similar compressibility as intact cervical spine under axial load. Artificial disc without compressible mechanism would result in higher mobility, facet joint contact force, and ligament lengthening than compressible design and intact cervical spine. For the effect of inserting position, central positioned compressible artificial disc had closer mobility in flexion and extension to intact cervical spine while posterior positioned one in axial rotation and lateral bending. According to the evaluation in current study, biomechanical performances of cervical artificial disc with compressible mechanism can be achieved to be more similar to that of intact cervical spine under physical loadings. Some problems related to previous cervical artificial disc designs without compressible mechanism can be solved. Certain concept can be applied to further design of cervical artificial disc as consideration in the future.
目錄
目錄.......................................................i
表目錄...................................................iii
圖目錄....................................................iv
摘要....................................................viii
Abstract..................................................ix
第一章 前言................................................1
1-1 研究背景...............................................1
1-2脊椎解剖生理與生物力學特性..............................3
1-3 人工椎間盤簡介........................................10
1-4 人工椎間盤之文獻回顧..................................12
1-5 可壓縮型人工椎間盤專利回顧............................18
1-6 有限元素法於頸椎之文獻回顧............................21
1-7 研究動機與目的........................................23
第二章 材料與方法.........................................24
2-1 頸椎有限元素模型之建立................................24
2-2 頸椎人工椎間盤模型之建立..............................28
2-3 頸椎模型的收斂測試....................................30
2-4 頸椎模型的驗證........................................34
2-5 接觸條件、邊界條件與負荷條件..........................37
第三章 結果...............................................39
3-1 軸向負載下之軸向位移..................................39
3-2 三種模型之活動度......................................42
3-3 三種模型的小面關節最大接觸正向力......................48
3-4 三種模型下韌帶之變形量................................53
3-5 植入物不同擺放位置之分析..............................55
3-6 雙螺旋壓縮機構及植入物本身之安全性評估................60
第四章 討論...............................................63
4-1 軸向位移之比較........................................63
4-2 活動度之比較..........................................64
4-3 小面關節接觸正向力之比較..............................69
4-4 韌帶變形量之比較......................................71
4-5 擺放位置對於植入物表現之影響..........................73
4-6 有限元素模型之限制....................................73
4-7 人工椎間盤設計之考量..................................75
第五章 結論...............................................76
參考文獻..................................................77


[1] Ellis, H. (2006):Clinical Anatomy, 11. Editon, Blackwave Publishing
[2] Moroney SP, Schultz AB, Miller JA, et al., Load-displacement properties of lower cervical spine motion segments, Journal of Biomechanics, 1988;21(9):769-79
[3] Botsford DJ, Esses SI AD, and Ogilvie-Harris, In-vivo diurnal variation in intervertebral disc volume and morphology, Spine, 1994; 19: 935-40
[4] Rick BD, David MF, Linda EAK, et al., ProDisc artificial total lumbar disc displacement: introduction and early results from the united states clinical trial, Spine, 2003; 28(20S): S167-75
[5] Garrido BJ, Taha TA, Sasso RC, Clinical Outcomes of Bryan Cervical Disc Arthroplasty A Prospective, Randomized, Controlled, Single Site Trial With 48-Month Follow-up, Journal of Spinal Disorders & Techniques, 2010 Jan 16. [Epub ahead of print]
[6] Enker P, Steffee A, Mcmillin C, et al., Artificial disc replacement. Preliminary report with a 3-year minimum follow-up, Spine, 1993 Jun 15;18(8):1061-70
[7] Kurtz SM, Peloza J, Siskeya R, et al., Analysis of a retrieved polyethylene total disc replacement component, The Spine Journal, 2005; 5(3): 344-50
[8] Kurtz SM, Ooij AV, Ross ERS, et al., Polyethylene wear and rim fracture in total disc arthroplasty, The Spinal Journal,2007; 7(1): 12-21
[9] Duggal N, Rabin D, Chamberlain RH, et al., Traumatic loading of the Bryan cervical disc prosthesis: an in vitro study, Neurosurgery. 2007 ;60(4 Suppl 2):388-92
[10] Anderson PA, Sasso RC, Rouleau JP, et al, The Bryan Cervical Disc: wear properties and early clinical results, The Spine Journal, 2004; 4: 303S–9S
[11] Zhang X, Ordway NR, Tan R, et al, Correlation of ProDisc-C failure strength with cervical bone mineral content and endplate strength. Journal of Spinal Disorders & Techniques,2008; 21(6):400-5
[12] Chang UK, Kim DH, Lee MC, Changes in adjacent-level disc pressure and facet joint force after cervical arthroplasty compared with cervical discectomy and fusion, Journal of Neurosurgery Spine,2007; 7(1):33-9
[13] Ha SK, Finite element modeling of multi-level cervical spinal segments (C3–C6) and biomechanical analysis of an elastomer-type prosthetic disc, Medical Engineering & Physics, 2006; 28: 534–41
[14] Lin CY, Kang H, Rouleau JP, et al., Stress analysis of the interface between cervical vertebrae end plates and the Bryan, Prestige LP, and ProDisc-C cervical disc prostheses, Spine; 34(15): 1554-60
[15] Rundell SA, Auerbach JD, Balderston RA, et al., Total disc replacement positioning affects facet contact forces and vertebral body strains, Spine 2008; 33(23): 2510-37
[16] Harrington M, Artificial Disc, US patent 5893889, 1999
[17] Manasas M, Oslakovic K, Sultan C, et al. Orthopedic implant, US patent 6520996, 2003
[18] Kim DH, Afzal TA, Reo MI, et al. Prosthetic intervertebral disc and methods, US patent 2005/0228500
[19] Gerber D, Copes JK, Angelucci C, et al. Controlled artificial intervertebral disc implant, US patent 2005/0251260
[20] Ferree BA, Shock-absorbing joint and spine replacements, US patent 2006/0064169
[21] Clausen JD, Goel VK, Traynelis VC, et al., Uncinate processes and Luschka joints influence the biomechanics of the cervical spine: quantification using a finite element model of the C5-C6 segment, Journal of Orthopaedic Research , 1997; 15: 342-47
[22] Goel VK, Clausen JD, Prediction of load sharing among spinal components of a C5-C6 motion segment using the finite element approach, Spine, 1998; 23: 684-91
[23] Kumaresan S, Yoganandan N, Pintar FA, Finite element analysis of the cervical spine: a material property sensitivity study, Clinical Biomechanics, 1999;14: 41-53
[24] Pitzen TR, Matthis D, Barbier DD, et al., Initial stability of cervical spine fixation: predictive value of a finite element model , Journal of Neurosurgery, 2002; 97: 128-34
[25] Ng HW, Teo EC, Lee KK, et al., Finite element analysis of cervical spinal instability under physiologic loading, Journal of Spinal Disorders & Techniques, 2003; 16(1): 55-65
[26] Marks LW, Gardner TN, The use of strain energy as a convergence criterion in the finite element modelling of bone and the effect of model geometry on stress convergence, Journal of Biomedical Engineering 1993; 15
[27] Pelker RR, Duranceau JS, Panjabi MM, Cervical spine stabilization. A three-dimensional, biomechanical evaluation of rotational stability, strength, and failure mechanisms, Spine, 1991; 16(2):117-22
[28] Maurel N, Lavaste F, Skalli W, A three-dimensional parameterized finite element model of the lower cervical spine. Study of the influence of the posterior articular facets, Journal of Biomechanics, 1997; 30(9):921-31
[29] Silva MJ, Wang C, Keaveny TM, et al, Direct and computed tomography thickness measurement of the human, lumbar vertebral shell and endplate, Bone, 1994; 15(4): 409-14
[30] http://www.roymech.co.uk/Useful_Tables/Tribology/co_of_frict.htm
[31] LeHuec JC, Kiaer T, Friesem T, et al., Shock Absorption in Lumbar Disc Prosthesis, Journal of Spinal Disorders & Techniques,2003; 16 : 342-51
[32] Panjabi MM, The stabilizing system of the spine. Part I. Function, dysfunction, adaptation, and enhancement, Journal of Spinal Disorders, 1992; 5(4); 383-9
[33] Moroney SP, Schultz AB, Miller JA, Analysis and measurement of neck load, Journal of Orthopaedic research, 1988; 6: 713-20
[34] Panjabi MM, Clinical Biomechanics of the Spine second edition. Lippincott Company
[35] Shea M, Edwards WT, White AA, et al., Variations of stiffness and strength along the human cervical spine, Journal of Biomechanics, 1991;24: 95-107.
[36] Bryan WC, Jeffrey DG, Anton ED, et al., Biomechanical evaluation of total disc replacement arthroplasty: an in vitro human cadaver model, Spine, 2003; 28(20S): S110-7
[37] Goel VK, Kim Y, Lim T, et al., An analytical investigation of the mechanics of spinal instrumentation, Spine, 1988; 13(9): 1003-11
[38] Panjabi MM, Krag MH, Chung TQ, Effects of disc injury on mechanical behavior of the human spine, Spine, 1984; 9: 707-13
[39] Tammy L. White, PT, Malone TR, et al., Effects of running on intervertebral disc height, Journal of Orthopaedic & Sports Physical Therapy, 1990; 12: 4
[40] Panjabi MM, Pearson AM, Ito S, et al., Cervical spine curvature during simulated whiplash, Clinical Biomechanics, 2004; 19:1-9
[41] LeHuec JC, Kiaer T, Friesem T, et al., Shock Absorption in Lumbar Disc Prosthesis, Journal of Spinal Disorders & Techniques,2003; 16 : 342-51
[42] Enker P, et al. Artificial disc replacement. Preliminary report with a
3-year minimum follow up. Spine. 1993;18:1061–70
[43] Lee CK, Development of a prosthetic intervertebral disc. Spine. 1991; 16: S253–5
[44] Kostuik J, Intervertebral disc replacement. Clinical Orthopaedics. 1997; 337: 27–41
[45] Steffee A. Artificial disc. Elastomer core between flat rigid endplates. US patent 5071437, 1991.
[46] Demetropoulos CK, Sengupta DK, Knaub MA, et al.,Biomechanical Evaluation of the Kinematics of the Cadaver Lumbar Spine Following Disc Replacement With the Prodisc-L Prosthesis, Spine,2009; 35: 26-31
[47] Chang UK, Kim DH, Lee MC, Range of motion change after cervical arthroplasty with ProDisc-C and Prestige artificial discs compared with anterior cervical discectomy and fusion, Journal of Neurosurgery Spine,2007; 7:40–6
[48] Goffin J, van Loon J, van Calenbergh F, et al., A clinical analysis of 4- and 6-year follow-up results after cervical disc replacement surgery using the Bryan Cervical Disc Prosthesis, Journal of Neurosurgery Spine, 2010, ;12(3):261-9
[49] Lee CK, Kim YE, Lee CS, et al., Impact Response of the Intervertebral Disc in a Finite-Element Model, Spine, 2000; 25: 2431-9
[50] Panjabi MM, Simpson AK, Ivancic PC, et al., Cervical facet joint kinematics during bilateral facet dislocation, European Spine Journal, 2007; 16(10): 1680-8
[51] Zander T, Rohlmann A, Bergmann G, Influence of different artificial disc
[52] Sasso RC, Best NM, Cervical kinematics after fusion and bryan disc arthroplasty, Journal of Spinal Disorders & Techniques,2008;21(1):19-22
[53] Anderson PA, Rouleau JP, Toth JM, et al., A comparison of simulator-tested and retrieved cervical disc prostheses. Invited submission from the Joint Section Meeting on Disorders of the Spine and Peripheral Nerves, March 2004, Journal of Neurosurgery Spine, 2004 ;1(2):202-10

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔