(54.236.58.220) 您好!臺灣時間:2021/03/09 16:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林宛璇
研究生(外文):Wan-Hsuan Lin
論文名稱:鑑認調控第九型伊科病毒轉譯起始步驟的細胞因子
論文名稱(外文):Identification of the Cellular Factors That Modulate the Translation Initiation of the Echovirus Type 9
指導教授:龔思豪
指導教授(外文):Szu-Hao Kung
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:醫學生物技術暨檢驗學系暨研究所
學門:醫藥衛生學門
學類:醫學技術及檢驗學類
論文種類:學術論文
論文出版年:2009
畢業學年度:98
語文別:中文
論文頁數:85
中文關鍵詞:第九型伊科病毒IRES
外文關鍵詞:echovirus type 9內部核糖體進入區
相關次數:
  • 被引用被引用:0
  • 點閱點閱:105
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
第九型伊科病毒(Echo 9)在分類上屬於小RNA病毒科(Picornaviridae)的腸病毒屬(Enterovirus),會引發嚴重的神經系統病變如無菌性腦膜炎及類似小兒痲痺病毒感染後的肢體麻痺。1998至今,台灣爆發有關伊科病毒病例中第九型伊柯病毒佔重要部分,然而目前臨床上仍然沒有抗第九型伊科病毒的專一性抗病毒藥物。
腸病毒的正股RNA利用其5'端未轉譯區(5’-UTR)的內部核醣體進入區(IRES)進行病毒的轉譯,部分腸病毒IRES依賴型轉譯起始(IRES-dependent translation initiation)受特定的細胞因子稱作IRES trans-acting factors (ITAFs)所調控。這些 ITAFs 包括 La autoantigen, polypyrimidine tract binding protein (PTB), upstream of N-ras (Unr) 及 poly(rC) binding protein 2 (PCBP2)等。然而目前有關腸病毒ITAFs的研究多侷限於小兒痲痺病毒及鼻病毒,而這些細胞因子在第九型伊科病毒IRES轉譯中所扮演的角色仍不清楚。
本篇利用RNA 干擾策略及雙冷光報導基因法,我們發現在RD細胞(Rhabdomyosarcoma cells)中抑制PCBP2的表現會造成第九型伊科病毒IRES的活性下降,且會造成病毒蛋白表現顯著下降及病毒顆粒生成顯著減少。因此我們發現了PCBP2蛋白為第九型伊科病毒重要的ITAF之一。

Echovirus Type 9 (Echo 9), a member of the genus Enterovirus of the family Picornaviridae, is a common human pathogen associated with severe neurological manifestations including aseptic meningitis and poliomyelitis-like paralysis. Echo 9 has been implicated in a number of enterovirus-associated outbreaks in Taiwan since 1998. However, there has not been any specific anti-Echo 9 agent available for clinical use.
Translation of the enterovirus plus-strand RNA genome occurs via internal ribosomal entry site (IRES) at the 5’ untranslated region (5’-UTR). The initiation of IRES-dependent translation in some enteroviruses is modulated by certain cellular factors termed the IRES trans-acting factors (ITAFs); these ITAFs include La autoantigen, polypyrimidine tract binding protein (PTB), upstream of N-ras (Unr) and poly(rC) binding protein 2 (PCBP2). Studies on the enteroviral ITAF have mostly been limited to polioviruses and rhinoviruses, and the roles that these cellular factors play in Echo 9 IRES-driven translation remains elusive.
Utilizing the RNA interference strategy and dual-luciferase assay, we showed that knockdown of PCBP2, but not other ITAFs, could significantly decrease the Echo 9 IRES activity in Rhabdomyosarcoma cells. The decreased level of PCBP2 also led to reduced viral protein expression and viral particle production. We reasoned that PCBP2, among the ITAFs investigated, played the most significant role in controlling Echo 9 IRES.

中文摘要 4
Abstract 5
第一章 緒論 6
第一節 腸病毒概述 6
第二節 第九型伊科病毒 9
第三節 內部核醣體進入區 10
(Internal Ribosomal Entry Site, IRES) 10
第四節、核醣核酸干擾方法 15
第五節、研究動機 17
第二章 實驗材料與方法 18
第一節 細胞株的培養與操作 18
第二節 病毒的培養與定量 21
第三節 質體建構 24
第四節 利用免疫螢光染色法觀察第九型伊科病毒感染RD細胞的情形 36
第五節 利用siRNA抑制細胞內ITAFs表現 38
第六節 抑制ITAFs對第九型伊科病毒的影響 45
第三章 實驗結果 51
第一節 第九型伊科病毒感染RD細胞所產生的細胞病變及細胞受病毒感染的情形 51
第二節 抑制細胞內ITAFs對第九型伊科病毒之影響 52
第四章 討論 55
第五章 圖表 60
圖一、RD 細胞以1M.O.I.第九型伊科病毒感染後第6、8、10小時後的細胞病變及免疫螢光染色分析。 60
圖二、抑制PCBP2對第九型伊科病毒之影響 61
圖三、抑制PTB對第九型伊科病毒之影響 62
圖四、抑制Unr對第九型伊科病毒之影響 63
圖五、抑制La對第九型伊科病毒之影響 64
圖六、抑制ITAFs對第九型伊科病毒IRES activity之影響 65
圖七a、以免疫螢光染色分析抑制PCBP2、PTB、Unr、La對第九型伊科病毒之影響(6小時) 66
圖七b、以免疫螢光染色分析抑制PCBP2、PTB、Unr、La對第九型伊科病毒之影響(12小時) 67
表一、抑制ITAFs時第九型伊科病毒雙冷光報導基因質體之F/R 68
第六章 附錄 69
附錄一、 小RNA病毒科分類 69
附錄二、腸病毒屬分類 70
附錄三、腸病毒的基因體結構 70
附錄四、腸病毒的複製週期 71
附錄五、小RNA病毒IRES的分類 72
附錄六、siRNA的結構 73
附錄七、核醣核酸干擾機制 73
附錄八、1970年至2005年美國疾病管制局統計出前十五名出現的腸病毒血清型,第九型伊科病毒為第一名佔11.8% 74
附錄九、第九型伊科病毒於1970-2005年間呈現每三到五年爆發流行之週期性 74
附錄十、1998~2008年腸病毒感染併發重症疫情 75
附錄十一、2000~2005年台灣分離出Echovirus型別 75
附錄十二、2008~2009年疾管局合約實驗室統計資料中分離的伊科病毒型別 76
附錄十三、1998~2008年腸病毒感染併發重症病例檢出病原之病毒型別分佈圖 76
附錄十四、1998~2008年腸病毒感染併發重症死亡病例中可分離病原之病毒型別分佈圖 77
附錄十五、質體pCREL-EMCV 77
附錄十六、不同病毒轉譯起始其IRES所作用的細胞ITAF 78
第七章 參考文獻 79

1. De Jesus NH. Epidemics to eradication: The modern history of poliomyelitis. Virol J. 2007;4:70
2. Rotbart HA. Treatment of picornavirus infections. Antiviral Res. 2002;53:83-98
3. De Palma AM, Vliegen I, De Clercq E, Neyts J. Selective inhibitors of picornavirus replication. Med Res Rev. 2008;28:823-884
4. Brown DM, Kauder SE, Cornell CT, Jang GM, Racaniello VR, Semler BL. Cell-dependent role for the poliovirus 3' noncoding region in positive-strand rna synthesis. J Virol. 2004;78:1344-1351
5. Buenz EJ, Howe CL. Picornaviruses and cell death. Trends Microbiol. 2006;14:28-36
6. Bedard KM, Semler BL. Regulation of picornavirus gene expression. Microbes Infect. 2004;6:702-713
7. Choe SS, Dodd DA, Kirkegaard K. Inhibition of cellular protein secretion by picornaviral 3a proteins. Virology. 2005;337:18-29
8. Paul AV, van Boom JH, Filippov D, Wimmer E. Protein-primed rna synthesis by purified poliovirus rna polymerase. Nature. 1998;393:280-284
9. Yamayoshi S, Yamashita Y, Li J, Hanagata N, Minowa T, Takemura T, Koike S. Scavenger receptor b2 is a cellular receptor for enterovirus 71. Nat Med. 2009
10. Nishimura Y, Shimojima M, Tano Y, Miyamura T, Wakita T, Shimizu H. Human p-selectin glycoprotein ligand-1 is a functional receptor for enterovirus 71. Nat Med. 2009
11. Hogle JM. Poliovirus cell entry: Common structural themes in viral cell entry pathways. Annu Rev Microbiol. 2002;56:677-702
12. Jang SK, Pestova TV, Hellen CU, Witherell GW, Wimmer E. Cap-independent translation of picornavirus rnas: Structure and function of the internal ribosomal entry site. Enzyme. 1990;44:292-309
13. Goodfellow IG, Polacek C, Andino R, Evans DJ. The poliovirus 2c cis-acting replication element-mediated uridylylation of vpg is not required for synthesis of negative-sense genomes. J Gen Virol. 2003;84:2359-2363
14. Zimmermann H, Eggers HJ, Zimmermann A, Kraus W, Nelsen-Salz B. Complete nucleotide sequence and biological properties of an infectious clone of prototype echovirus 9. Virus Res. 1995;39:311-319
15. Ramos-Alvarez M, and Sabin, A. B. Characteristics of poliomyelitis and other enteric viruses recovered in tissue culture from healthy american children. 1954
16. Gondo K KK, Take H, Ueda K. Echovirus type 9 epidemic in kagoshima, southern japan: Seroepidemiology and clinical observation of aseptic meningitis. 1995
17. Ashwell MJ SD, Phillips PA, Rouse IL. Viral meningitis due to echovirus types 6 and 9: Epidemiological data from western australia. 1996
18. Y. A. Outbreak of aseptic meningitis due to echo-9 in northern kyushu island in the summer of 1997. 1999
19. Mamdoh MM, Mohamed MK, Abdullah A-S. Enteroviral meningitis in northern jordan: Prevalence and association with clinical findings. J Med Virol. 2002;66:224-228
20. 衛生署疾管局. 合約實驗室病毒監測檢驗年報.
21. M A Zuckerman MS, J E Martin, and C M Gabriel. Fatal case of echovirus type 9 encephalitis. J Clin Pathol. 1993
22. JH G. Nonpolio causes of polio-like paralytic syndromes. 1984
23. Scott A. Hughes HMT, and Vincent R. Racaniello. Transgenic mouse model for echovirus myocarditis and paralysis. Proc Natl Acad Sci USA. 2003
24. Anja P, Petri Y, Elizabeth R, Tapani H, Jochem G, Merja R. Molecular and biological analysis of echovirus 9 strain isolated from a diabetic child. J Med Virol. 2003;69:529-537
25. Vreugdenhil GR, Schloot NC, Hoorens A, Rongen C, Pipeleers DG, Melchers WJG, Roep BO, Galama JMD. Acute onset of type i diabetes mellitus after severe echovirus 9 infection: Putative pathogenic pathways. Clin Infect Dis. 2000;31:1025-1031
26. Marintchev A, Edmonds KA, Marintcheva B, Hendrickson E, Oberer M, Suzuki C, Herdy B, Sonenberg N, Wagner G. Topology and regulation of the human eif4a/4g/4h helicase complex in translation initiation. Cell. 2009;136:447-460
27. Pause A, Methot N, Svitkin Y, Merrick WC, Sonenberg N. Dominant negative mutants of mammalian translation initiation factor eif-4a define a critical role for eif-4f in cap-dependent and cap-independent initiation of translation. EMBO J. 1994;13:1205-1215
28. Fraser CS, Doudna JA. Structural and mechanistic insights into hepatitis c viral translation initiation. Nat Rev Microbiol. 2007;5:29-38
29. Pelletier J, Sonenberg N. Internal initiation of translation of eukaryotic mrna directed by a sequence derived from poliovirus rna. Nature. 1988;334:320-325
30. Jang SK, Krausslich HG, Nicklin MJ, Duke GM, Palmenberg AC, Wimmer E. A segment of the 5' nontranslated region of encephalomyocarditis virus rna directs internal entry of ribosomes during in vitro translation. J Virol. 1988;62:2636-2643
31. Pilipenko EV, Gmyl AP, Maslova SV, Svitkin YV, Sinyakov AN, Agol VI. Prokaryotic-like cis elements in the cap-independent internal initiation of translation on picornavirus rna. Cell. 1992;68:119-131
32. Kaminski A, Belsham GJ, Jackson RJ. Translation of encephalomyocarditis virus rna: Parameters influencing the selection of the internal initiation site. EMBO J. 1994;13:1673-1681
33. Krausslich HG, Nicklin MJ, Toyoda H, Etchison D, Wimmer E. Poliovirus proteinase 2a induces cleavage of eucaryotic initiation factor 4f polypeptide p220. J Virol. 1987;61:2711-2718
34. Kuo RL, Kung SH, Hsu YY, Liu WT. Infection with enterovirus 71 or expression of its 2a protease induces apoptotic cell death. J Gen Virol. 2002;83:1367-1376
35. Thompson SR, Sarnow P. Enterovirus 71 contains a type i ires element that functions when eukaryotic initiation factor eif4g is cleaved. Virology. 2003;315:259-266
36. Jackson RJ, Kaminski A. Internal initiation of translation in eukaryotes: The picornavirus paradigm and beyond. RNA. 1995;1:985-1000
37. Brown EA, Day SP, Jansen RW, Lemon SM. The 5' nontranslated region of hepatitis a virus rna: Secondary structure and elements required for translation in vitro. J Virol. 1991;65:5828-5838
38. Pisarev AV, Chard LS, Kaku Y, Johns HL, Shatsky IN, Belsham GJ. Functional and structural similarities between the internal ribosome entry sites of hepatitis c virus and porcine teschovirus, a picornavirus. J Virol. 2004;78:4487-4497
39. Niepmann M. Internal translation initiation of picornaviruses and hepatitis c virus. Biochim Biophys Acta. 2009
40. Jang SK. Internal initiation: Ires elements of picornaviruses and hepatitis c virus. Virus Res. 2006;119:2-15
41. Martinez-Salas E, Ramos R, Lafuente E, Lopez de Quinto S. Functional interactions in internal translation initiation directed by viral and cellular ires elements. J Gen Virol. 2001;82:973-984
42. Dorner AJ, Semler BL, Jackson RJ, Hanecak R, Duprey E, Wimmer E. In vitro translation of poliovirus rna: Utilization of internal initiation sites in reticulocyte lysate. J Virol. 1984;50:507-514
43. Costa-Mattioli M, Svitkin Y, Sonenberg N. La autoantigen is necessary for optimal function of the poliovirus and hepatitis c virus internal ribosome entry site in vivo and in vitro. Mol Cell Biol. 2004;24:6861-6870
44. Meerovitch K, Svitkin YV, Lee HS, Lejbkowicz F, Kenan DJ, Chan EK, Agol VI, Keene JD, Sonenberg N. La autoantigen enhances and corrects aberrant translation of poliovirus rna in reticulocyte lysate. J Virol. 1993;67:3798-3807
45. Florez PM, Sessions OM, Wagner EJ, Gromeier M, Garcia-Blanco MA. The polypyrimidine tract binding protein is required for efficient picornavirus gene expression and propagation. J Virol. 2005;79:6172-6179
46. Hunt SL, Jackson RJ. Polypyrimidine-tract binding protein (ptb) is necessary, but not sufficient, for efficient internal initiation of translation of human rhinovirus-2 rna. RNA. 1999;5:344-359
47. Hellen CU, Witherell GW, Schmid M, Shin SH, Pestova TV, Gil A, Wimmer E. A cytoplasmic 57-kda protein that is required for translation of picornavirus rna by internal ribosomal entry is identical to the nuclear pyrimidine tract-binding protein. Proc Natl Acad Sci U S A. 1993;90:7642-7646
48. Walter BL, Nguyen JH, Ehrenfeld E, Semler BL. Differential utilization of poly(rc) binding protein 2 in translation directed by picornavirus ires elements. RNA. 1999;5:1570-1585
49. Blyn LB, Swiderek KM, Richards O, Stahl DC, Semler BL, Ehrenfeld E. Poly(rc) binding protein 2 binds to stem-loop iv of the poliovirus rna 5' noncoding region: Identification by automated liquid chromatography-tandem mass spectrometry. Proc Natl Acad Sci U S A. 1996;93:11115-11120
50. Boussadia O, Niepmann M, Creancier L, Prats AC, Dautry F, Jacquemin-Sablon H. Unr is required in vivo for efficient initiation of translation from the internal ribosome entry sites of both rhinovirus and poliovirus. J Virol. 2003;77:3353-3359
51. Hunt SL, Hsuan JJ, Totty N, Jackson RJ. Unr, a cellular cytoplasmic rna-binding protein with five cold-shock domains, is required for internal initiation of translation of human rhinovirus rna. Genes Dev. 1999;13:437-448
52. Ali N, Siddiqui A. The la antigen binds 5' noncoding region of the hepatitis c virus rna in the context of the initiator aug codon and stimulates internal ribosome entry site-mediated translation. Proc Natl Acad Sci U S A. 1997;94:2249-2254
53. Kaminski A, Jackson RJ. The polypyrimidine tract binding protein (ptb) requirement for internal initiation of translation of cardiovirus rnas is conditional rather than absolute. RNA. 1998;4:626-638
54. Niepmann M, Petersen A, Meyer K, Beck E. Functional involvement of polypyrimidine tract-binding protein in translation initiation complexes with the internal ribosome entry site of foot-and-mouth disease virus. J Virol. 1997;71:8330-8339
55. Ali N, Siddiqui A. Interaction of polypyrimidine tract-binding protein with the 5' noncoding region of the hepatitis c virus rna genome and its functional requirement in internal initiation of translation. J Virol. 1995;69:6367-6375
56. Walter BL, Parsley TB, Ehrenfeld E, Semler BL. Distinct poly(rc) binding protein kh domain determinants for poliovirus translation initiation and viral rna replication. J Virol. 2002;76:12008-12022
57. Gamarnik AV, Andino R. Interactions of viral protein 3cd and poly(rc) binding protein with the 5' untranslated region of the poliovirus genome. J Virol. 2000;74:2219-2226
58. Bedard KM, Daijogo S, Semler BL. A nucleo-cytoplasmic sr protein functions in viral ires-mediated translation initiation. EMBO J. 2007;26:459-467
59. Pilipenko EV, Pestova TV, Kolupaeva VG, Khitrina EV, Poperechnaya AN, Agol VI, Hellen CU. A cell cycle-dependent protein serves as a template-specific translation initiation factor. Genes Dev. 2000;14:2028-2045
60. Guo S, Kemphues KJ. Par-1, a gene required for establishing polarity in c. Elegans embryos, encodes a putative ser/thr kinase that is asymmetrically distributed. Cell. 1995;81:611-620
61. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded rna in caenorhabditis elegans. Nature. 1998;391:806-811
62. Dykxhoorn DM, Novina CD, Sharp PA. Killing the messenger: Short rnas that silence gene expression. Nat Rev Mol Cell Biol. 2003;4:457-467
63. Stark GR. How cells respond to interferons revisited: From early history to current complexity. Cytokine Growth Factor Rev. 2007;18:419-423
64. Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T. Duplexes of 21-nucleotide rnas mediate rna interference in cultured mammalian cells. Nature. 2001;411:494-498
65. Cobos PV GMP, Yañez Ortega JL, Rodrigo Palacios J, Macarrón Vicente JL, Montero Alonso MR, Lozano A. Epidemiologic study of an outbreak of echovirus type-9 meningitis. Rev Sanid Hig Publica (Madr). 1994
66. Joo CH AJ, Seo I, Kim YK, Kim D, Hong H, Lee H. Characterization of nonpolio enteroviruses recovered from patients with aseptic meningitis in korea. Intervirology. 2005
67. Rosenwirth B, Oren DA, Arnold E, Kis ZL, Eggers HJ. Sdz 35-682, a new picornavirus capsid-binding agent with potent antiviral activity. Antiviral Res. 1995;26:65-82
68. Aguado L, Thibaut HJ, Priego E-Ma, Jimeno Ma-L, Camarasa Ma-J, Neyts J, Pe?rez-Pe?rez Ma-Js. 9-arylpurines as a novel class of enterovirus inhibitors. J Med Chem. 2009
69. Zimmermann H EH, Zimmermann A, Kraus W, Nelsen-Salz B. Complete nucleotide sequence and biological properties of an infectious clone of prototype echovirus 9. Virus Res. 1995
70. T. Mikami NS, I. Hatayama and A. Nakane. Archives of virology. 2004
71. Creancier L, Morello D, Mercier P, Prats AC. Fibroblast growth factor 2 internal ribosome entry site (ires) activity ex vivo and in transgenic mice reveals a stringent tissue-specific regulation. J Cell Biol. 2000;150:275-281
72. Gamarnik AV, Andino R. Interactions of viral protein 3cd and poly(rc) binding protein with the 5' untranslated region of the poliovirus genome. J Virol. 2000;74:2219-2226
73. Makeyev AV, Liebhaber SA. The poly(c)-binding proteins: A multiplicity of functions and a search for mechanisms. RNA. 2002;8:265-278
74. Barton DJ, O'Donnell BJ, Flanegan JB. 5[prime] cloverleaf in poliovirus rna is a cis-acting replication element required for negative-strand synthesis. EMBO J. 2001;20:1439-1448
75. Sean P, Nguyen JHC, Semler BL. Altered interactions between stem-loop iv within the 5' noncoding region of coxsackievirus rna and poly(rc) binding protein 2: Effects on ires-mediated translation and viral infectivity. Virology. 2009;389:45-58
76. Collier B G-LL, Sokolowski M, Schwartz S. Translational inhibition in vitro of human papillomavirus type 16 l2 mrna mediated through interaction with heterogenous ribonucleoprotein k and poly(rc)-binding proteins 1 and 2. J Biol Chem 1998
77. Woolaway K, Asai K, Emili A, Cochrane A. Hnrnp e1 and e2 have distinct roles in modulating hiv-1 gene expression. Retrovirology. 2007;4:28
78. Fukushi S, Okada M, Kageyama T, Hoshino FB, Nagai K, Katayama K. Interaction of poly(rc)-binding protein 2 with the 5'-terminal stem loop of the hepatitis c-virus genome. Virus Res. 2001;73:67-79
79. Lin JY, Li ML, Huang PN, Chien KY, Horng JT, Shih SR. Heterogeneous nuclear ribonuclear protein k interacts with the enterovirus 71 5' untranslated region and participates in virus replication. J Gen Virol. 2008;89:2540-2549
80. Cammas A, Pileur F, Bonnal S, Lewis SM, Leveque N, Holcik M, Vagner S. Cytoplasmic relocalization of heterogeneous nuclear ribonucleoprotein a1 controls translation initiation of specific mrnas. Mol Biol Cell. 2007;18:5048-5059
81. Kim YK, Jang SK. La protein is required for efficient translation driven by encephalomyocarditis virus internal ribosomal entry site. J Gen Virol. 1999;80:3159-3166
82. Martinez-Salas E, Ramos R, Lafuente E, Lopez de Quinto S. Functional interactions in internal translation initiation directed by viral and cellular ires elements. J Gen Virol. 2001;82:973-984
83. Lu H LW, Noble WS, Payan D, Anderson DC. Riboproteomics of the hepatitis c virus internal ribosomal entry site. 2004
84. McHutchison JG, Patel K, Pockros P, Nyberg L, Pianko S, Yu RZ, Dorr FA, Kwoh TJ. A phase i trial of an antisense inhibitor of hepatitis c virus (isis 14803), administered to chronic hepatitis c patients. J Hepatol. 2006;44:88-96
85. Georgopapadakou N. Discontinued drugs in 2005: Anti-infectives. Expert Opinion on Investigational Drugs. 2007;16:1-10
86. Pudi R, Ramamurthy SS, Das S. A peptide derived from rna recognition motif 2 of human la protein binds to hepatitis c virus internal ribosome entry site, prevents ribosomal assembly, and inhibits internal initiation of translation. J Virol. 2005;79:9842-9853
87. Romero-Lopez C, Barroso-delJesus A, Puerta-Fernandez E, Berzal-Herranz A. Interfering with hepatitis c virus ires activity using rna molecules identified by a novel in vitro selection method. Biol Chem. 2005;386:183-190
88. 衛生署疾病管制局網站.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
系統版面圖檔 系統版面圖檔