(3.239.192.241) 您好!臺灣時間:2021/03/02 20:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:王瑩蕙
研究生(外文):Ying-Hui Wang
論文名稱:人工椎間盤在不同尺寸與位置下之腰椎生物力學分析
論文名稱(外文):Biomechanical analysis of the lumbar spine with artificial disc on different sizes and locations
指導教授:陳振昇陳振昇引用關係
指導教授(外文):Chen-Sheng Chen
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:物理治療暨輔助科技學系
學門:醫藥衛生學門
學類:復健醫學學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:97
中文關鍵詞:人工椎間盤腰椎生物力學分析有限元素法位置尺寸
外文關鍵詞:artificial discBiomechanical analysis of the lumbar spinefinite element methodslocationssizes
相關次數:
  • 被引用被引用:0
  • 點閱點閱:314
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:57
  • 收藏至我的研究室書目清單書目收藏:0
脊椎退化問題隨著人口老化而愈趨嚴重,過去治療椎間盤退化問題皆使用融合手術,但施行融合手術後會限制腰椎手術椎節之活動度,使腰椎鄰近椎節產生過多活動度而加速退化。人工椎間盤為一種改善此問題之手術方式,分為拘束式與非拘束式兩種,拘束式人工椎間盤可能會受植入位置與尺寸之不同,而影響其生物力學效應。此外,過去研究指出人工椎間盤會引起手術椎節小面關節退化、鄰近椎節椎間盤退化與磨耗等問題,因此本研究目的即透過有限元素法探討不同尺寸人工椎間盤植入不同位置對腰椎之生物力學影響。
利用已驗證之腰椎與Prodisc人工椎間盤之有限元素模型,將Prodisc人工椎間盤修改為小、中、大三種尺寸,三種尺寸各別植入於L3-L4椎節間之前面、正常與後面共三個位置上,因此加上正常組共有十組模型。邊界條件設定第五節腰椎底部所有自由度為零,負荷條件以混合控制方式進行,預力為150N,而施加於正常組之力矩為10Nm,分為前彎、後彎、扭轉與側彎四種動作。探討項目為椎節活動度、手術椎節小面關節受力、鄰近椎節椎間盤L2-L3應力、聚乙烯核心之接觸壓力。
研究結果指出前彎時,大尺寸人工椎間盤放置於前面,椎節活動度較接近正常組,比正常組多10.6%,相對其他尺寸與位置而言,最接近正常組。手術椎節小面關節受力與鄰近椎節椎間盤L2-L3應力與分佈皆不受尺寸與位置影響。聚乙烯球頭接觸壓力在扭轉時,呈現尺寸愈大接觸壓力愈小的趨勢,其中置放正常位置時大尺寸甚至比小尺寸接觸壓力少十倍。因此本研究結論為人工椎間盤放置在椎節前方且使用大尺寸球頭可減少聚乙烯球頭之接觸壓力及維持人體在前彎下的正常運動範圍。

In the recent years, artificial disc (AD) replacement is a method to treat the degenerative disc disease. This implant can restore disc height, physiological motions, and prevent adjacent tissue disease. After implanting the AD, there were some problems such as facet arthritis, adjacent disc degeneration, and polyethylene (PE) wear were reported. Although constrained AD could treat the degenerative disc disease, the size and implanting position might result in the iatrogenic effect. Therefore, this study was aimed to analyze the biomechanical effects of the lumbar spine with AD on different sizes and positions.
A validated intact lumbar finite element (FE) model was used to implant a constrained AD at level L3-L4. The sizes of AD were respectively small, median and large, and the positions of implanting AD were respectively located at anterior, normal, and posterior region on vertebral body. The intact spine model was set 150N preload and 10Nm moment, and the other models were loaded according to hybrid control method. All degree of freedom were fixed at the bottom of L5. The range of motion (ROM), facet joint contact force, adjacent disc stress, and PE contact pressure, were investigated by using FE software ANSYS 11.
The results showed that ROM of implanting AD with large size located at anterior region was not only 10.6% greater than that of intact spine but also comparable to intact spine when compared to other FE models during flexion. Besides, the size and position only had slight influence on the facet joint contact force and adjacent disc stress. During axial rotation, the PE contact pressure was lower following with increasing PE core size. In normal location, the PE contact pressure of AD with large size was ten times less than that of AD with small size. Therefore, this study concluded that implanting AD with large size located at anterior position could reduce PE contact pressure as well as maintain a normal ROM during flexion.

?| 論文電子檔著作權授權書......................I
?| 論文審定同意書..............................II
? 誌謝........................................III
? 中文摘要....................................IV
? ABSTRACT....................................V
? 目錄........................................VI
?| 圖目錄......................................VIII
?| 表目錄......................................X
第一章 前言...........................................1
1-1 背景..............................................1
1-2 脊椎解剖構造......................................1
1-3 脊椎病變與治療方式................................5
1-4 人工椎間盤........................................8
1-4-1 人工椎間盤之簡介..............................8
1-4-2 人工椎間盤之臨床文獻探討......................10
1-4-3 人工椎間盤之生物力學文獻探討..................16
1-5 研究動機與目的....................................24
第二章 材料與方法.....................................25
2-1 正常腰椎有限元素模型..............................27
2-2 不同位置植入不同尺寸人工椎間盤之腰椎模型..........33
2-3 邊界條件與負載....................................36
2-4 研究參數與分析....................................37
第三章 結果...........................................42
3-1 前彎動作之生物力學分析............................42
3-1-1 椎節活動度....................................42
3-1-2 手術椎節L3-L4小面關節受力.....................43
3-1-3 鄰近椎節L2-L3椎間盤應力.......................43
3-1-4 聚乙烯核心接觸壓力............................43
3-2 後彎動作之生物力學分析............................49
3-2-1 椎節活動度....................................49
3-2-2 手術椎節L3-L4小面關節受力.....................49
3-2-3 鄰近椎節L2-L3椎間盤應力.......................49
3-2-4 聚乙烯核心接觸壓力............................49
3-3 扭轉動作之生物力學分析............................54
3-3-1 椎節活動度....................................54
3-3-2 手術椎節L3-L4小面關節受力.....................54
3-3-3 鄰近椎節L2-L3椎間盤應力.......................54
3-3-4 聚乙烯核心接觸壓力............................54
3-4 側彎動作之生物力學結果............................62
3-4-1 椎節活動度....................................62
3-4-2 手術椎節L3-L4小面關節受力.....................62
3-4-3 鄰近椎節L2-L3椎間盤應力.......................62
3-4-4 聚乙烯核心接觸壓力............................62
第四章 討論...........................................70
4-1 研究結果之探討....................................70
4-1-1 椎節活動度....................................70
4-1-2 手術椎節L3-L4小面關節接觸力...................71
4-1-3 鄰近椎節L2-L3椎間盤應力.......................73
4-1-4 聚乙烯核心接觸壓力............................74
4-2 研究假設與限制....................................82
4-3 未來研究方向......................................85
第五章 結論...........................................86
參考文獻..............................................87
附錄一:有限元素種類特性..............................91
附錄二:所有模型結果..................................94

1. Synthes Prodisc. http://www.synthesprodisc.com/html/.
2. Agur AMR, Lee MJ. Grant’s Atlas of Anatomy. Williams&Wilkins. 1999.
3. Auerbach J, Ballester M, Hammond F, et al. Effect of implant size on lumbar vertebral biomechanics in total disc replacement 53rd Annual meeting of the orthopaedic research society 2007.
4. Aunoble S, Donkersloot P, Le Huec JC. Dislocations with intervertebral disc prosthesis: two case reports. Eur Spine J 2004;13:464-7.
5. Bertagnoli R, Kumar S. Indications for full prosthetic disc arthroplasty: a correlation of clinical outcome against a variety of indications. Eur Spine J 2002;11 Suppl 2:S131-6.
6. Cassidy JD, Carroll LJ, Cote P. The Saskatchewan health and back pain survey. The prevalence of low back pain and related disability in Saskatchewan adults. Spine (Phila Pa 1976) 1998;23:1860-6; discussion 7.
7. Chen CS, Cheng CK, Liu CL, et al. Stress analysis of the disc adjacent to interbody fusion in lumbar spine. Med Eng Phys 2001;23:483-91.
8. Chen SH, Zhong ZC, Chen CS, et al. Biomechanical comparison between lumbar disc arthroplasty and fusion. Med Eng Phys 2009;31:244-53.
9. Chen WM, Park C, Lee K, et al. In situ contact analysis of the prosthesis components of Prodisc-L in lumbar spine following total disc replacement. Spine (Phila Pa 1976) 2009;34:E716-23.
10. Choma TJ, Miranda J, Siskey R, et al. Retrieval analysis of a ProDisc-L total disc replacement. J Spinal Disord Tech 2009;22:290-6.
11. Chung SK, Kim YE, Wang KC. Biomechanical effect of constraint in lumbar total disc replacement: a study with finite element analysis. Spine (Phila Pa 1976) 2009;34:1281-6.
12. Delamarter RB, Fribourg DM, Kanim LE, et al. ProDisc artificial total lumbar disc replacement: introduction and early results from the United States clinical trial. Spine (Phila Pa 1976) 2003;28:S167-75.
13. Dennis S, Watkins R, Landaker S, et al. Comparison of disc space heights after anterior lumbar interbody fusion. Spine (Phila Pa 1976) 1989;14:876-8.
14. Dooris AP, Goel VK, Grosland NM, et al. Load-sharing between anterior and posterior elements in a lumbar motion segment implanted with an artificial disc. Spine (Phila Pa 1976) 2001;26:E122-9.
15. Frymoyer J, Ducker T, Hadler N, et al. The epidemiology of spinal disorders. The Adult Spine: Principles and Practice 1997:93–141.
16. Goel VK, Grauer JN, Patel T, et al. Effects of charite artificial disc on the implanted and adjacent spinal segments mechanics using a hybrid testing protocol. Spine (Phila Pa 1976) 2005;30:2755-64.
17. Goel VK, Monroe BT, Gilbertson LG, et al. Interlaminar shear stresses and laminae separation in a disc. Finite element analysis of the L3-L4 motion segment subjected to axial compressive loads. Spine (Phila Pa 1976) 1995;20:689-98.
18. Hall S. Basic Biomechanics. McGraw-Hill 2004.
19. Huang RC, Girardi FP, Cammisa FP, Jr., et al. The implications of constraint in lumbar total disc replacement. J Spinal Disord Tech 2003;16:412-7.
20. Huang RC, Tropiano P, Marnay T, et al. Range of motion and adjacent level degeneration after lumbar total disc replacement. Spine J 2006;6:242-7.
21. Kurtz SM, van Ooij A, Ross R, et al. Polyethylene wear and rim fracture in total disc arthroplasty. Spine J 2007;7:12-21.
22. Kuslich SD, Danielson G, Dowdle JD, et al. Four-year follow-up results of lumbar spine arthrodesis using the Bagby and Kuslich lumbar fusion cage. Spine (Phila Pa 1976) 2000;25:2656-62.
23. Leboeuf-Yde C, Lauritsen JM. The prevalence of low back pain in the literature. A structured review of 26 Nordic studies from 1954 to 1993. Spine (Phila Pa 1976) 1995;20:2112-8.
24. Lee KK, Teo EC, Fuss FK, et al. Finite-element analysis for lumbar interbody fusion under axial loading. IEEE Trans Biomed Eng 2004;51:393-400.
25. Liau JJ, Hu CC, Cheng CK, et al. The influence of inserting a Fuji pressure sensitive film between the tibiofemoral joint of knee prosthesis on actual contact characteristics. Clin Biomech (Bristol, Avon) 2001;16:160-6.
26. Lu YM, Hutton WC, Gharpuray VM. Do bending, twisting, and diurnal fluid changes in the disc affect the propensity to prolapse? A viscoelastic finite element model. Spine (Phila Pa 1976) 1996;21:2570-9.
27. Marnay T. Lumbar disc replacement, 7-11 years results with Pro-disc. Eur Spine J 2002;11:S19.
28. Mathew P, Blackman M, Redla S, et al. Bilateral pedicle fractures following anterior dislocation of the polyethylene inlay of a ProDisc artificial disc replacement: a case report of an unusual complication. Spine (Phila Pa 1976) 2005;30:E311-4.
29. McAfee PC. Interbody fusion cages in reconstructive operations on the spine. J Bone Joint Surg Am 1999;81:859-80.
30. McAfee PC, Fedder IL, Saiedy S, et al. Experimental design of total disk replacement-experience with a prospective randomized study of the SB Charite. Spine (Phila Pa 1976) 2003;28:S153-62.
31. Moumene M, Geisler FH. Comparison of biomechanical function at ideal and varied surgical placement for two lumbar artificial disc implant designs: mobile-core versus fixed-core. Spine (Phila Pa 1976) 2007;32:1840-51.
32. Netter F. Atlas of human anatomyed: ICON Learning Systems. 2003.
33. Nordin M, Frankel VH, Leger D, et al. basic biomechanics of the musculoskeletal system. Lippincott williams & wilkins 2001.
34. Panjabi M, Oxland T, Yamamoto I, et al. Mechanical behavior of the human lumbar and lumbosacral spine as shown by three-dimensional load-displacement curves. J Bone Joint Surg Am 1994;76:413-24.
35. Rohlmann A, Mann A, Zander T, et al. Effect of an artificial disc on lumbar spine biomechanics: a probabilistic finite element study. Eur Spine J 2009;18:89-97.
36. Rohlmann A, Neller S, Claes L, et al. Influence of a follower load on intradiscal pressure and intersegmental rotation of the lumbar spine. Spine (Phila Pa 1976) 2001;26:E557-61.
37. Rohlmann A, Zander T, Bergmann G. Effect of total disc replacement with ProDisc on intersegmental rotation of the lumbar spine. Spine (Phila Pa 1976) 2005;30:738-43.
38. Rohlmann A, Zander T, Bergmann G. Effects of fusion-bone stiffness on the mechanical behavior of the lumbar spine after vertebral body replacement. Clin Biomech (Bristol, Avon) 2006;21:221-7.
39. Rousseau MA, Bonnet X, Skalli W. Influence of the geometry of a ball-and-socket intervertebral prosthesis at the cervical spine: a finite element study. Spine (Phila Pa 1976) 2008;33:E10-4.
40. Rousseau MA, Bradford DS, Bertagnoli R, et al. Disc arthroplasty design influences intervertebral kinematics and facet forces. Spine J 2006;6:258-66.
41. Rundell SA, Auerbach JD, Balderston RA, et al. Total disc replacement positioning affects facet contact forces and vertebral body strains. Spine (Phila Pa 1976) 2008;33:2510-7.
42. Schmidt H, Heuer F, Simon U, et al. Application of a new calibration method for a three-dimensional finite element model of a human lumbar annulus fibrosus. Clin Biomech (Bristol, Avon) 2006;21:337-44.
43. Shim CS, Lee S, Maeng DH, et al. Vertical split fracture of the vertebral body following total disc replacement using ProDisc: report of two cases. J Spinal Disord Tech 2005;18:465-9.
44. Shim CS, Lee SH, Shin HD, et al. CHARITE versus ProDisc: a comparative study of a minimum 3-year follow-up. Spine (Phila Pa 1976) 2007;32:1012-8.
45. Shirazi-Adl A, Ahmed AM, Shrivastava SC. Mechanical response of a lumbar motion segment in axial torque alone and combined with compression. Spine (Phila Pa 1976) 1986;11:914-27.
46. Siepe CJ, Mayer HM, Wiechert K, et al. Clinical results of total lumbar disc replacement with ProDisc II: three-year results for different indications. Spine (Phila Pa 1976) 2006;31:1923-32.
47. Stauffer RN, Coventry MB. Anterior interbody lumbar spine fusion. Analysis of Mayo Clinic series. J Bone Joint Surg Am 1972;54:756-68.
48. Stieber JR, Donald GD, 3rd. Early failure of lumbar disc replacement: case report and review of the literature. J Spinal Disord Tech 2006;19:55-60.
49. Tropiano P, Huang RC, Girardi FP, et al. Lumbar disc replacement: preliminary results with ProDisc II after a minimum follow-up period of 1 year. J Spinal Disord Tech 2003;16:362-8.
50. van Ooij A. Analysis of 21 patients with clinically failed Charité disc prosthesis. Eur Spine J 2002.
51. Wenzel SA, Shepherd DE. Contact stresses in lumbar total disc arthroplasty. Biomed Mater Eng 2007;17:169-73.
52. White A, Panjabi M. Clinical biomechanics of the spine. Lippincott, Philadelphia 1980.
53. Yamamoto I, Panjabi MM, Crisco T, et al. Three-dimensional movements of the whole lumbar spine and lumbosacral joint. Spine (Phila Pa 1976) 1989;14:1256-60.
54. Zhong ZC, Chen SH, Chen WJ, et al. Comparison of the load and displacement controlled finite element analyses on fusion and non-fusion spinal implants. Journal of biomechanics 2007;40:S353.
55. Zhong ZC, Chen SH, Hung CH. Load- and displacement-controlled finite element analyses on fusion and non-fusion spinal implants. Proc Inst Mech Eng H 2009;223:143-57.
56. Zigler JE. Lumbar spine arthroplasty using the ProDisc II. Spine J 2004;4:260S-7S.
57. Zigler JE, Burd TA, Vialle EN, et al. Lumbar spine arthroplasty: early results using the ProDisc II: a prospective randomized trial of arthroplasty versus fusion. J Spinal Disord Tech 2003;16:352-61.



連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔