|
1. Janoueix-Lerosey, I., G. Schleiermacher, and O. Delattre, Molecular pathogenesis of peripheral neuroblastic tumors. Oncogene, 2010. 29(11): p. 1566-79.
2. Cohen, M.D., International criteria for neuroblastoma diagnosis, staging, and response to treatment. J Clin Oncol, 1994. 12(9): p. 1991-3.
3. Monclair, T., et al., The International Neuroblastoma Risk Group (INRG) staging system: an INRG Task Force report. J Clin Oncol, 2009. 27(2): p. 298-303.
4. Edsjo, A., L. Holmquist, and S. Pahlman, Neuroblastoma as an experimental model for neuronal differentiation and hypoxia-induced tumor cell dedifferentiation. Semin Cancer Biol, 2007. 17(3): p. 248-56.
5. Castleberry, R.P., Neuroblastoma. Eur J Cancer, 1997. 33(9): p. 1430-7; discussion 1437-8.
6. Fidler, I.J., The pathogenesis of cancer metastasis: the 'seed and soil' hypothesis revisited. Nat Rev Cancer, 2003. 3(6): p. 453-8.
7. Minn, A.J., et al., Distinct organ-specific metastatic potential of individual breast cancer cells and primary tumors. J Clin Invest, 2005. 115(1): p. 44-55.
8. Roodman, G.D., Mechanisms of bone metastasis. N Engl J Med, 2004. 350(16): p. 1655-64.
9. DuBois, S.G., et al., Metastatic sites in stage IV and IVS neuroblastoma correlate with age, tumor biology, and survival. J Pediatr Hematol Oncol, 1999. 21(3): p. 181-9.
10. Nevo, I., et al., The tumor microenvironment: CXCR4 is associated with distinct protein expression patterns in neuroblastoma cells. Immunol Lett, 2004. 92(1-2): p. 163-9.
11. van Golen, C.M., V.P. Castle, and E.L. Feldman, IGF-I receptor activation and BCL-2 overexpression prevent early apoptotic events in human neuroblastoma. Cell Death Differ, 2000. 7(7): p. 654-65.
12. Semenza, G.L., Hypoxia, clonal selection, and the role of HIF-1 in tumor progression. Crit Rev Biochem Mol Biol, 2000. 35(2): p. 71-103.
13. Brizel, D.M., et al., Tumor oxygenation predicts for the likelihood of distant metastases in human soft tissue sarcoma. Cancer Res, 1996. 56(5): p. 941-3.
14. Wouters, B.G. and J.M. Brown, Cells at intermediate oxygen levels can be more important than the "hypoxic fraction" in determining tumor response to fractionated radiotherapy. Radiat Res, 1997. 147(5): p. 541-50.
15. Hockel, M., et al., Hypoxic cervical cancers with low apoptotic index are highly aggressive. Cancer Res, 1999. 59(18): p. 4525-8.
16. Wang, G.L., et al., Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci U S A, 1995. 92(12): p. 5510-4.
17. Ema, M., et al., A novel bHLH-PAS factor with close sequence similarity to hypoxia-inducible factor 1alpha regulates the VEGF expression and is potentially involved in lung and vascular development. Proc Natl Acad Sci U S A, 1997. 94(9): p. 4273-8.
18. Flamme, I., et al., HRF, a putative basic helix-loop-helix-PAS-domain transcription factor is closely related to hypoxia-inducible factor-1 alpha and developmentally expressed in blood vessels. Mech Dev, 1997. 63(1): p. 51-60.
19. Semenza, G.L., Targeting HIF-1 for cancer therapy. Nat Rev Cancer, 2003. 3(10): p. 721-32.
20. Carmeliet, P., et al., Role of HIF-1alpha in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature, 1998. 394(6692): p. 485-90.
21. Pennacchietti, S., et al., Hypoxia promotes invasive growth by transcriptional activation of the met protooncogene. Cancer Cell, 2003. 3(4): p. 347-61.
22. Harris, A.L., Hypoxia--a key regulatory factor in tumour growth. Nat Rev Cancer, 2002. 2(1): p. 38-47.
23. Ryan, H.E., J. Lo, and R.S. Johnson, HIF-1 alpha is required for solid tumor formation and embryonic vascularization. EMBO J, 1998. 17(11): p. 3005-15.
24. Peng, J., et al., The transcription factor EPAS-1/hypoxia-inducible factor 2alpha plays an important role in vascular remodeling. Proc Natl Acad Sci U S A, 2000. 97(15): p. 8386-91.
25. Jogi, A., et al., Hypoxia alters gene expression in human neuroblastoma cells toward an immature and neural crest-like phenotype. Proc Natl Acad Sci U S A, 2002. 99(10): p. 7021-6.
26. Wei, J.S., et al., Prediction of clinical outcome using gene expression profiling and artificial neural networks for patients with neuroblastoma. Cancer Res, 2004. 64(19): p. 6883-91.
27. Ohira, M., et al., Expression profiling using a tumor-specific cDNA microarray predicts the prognosis of intermediate risk neuroblastomas. Cancer Cell, 2005. 7(4): p. 337-50.
28. Biedler, J.L., L. Helson, and B.A. Spengler, Morphology and growth, tumorigenicity, and cytogenetics of human neuroblastoma cells in continuous culture. Cancer Res, 1973. 33(11): p. 2643-52.
29. Everley, P.A., et al., Quantitative cancer proteomics: stable isotope labeling with amino acids in cell culture (SILAC) as a tool for prostate cancer research. Mol Cell Proteomics, 2004. 3(7): p. 729-35.
30. Lowry, O.H., et al., Protein measurement with the Folin phenol reagent. J Biol Chem, 1951. 193(1): p. 265-75.
31. Scherl, A., et al., Genome-specific gas-phase fractionation strategy for improved shotgun proteomic profiling of proteotypic peptides. Anal Chem, 2008. 80(4): p. 1182-91.
32. Pedrioli, P.G., et al., A common open representation of mass spectrometry data and its application to proteomics research. Nat Biotechnol, 2004. 22(11): p. 1459-66.
33. Eng, J.K., A.L. McCormack, and J.R. Yates, 3rd, An approach to correlate tandem mass spectral data of peptides with amino sequences in protein database. J Am Soc Mass Spectrom, 1994. 5: p. 976-89.
34. Elias, J.E. and S.P. Gygi, Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nat Methods, 2007. 4(3): p. 207-14.
35. Li, X.J., et al., A tool to visualize and evaluate data obtained by liquid chromatography-electrospray ionization-mass spectrometry. Anal Chem, 2004. 76(13): p. 3856-60.
36. Keller, A., et al., A uniform proteomics MS/MS analysis platform utilizing open XML file formats. Mol Syst Biol, 2005. 1: p. 2005 0017.
37. Keller, A., et al., Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. Anal Chem, 2002. 74(20): p. 5383-92.
38. Nesvizhskii, A.I., et al., A statistical model for identifying proteins by tandem mass spectrometry. Anal Chem, 2003. 75(17): p. 4646-58.
39. Salvesen, G.S., Caspases: opening the boxes and interpreting the arrows. Cell Death Differ, 2002. 9(1): p. 3-5.
40. Malhotra, R., et al., Hypoxia induces apoptosis via two independent pathways in Jurkat cells: differential regulation by glucose. Am J Physiol Cell Physiol, 2001. 281(5): p. C1596-603.
41. Dong, Z., et al., Apoptosis-resistance of hypoxic cells: multiple factors involved and a role for IAP-2. Am J Pathol, 2003. 163(2): p. 663-71.
42. Tsou, C.C., et al., MaXIC-Q Web: a fully automated web service using statistical and computational methods for protein quantitation based on stable isotope labeling and LC-MS. Nucleic Acids Res, 2009. 37(Web Server issue): p. W661-9.
43. Chatr-aryamontri, A., et al., MINT: the Molecular INTeraction database. Nucleic Acids Res, 2007. 35(Database issue): p. D572-4.
44. Mishra, G.R., et al., Human protein reference database--2006 update. Nucleic Acids Res, 2006. 34(Database issue): p. D411-4.
45. Alfarano, C., et al., The Biomolecular Interaction Network Database and related tools 2005 update. Nucleic Acids Res, 2005. 33(Database issue): p. D418-24.
46. Salwinski, L., et al., The Database of Interacting Proteins: 2004 update. Nucleic Acids Res, 2004. 32(Database issue): p. D449-51.
47. Breitkreutz, B.J., et al., The BioGRID Interaction Database: 2008 update. Nucleic Acids Res, 2008. 36(Database issue): p. D637-40.
48. Kanehisa, M., et al., KEGG for linking genomes to life and the environment. Nucleic Acids Res, 2008. 36(Database issue): p. D480-4.
49. Vastrik, I., et al., Reactome: a knowledge base of biologic pathways and processes. Genome Biol, 2007. 8(3): p. R39.
50. Kerrien, S., et al., IntAct--open source resource for molecular interaction data. Nucleic Acids Res, 2007. 35(Database issue): p. D561-5.
51. Enright, A.J., S. Van Dongen, and C.A. Ouzounis, An efficient algorithm for large-scale detection of protein families. Nucleic Acids Res, 2002. 30(7): p. 1575-84.
52. Dewhirst, M.W., Y. Cao, and B. Moeller, Cycling hypoxia and free radicals regulate angiogenesis and radiotherapy response. Nat Rev Cancer, 2008. 8(6): p. 425-37.
53. Ruoslahti, E., Integrins. J Clin Invest, 1991. 87(1): p. 1-5.
54. Hynes, R.O., Integrins: versatility, modulation, and signaling in cell adhesion. Cell, 1992. 69(1): p. 11-25.
55. Ohh, M., et al., The von Hippel-Lindau tumor suppressor protein is required for proper assembly of an extracellular fibronectin matrix. Mol Cell, 1998. 1(7): p. 959-68.
56. Sturn, A., J. Quackenbush, and Z. Trajanoski, Genesis: cluster analysis of microarray data. Bioinformatics, 2002. 18(1): p. 207-8.
57. Eisen, M.B., et al., Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci U S A, 1998. 95(25): p. 14863-8.
58. Chen, Y., et al., SPD--a web-based secreted protein database. Nucleic Acids Res, 2005. 33(Database issue): p. D169-73.
59. The Universal Protein Resource (UniProt) in 2010. Nucleic Acids Res, 2010. 38(Database issue): p. D142-8.
60. Ping, P., et al., A functional annotation of subproteomes in human plasma. Proteomics, 2005. 5(13): p. 3506-19.
61. Omenn, G.S., et al., Overview of the HUPO Plasma Proteome Project: results from the pilot phase with 35 collaborating laboratories and multiple analytical groups, generating a core dataset of 3020 proteins and a publicly-available database. Proteomics, 2005. 5(13): p. 3226-45.
62. Muthusamy, B., et al., Plasma Proteome Database as a resource for proteomics research. Proteomics, 2005. 5(13): p. 3531-6.
63. Lomize, M.A., et al., OPM: orientations of proteins in membranes database. Bioinformatics, 2006. 22(5): p. 623-5.
64. Tusnady, G.E., Z. Dosztanyi, and I. Simon, PDB_TM: selection and membrane localization of transmembrane proteins in the protein data bank. Nucleic Acids Res, 2005. 33(Database issue): p. D275-8.
65. Tusnady, G.E., L. Kalmar, and I. Simon, TOPDB: topology data bank of transmembrane proteins. Nucleic Acids Res, 2008. 36(Database issue): p. D234-9.
66. Raman, P., V. Cherezov, and M. Caffrey, The Membrane Protein Data Bank. Cell Mol Life Sci, 2006. 63(1): p. 36-51.
67. Wight, T.N., Versican: a versatile extracellular matrix proteoglycan in cell biology. Curr Opin Cell Biol, 2002. 14(5): p. 617-23.
68. Wu, Y., et al., Versican protects cells from oxidative stress-induced apoptosis. Matrix Biol, 2005. 24(1): p. 3-13.
69. Kim, S., et al., Carcinoma-produced factors activate myeloid cells through TLR2 to stimulate metastasis. Nature, 2009. 457(7225): p. 102-6.
70. Tsuzuki, T., et al., Neural cell adhesion molecule L1 in gliomas: correlation with TGF-beta and p53. J Clin Pathol, 1998. 51(1): p. 13-7.
71. Conacci-Sorrell, M.E., et al., Nr-CAM is a target gene of the beta-catenin/LEF-1 pathway in melanoma and colon cancer and its expression enhances motility and confers tumorigenesis. Genes Dev, 2002. 16(16): p. 2058-72.
72. Zecchini, S., et al., The differential role of L1 in ovarian carcinoma and normal ovarian surface epithelium. Cancer Res, 2008. 68(4): p. 1110-8.
73. Gavert, N., et al., L1, a novel target of beta-catenin signaling, transforms cells and is expressed at the invasive front of colon cancers. J Cell Biol, 2005. 168(4): p. 633-42.
74. Kaifi, J.T., et al., L1 is associated with micrometastatic spread and poor outcome in colorectal cancer. Mod Pathol, 2007. 20(11): p. 1183-90.
75. Ekins, S., et al., Pathway mapping tools for analysis of high content data. Methods Mol Biol, 2007. 356: p. 319-50.
76. Mason, C.W., P.W. Swaan, and C.P. Weiner, Identification of interactive gene networks: a novel approach in gene array profiling of myometrial events during guinea pig pregnancy. Am J Obstet Gynecol, 2006. 194(6): p. 1513-23.
77. Jogi, A., et al., Human neuroblastoma cells exposed to hypoxia: induction of genes associated with growth, survival, and aggressive behavior. Exp Cell Res, 2004. 295(2): p. 469-87.
78. Sullivan, R. and C.H. Graham, Hypoxia-driven selection of the metastatic phenotype. Cancer Metastasis Rev, 2007. 26(2): p. 319-31.
79. Zhong, H., et al., Overexpression of hypoxia-inducible factor 1alpha in common human cancers and their metastases. Cancer Res, 1999. 59(22): p. 5830-5.
80. Pourquie, O., et al., A widely distributed antigen developmentally regulated in the nervous system. Development, 1990. 109(4): p. 743-52.
81. Tanaka, H., et al., Molecular cloning and expression of a novel adhesion molecule, SC1. Neuron, 1991. 7(4): p. 535-45.
82. Bowen, M.A., et al., Cloning, mapping, and characterization of activated leukocyte-cell adhesion molecule (ALCAM), a CD6 ligand. J Exp Med, 1995. 181(6): p. 2213-20.
83. Uchida, N., et al., The characterization, molecular cloning, and expression of a novel hematopoietic cell antigen from CD34+ human bone marrow cells. Blood, 1997. 89(8): p. 2706-16.
84. Semenza, G.L., et al., Hypoxia response elements in the aldolase A, enolase 1, and lactate dehydrogenase A gene promoters contain essential binding sites for hypoxia-inducible factor 1. J Biol Chem, 1996. 271(51): p. 32529-37.
85. Brodeur, G.M., Neuroblastoma: biological insights into a clinical enigma. Nat Rev Cancer, 2003. 3(3): p. 203-16.
86. Leygue, E., et al., Expression of lumican in human breast carcinoma. Cancer Res, 1998. 58(7): p. 1348-52.
87. Seya, T., et al., Lumican expression in advanced colorectal cancer with nodal metastasis correlates with poor prognosis. Oncol Rep, 2006. 16(6): p. 1225-30.
88. Veugelers, M., et al., Glypican-6, a new member of the glypican family of cell surface heparan sulfate proteoglycans. J Biol Chem, 1999. 274(38): p. 26968-77.
89. Capurro, M., et al., Glypican-3: a novel serum and histochemical marker for hepatocellular carcinoma. Gastroenterology, 2003. 125(1): p. 89-97.
90. Nakatsura, T., et al., Identification of glypican-3 as a novel tumor marker for melanoma. Clin Cancer Res, 2004. 10(19): p. 6612-21.
91. Hippo, Y., et al., Identification of soluble NH2-terminal fragment of glypican-3 as a serological marker for early-stage hepatocellular carcinoma. Cancer Res, 2004. 64(7): p. 2418-23.
|