(3.235.108.188) 您好!臺灣時間:2021/02/27 03:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:辜明慧
研究生(外文):Ming- Huei Gu
論文名稱:透過蛋白質體之比較分析來搜尋與神經母細胞瘤缺氧反應及癌症轉移之相關蛋白質
論文名稱(外文):Identification of Hypoxia and Metastasis-related Proteins in Neuroblastoma Cells by Comparative Proteomic Analysis
指導教授:吳韋訥
指導教授(外文):Wailap Victor Ng
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:醫學生物技術暨檢驗學系暨研究所
學門:醫藥衛生學門
學類:醫學技術及檢驗學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:英文
論文頁數:89
中文關鍵詞:神經母細胞瘤缺氧反應癌症轉移質譜儀蛋白體比較分析
外文關鍵詞:Neuroblastomahypoxiametastasismass spectrometrycomparative proteomics analysis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:226
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:32
  • 收藏至我的研究室書目清單書目收藏:0
神經母細胞瘤是兒童最常見的顱外腫瘤,主要是由交感神經系統細胞在胚胎發育過程中發生突變而形成惡性腫瘤,神經母細胞瘤在台灣地區兒童癌症發生率僅次於白血病及淋巴瘤,但其成因仍尚未釐清,且往往在診斷出疾病時,將近百分之八十的病童都已有轉移的現象,所以此疾病的早期診斷與治癒率有著密不可分的關係。另一方面,「缺氧現象」在固態腫瘤形成初期扮演著舉足輕重的角色,近兩年文獻指出,缺氧環境會使神經母細胞瘤細胞不再分化且會逐漸產生一些幹細胞的特徵,而走向較為不成熟的方向發展,使得整個腫瘤發展更為嚴重而難治癒。即便現今醫學已十分發達,但神經母細胞瘤治癒率與死亡率仍不樂觀,故尋找神經母細胞瘤的生物標記及藥物標的具有其迫切性和必要性。本論文中將使用高通量蛋白質體之比較分析方法來針對神經母細胞瘤細胞對缺氧的反應及癌症轉移相關蛋白進行系統化分析,藉此找尋與鑑定出與缺氧及轉移之相關蛋白,希望能藉此前瞻性的策略加速尋找神經母細胞瘤相關的治療標靶及生物標記,而間接增加此疾病的治癒率。本研究共使用三株神經母細胞瘤細胞株:SH-SY5Y、SK-N-BE(2)及IMR-32,前兩者用於鑑定缺氧相關蛋白,而後兩者的蛋白質體比較則用於鑑定癌症轉移相關蛋白。在鑑定缺氧相關蛋白部分,透過建立細胞代謝性穩定同位素標定技術 (SILAC) 及液相層析儀搭配串聯式液相質譜儀分析後,分別於SH-SY5Y及SK-N-BE(2)細胞的條件培養基中(conditioned media)鑑定出228 (6,862條胜肽鏈),286 (9,601條胜肽鏈) 個蛋白質。同樣地於細胞溶解液(cell lysate)中鑑定出共338(9,154 胜肽鏈)及374(9,603 胜肽鏈) 個穩定同位素標定蛋白質。為了找尋較可信的候選蛋白,我們將缺氧環境中顯著表現兩倍以上的蛋白與神經母細胞瘤臨床樣本的微陣列資料和自行建立的分泌性蛋白及膜蛋白資料庫做整合性分析,最後得到數個候選蛋白,其中包括FN1 (fibronectin 1) 及MMP2 (matrix metalloproteinase 2) 兩個與缺氧具高度相關性的蛋白質。

在鑑定轉移相關蛋白部分,分別於IMR-32和SK-N-BE(2)的條件培養基中鑑定出340 (8,699條胜肽鏈) 及 377 (9,507條胜肽鏈) 個無同位素標定蛋白,同樣地,在IMR-32和SK-N-BE(2)的細胞溶解液中鑑定出421 (10,291條胜肽鏈) 和362 (11,018條胜肽鏈) 個無同位素標定蛋白質。同樣地,為了縮小尋找範圍及加速鑑定速度,將蛋白質體資料與前述的臨床樣本微陣列資料及本實驗室自行建立之資料庫做一系統性整合後,得到了幾個相當具有治療及診斷潛力癌症轉移相關蛋白質,如:VCAN (versican) 和L1CAM (L1 cell adhesion molecule)。無論在缺氧反應還是癌症轉移計劃,這些篩選出來的候選蛋白絕大部分都尚未有文獻指出和神經母細胞瘤有直接相關,甚至有些蛋白仍未指出與癌症相關,顯示本文研究結果在神經母細胞瘤研究領域中仍具有高度新穎性及發展性。本篇研究中我們使用了蛋白質體學研究策略,藉此鑑定缺氧環境下誘導出的蛋白質及癌症轉移之相關蛋白質,最終篩選出這些極具潛力的候選蛋白,期望有朝一日能應用在神經母細胞瘤治療上、臨床診斷或預後指標。
Neuroblastoma (NB) is the most common malignant solid tumor with unfortunate outcomes in many infants and children. This tumor arises from the sympathetic nervous system. The primary non-metastatic NB initiates at a localized area and is often resectable with good prognosis, but once metastasized, it is unresectable and resistant to chemotherapy while restraining tumor spread. The major type of NBs is the aggressive metastatic tumor. Furthermore, solid tumor cells have to overcome hypoxia and deficiency of nutrient. To ensure a sufficient supply of oxygen and nutrients, tumor metastasis or angiogenesis is probably a strategy for tumor growing in hypoxia. Therefore, the searching of differentially expressed hypoxia-induced and metastasis-related proteins, which are the aims of my thesis works, are important for the development of therapeutic target or diagnostic biomarker. The first project applied SILAC–based quantitative proteomics approach analyze hypoxia-induced protein in the secretome and cell lysate proteomes of NB cell lines, SH-SY5Y and SK-N-BE(2), cultured in hypoxia or normoxia condition. A total of 228 (6,862 peptides) and 286 (9,601 peptides) SILAC-labeled proteins were identified by LC-MS/MS in the secretomes of SH-SY5Y and SK-N-BE(2) cells, respectively, and 338 (9,154 peptides) and 374 (9,603 peptides) SILAC-labeled proteins in the cell lysates of SH-SY5Y and SK-N-BE(2) cells, respectively. These proteins were further analyzed with the public NV microarray data, in-house consolidated secretome databases, and membrane protein database to narrow down the hypoxia related candidates. In my study, a number of novel hypoxia-related candidates including FN1 (fibronectin 1) and MMP2 (matrix metalloproteinase 2) were identified.

The second project used a label-free quantitative proteomics approach to identify metastasis-related candidates by comparing the proteomes of metastatic and non-metastatic NB cell lines, SK-N-BE(2) and IMR-32, respectively. A total of 340 (8,699 peptides) and 377 (9,507 peptides) human proteins were identified in the conditioned media from IMR-32 and SK-N-BE(2) cells, respectively. Approximately 421 (10,291 peptides) and 362 (11,018 peptides) proteins were detected in the cell lysates of IMR-32 and SK-N-BE(2), respectively. To obtain the ideal candidates, the significantly changed proteins were integratively analyzed with public transcriptomic data and secretome and membrane protein databases. This analysis found several potential metastasis candidates including VCAN (versican) and L1CAM (L1 cell adhesion molecule) and many novel neuroblastoma metastasis protein candidates. In this study, we demonstrated the efficiency of our proteomics approach in the identification of hypoxia-induced and metastasis-related candidates which may deserve further investigations to evaluate their potential as neuroblastoma therapeutic targets, diagnostic or prognostic markers
CHINESE ABSTRACT I

ABSTRACT III

CONTENTS V

LIST OF TABLES VIII

LIST OF FIGURES X

ABBREVIATIONS XII

CHAPTER 1 INTRODUCTION 1

1.1 NEUROBLASTOMA 1

1.1.1 Clinical features of neuroblastoma 1

1.1.2 Metastasis of neuroblastoma 2

1.2 HYPOXIA RESPONSE 3

1.2.1 Molecular mechanism involved in hypoxia response 3

1.2.2 Hypoxia response in neuroblastoma 4

1.3 SPECIFIC AIM 5

CHAPTER 2 MATERIALS AND METHODS 6

2.1 CELL LINES, MEDIA, AND CULTURE CONDITIONS 6

2.2 STABLE ISOTOPE LABELING WITH AMINO ACIDS IN CELL CULTURE AND HYPOXIA TREATMENT 7

2.3 PREPARATION OF SECRETED PROTEOMES 1

2.4 PREPARATION OF CELL EXTRACTS 1

2.5 MEASUREMENT OF TOTAL PROTEIN CONCENTRATION 2

2.6 SDS-PAGE AND WESTERN BLOT ANALYSIS 1

2.7 TRYPSIN DIGESTION OF PROTEIN SAMPLES 2

2.8 PURIFICATION OF TRYPTIC PEPTIDE SAMPLES 1

2.9 MASS SPECTROMETRY 1

2.10 DATABASE SEARCHING OF TANDEM MASS DATA 2

2.11 STATISTICAL ANALYSIS OF PEPTIDE AND PROTEIN IDENTIFICATIONS 1

CHAPTER 3 RESULTS 2

3.1 QUALITY ASSESSMENT OF SUBPROTEOMES 2

3.2 EVALUATION OF HYPOXIA TREATMENT 3

3.3 SILAC-BASED QUANTITATIVE PROTEOMIC ANALYSIS OF NEUROBLASTOMA CELLS UNDER HYPOXIA VERSUS NORMOXIA 4

3.3.1 Identification of SILAC-labeled proteins using mass spectrometry 4

3.3.2 Quantitative analysis of SILAC-labeled proteins with MaXIC-Q software 5

3.3.3 Evaluations of the relationships between the hypoxia-related candidates with STRING functional interaction database analysis 6

3.4 ANALYSIS OF METASTATIC VERSUS NON-METASTATIC NEUROBLASTOMA CELL PROTEINS USING LABEL-FREE QUANTITATIVE PROTEOMIC APPROACH 8

3.4.1 Identification of label-free proteins using mass spectrometry 8

3.4.2 Subcellular localization and distribution of the identified proteins from subproteomes 9

3.4.3 Integrative analysis of neuroblastoma proteomics, microarray data, and in-house consolidated secretome and membrane proteome databases 10

3.4.3.1 Identification of neuroblastoma differentially expressed genes from public microarray data 10

3.4.3.2 Construction of in-house consolidated secretome database 11

3.4.3.3 Construction of in-house membrane proteome database 12

3.4.4 Evaluations of metastasis-related candidates with STRING protein-protein interaction database 12

3.4.5 Disease association analysis of metastatic versus non-metastatic NB cells differentially expressed proteins candidates 14

CHAPTER 4 DISCUSSION 15

TABLES 19

FIGURES 38

APPENDICES 56

REFERENCES 58
1. Janoueix-Lerosey, I., G. Schleiermacher, and O. Delattre, Molecular pathogenesis of peripheral neuroblastic tumors. Oncogene, 2010. 29(11): p. 1566-79.

2. Cohen, M.D., International criteria for neuroblastoma diagnosis, staging, and response to treatment. J Clin Oncol, 1994. 12(9): p. 1991-3.

3. Monclair, T., et al., The International Neuroblastoma Risk Group (INRG) staging system: an INRG Task Force report. J Clin Oncol, 2009. 27(2): p. 298-303.

4. Edsjo, A., L. Holmquist, and S. Pahlman, Neuroblastoma as an experimental model for neuronal differentiation and hypoxia-induced tumor cell dedifferentiation. Semin Cancer Biol, 2007. 17(3): p. 248-56.

5. Castleberry, R.P., Neuroblastoma. Eur J Cancer, 1997. 33(9): p. 1430-7; discussion 1437-8.

6. Fidler, I.J., The pathogenesis of cancer metastasis: the 'seed and soil' hypothesis revisited. Nat Rev Cancer, 2003. 3(6): p. 453-8.

7. Minn, A.J., et al., Distinct organ-specific metastatic potential of individual breast cancer cells and primary tumors. J Clin Invest, 2005. 115(1): p. 44-55.

8. Roodman, G.D., Mechanisms of bone metastasis. N Engl J Med, 2004. 350(16): p. 1655-64.

9. DuBois, S.G., et al., Metastatic sites in stage IV and IVS neuroblastoma correlate with age, tumor biology, and survival. J Pediatr Hematol Oncol, 1999. 21(3): p. 181-9.

10. Nevo, I., et al., The tumor microenvironment: CXCR4 is associated with distinct protein expression patterns in neuroblastoma cells. Immunol Lett, 2004. 92(1-2): p. 163-9.

11. van Golen, C.M., V.P. Castle, and E.L. Feldman, IGF-I receptor activation and BCL-2 overexpression prevent early apoptotic events in human neuroblastoma. Cell Death Differ, 2000. 7(7): p. 654-65.

12. Semenza, G.L., Hypoxia, clonal selection, and the role of HIF-1 in tumor progression. Crit Rev Biochem Mol Biol, 2000. 35(2): p. 71-103.

13. Brizel, D.M., et al., Tumor oxygenation predicts for the likelihood of distant metastases in human soft tissue sarcoma. Cancer Res, 1996. 56(5): p. 941-3.

14. Wouters, B.G. and J.M. Brown, Cells at intermediate oxygen levels can be more important than the "hypoxic fraction" in determining tumor response to fractionated radiotherapy. Radiat Res, 1997. 147(5): p. 541-50.

15. Hockel, M., et al., Hypoxic cervical cancers with low apoptotic index are highly aggressive. Cancer Res, 1999. 59(18): p. 4525-8.

16. Wang, G.L., et al., Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci U S A, 1995. 92(12): p. 5510-4.

17. Ema, M., et al., A novel bHLH-PAS factor with close sequence similarity to hypoxia-inducible factor 1alpha regulates the VEGF expression and is potentially involved in lung and vascular development. Proc Natl Acad Sci U S A, 1997. 94(9): p. 4273-8.

18. Flamme, I., et al., HRF, a putative basic helix-loop-helix-PAS-domain transcription factor is closely related to hypoxia-inducible factor-1 alpha and developmentally expressed in blood vessels. Mech Dev, 1997. 63(1): p. 51-60.

19. Semenza, G.L., Targeting HIF-1 for cancer therapy. Nat Rev Cancer, 2003. 3(10): p. 721-32.

20. Carmeliet, P., et al., Role of HIF-1alpha in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature, 1998. 394(6692): p. 485-90.

21. Pennacchietti, S., et al., Hypoxia promotes invasive growth by transcriptional activation of the met protooncogene. Cancer Cell, 2003. 3(4): p. 347-61.

22. Harris, A.L., Hypoxia--a key regulatory factor in tumour growth. Nat Rev Cancer, 2002. 2(1): p. 38-47.

23. Ryan, H.E., J. Lo, and R.S. Johnson, HIF-1 alpha is required for solid tumor formation and embryonic vascularization. EMBO J, 1998. 17(11): p. 3005-15.

24. Peng, J., et al., The transcription factor EPAS-1/hypoxia-inducible factor 2alpha plays an important role in vascular remodeling. Proc Natl Acad Sci U S A, 2000. 97(15): p. 8386-91.

25. Jogi, A., et al., Hypoxia alters gene expression in human neuroblastoma cells toward an immature and neural crest-like phenotype. Proc Natl Acad Sci U S A, 2002. 99(10): p. 7021-6.

26. Wei, J.S., et al., Prediction of clinical outcome using gene expression profiling and artificial neural networks for patients with neuroblastoma. Cancer Res, 2004. 64(19): p. 6883-91.

27. Ohira, M., et al., Expression profiling using a tumor-specific cDNA microarray predicts the prognosis of intermediate risk neuroblastomas. Cancer Cell, 2005. 7(4): p. 337-50.

28. Biedler, J.L., L. Helson, and B.A. Spengler, Morphology and growth, tumorigenicity, and cytogenetics of human neuroblastoma cells in continuous culture. Cancer Res, 1973. 33(11): p. 2643-52.

29. Everley, P.A., et al., Quantitative cancer proteomics: stable isotope labeling with amino acids in cell culture (SILAC) as a tool for prostate cancer research. Mol Cell Proteomics, 2004. 3(7): p. 729-35.

30. Lowry, O.H., et al., Protein measurement with the Folin phenol reagent. J Biol Chem, 1951. 193(1): p. 265-75.

31. Scherl, A., et al., Genome-specific gas-phase fractionation strategy for improved shotgun proteomic profiling of proteotypic peptides. Anal Chem, 2008. 80(4): p. 1182-91.

32. Pedrioli, P.G., et al., A common open representation of mass spectrometry data and its application to proteomics research. Nat Biotechnol, 2004. 22(11): p. 1459-66.

33. Eng, J.K., A.L. McCormack, and J.R. Yates, 3rd, An approach to correlate tandem mass spectral data of peptides with amino sequences in protein database. J Am Soc Mass Spectrom, 1994. 5: p. 976-89.

34. Elias, J.E. and S.P. Gygi, Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nat Methods, 2007. 4(3): p. 207-14.

35. Li, X.J., et al., A tool to visualize and evaluate data obtained by liquid chromatography-electrospray ionization-mass spectrometry. Anal Chem, 2004. 76(13): p. 3856-60.

36. Keller, A., et al., A uniform proteomics MS/MS analysis platform utilizing open XML file formats. Mol Syst Biol, 2005. 1: p. 2005 0017.

37. Keller, A., et al., Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. Anal Chem, 2002. 74(20): p. 5383-92.

38. Nesvizhskii, A.I., et al., A statistical model for identifying proteins by tandem mass spectrometry. Anal Chem, 2003. 75(17): p. 4646-58.

39. Salvesen, G.S., Caspases: opening the boxes and interpreting the arrows. Cell Death Differ, 2002. 9(1): p. 3-5.

40. Malhotra, R., et al., Hypoxia induces apoptosis via two independent pathways in Jurkat cells: differential regulation by glucose. Am J Physiol Cell Physiol, 2001. 281(5): p. C1596-603.

41. Dong, Z., et al., Apoptosis-resistance of hypoxic cells: multiple factors involved and a role for IAP-2. Am J Pathol, 2003. 163(2): p. 663-71.

42. Tsou, C.C., et al., MaXIC-Q Web: a fully automated web service using statistical and computational methods for protein quantitation based on stable isotope labeling and LC-MS. Nucleic Acids Res, 2009. 37(Web Server issue): p. W661-9.

43. Chatr-aryamontri, A., et al., MINT: the Molecular INTeraction database. Nucleic Acids Res, 2007. 35(Database issue): p. D572-4.

44. Mishra, G.R., et al., Human protein reference database--2006 update. Nucleic Acids Res, 2006. 34(Database issue): p. D411-4.

45. Alfarano, C., et al., The Biomolecular Interaction Network Database and related tools 2005 update. Nucleic Acids Res, 2005. 33(Database issue): p. D418-24.

46. Salwinski, L., et al., The Database of Interacting Proteins: 2004 update. Nucleic Acids Res, 2004. 32(Database issue): p. D449-51.

47. Breitkreutz, B.J., et al., The BioGRID Interaction Database: 2008 update. Nucleic Acids Res, 2008. 36(Database issue): p. D637-40.

48. Kanehisa, M., et al., KEGG for linking genomes to life and the environment. Nucleic Acids Res, 2008. 36(Database issue): p. D480-4.

49. Vastrik, I., et al., Reactome: a knowledge base of biologic pathways and processes. Genome Biol, 2007. 8(3): p. R39.

50. Kerrien, S., et al., IntAct--open source resource for molecular interaction data. Nucleic Acids Res, 2007. 35(Database issue): p. D561-5.

51. Enright, A.J., S. Van Dongen, and C.A. Ouzounis, An efficient algorithm for large-scale detection of protein families. Nucleic Acids Res, 2002. 30(7): p. 1575-84.

52. Dewhirst, M.W., Y. Cao, and B. Moeller, Cycling hypoxia and free radicals regulate angiogenesis and radiotherapy response. Nat Rev Cancer, 2008. 8(6): p. 425-37.

53. Ruoslahti, E., Integrins. J Clin Invest, 1991. 87(1): p. 1-5.

54. Hynes, R.O., Integrins: versatility, modulation, and signaling in cell adhesion. Cell, 1992. 69(1): p. 11-25.

55. Ohh, M., et al., The von Hippel-Lindau tumor suppressor protein is required for proper assembly of an extracellular fibronectin matrix. Mol Cell, 1998. 1(7): p. 959-68.

56. Sturn, A., J. Quackenbush, and Z. Trajanoski, Genesis: cluster analysis of microarray data. Bioinformatics, 2002. 18(1): p. 207-8.

57. Eisen, M.B., et al., Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci U S A, 1998. 95(25): p. 14863-8.

58. Chen, Y., et al., SPD--a web-based secreted protein database. Nucleic Acids Res, 2005. 33(Database issue): p. D169-73.

59. The Universal Protein Resource (UniProt) in 2010. Nucleic Acids Res, 2010. 38(Database issue): p. D142-8.

60. Ping, P., et al., A functional annotation of subproteomes in human plasma. Proteomics, 2005. 5(13): p. 3506-19.

61. Omenn, G.S., et al., Overview of the HUPO Plasma Proteome Project: results from the pilot phase with 35 collaborating laboratories and multiple analytical groups, generating a core dataset of 3020 proteins and a publicly-available database. Proteomics, 2005. 5(13): p. 3226-45.

62. Muthusamy, B., et al., Plasma Proteome Database as a resource for proteomics research. Proteomics, 2005. 5(13): p. 3531-6.

63. Lomize, M.A., et al., OPM: orientations of proteins in membranes database. Bioinformatics, 2006. 22(5): p. 623-5.

64. Tusnady, G.E., Z. Dosztanyi, and I. Simon, PDB_TM: selection and membrane localization of transmembrane proteins in the protein data bank. Nucleic Acids Res, 2005. 33(Database issue): p. D275-8.

65. Tusnady, G.E., L. Kalmar, and I. Simon, TOPDB: topology data bank of transmembrane proteins. Nucleic Acids Res, 2008. 36(Database issue): p. D234-9.

66. Raman, P., V. Cherezov, and M. Caffrey, The Membrane Protein Data Bank. Cell Mol Life Sci, 2006. 63(1): p. 36-51.

67. Wight, T.N., Versican: a versatile extracellular matrix proteoglycan in cell biology. Curr Opin Cell Biol, 2002. 14(5): p. 617-23.

68. Wu, Y., et al., Versican protects cells from oxidative stress-induced apoptosis. Matrix Biol, 2005. 24(1): p. 3-13.

69. Kim, S., et al., Carcinoma-produced factors activate myeloid cells through TLR2 to stimulate metastasis. Nature, 2009. 457(7225): p. 102-6.

70. Tsuzuki, T., et al., Neural cell adhesion molecule L1 in gliomas: correlation with TGF-beta and p53. J Clin Pathol, 1998. 51(1): p. 13-7.

71. Conacci-Sorrell, M.E., et al., Nr-CAM is a target gene of the beta-catenin/LEF-1 pathway in melanoma and colon cancer and its expression enhances motility and confers tumorigenesis. Genes Dev, 2002. 16(16): p. 2058-72.

72. Zecchini, S., et al., The differential role of L1 in ovarian carcinoma and normal ovarian surface epithelium. Cancer Res, 2008. 68(4): p. 1110-8.

73. Gavert, N., et al., L1, a novel target of beta-catenin signaling, transforms cells and is expressed at the invasive front of colon cancers. J Cell Biol, 2005. 168(4): p. 633-42.

74. Kaifi, J.T., et al., L1 is associated with micrometastatic spread and poor outcome in colorectal cancer. Mod Pathol, 2007. 20(11): p. 1183-90.

75. Ekins, S., et al., Pathway mapping tools for analysis of high content data. Methods Mol Biol, 2007. 356: p. 319-50.

76. Mason, C.W., P.W. Swaan, and C.P. Weiner, Identification of interactive gene networks: a novel approach in gene array profiling of myometrial events during guinea pig pregnancy. Am J Obstet Gynecol, 2006. 194(6): p. 1513-23.

77. Jogi, A., et al., Human neuroblastoma cells exposed to hypoxia: induction of genes associated with growth, survival, and aggressive behavior. Exp Cell Res, 2004. 295(2): p. 469-87.

78. Sullivan, R. and C.H. Graham, Hypoxia-driven selection of the metastatic phenotype. Cancer Metastasis Rev, 2007. 26(2): p. 319-31.

79. Zhong, H., et al., Overexpression of hypoxia-inducible factor 1alpha in common human cancers and their metastases. Cancer Res, 1999. 59(22): p. 5830-5.

80. Pourquie, O., et al., A widely distributed antigen developmentally regulated in the nervous system. Development, 1990. 109(4): p. 743-52.

81. Tanaka, H., et al., Molecular cloning and expression of a novel adhesion molecule, SC1. Neuron, 1991. 7(4): p. 535-45.

82. Bowen, M.A., et al., Cloning, mapping, and characterization of activated leukocyte-cell adhesion molecule (ALCAM), a CD6 ligand. J Exp Med, 1995. 181(6): p. 2213-20.

83. Uchida, N., et al., The characterization, molecular cloning, and expression of a novel hematopoietic cell antigen from CD34+ human bone marrow cells. Blood, 1997. 89(8): p. 2706-16.

84. Semenza, G.L., et al., Hypoxia response elements in the aldolase A, enolase 1, and lactate dehydrogenase A gene promoters contain essential binding sites for hypoxia-inducible factor 1. J Biol Chem, 1996. 271(51): p. 32529-37.

85. Brodeur, G.M., Neuroblastoma: biological insights into a clinical enigma. Nat Rev Cancer, 2003. 3(3): p. 203-16.

86. Leygue, E., et al., Expression of lumican in human breast carcinoma. Cancer Res, 1998. 58(7): p. 1348-52.

87. Seya, T., et al., Lumican expression in advanced colorectal cancer with nodal metastasis correlates with poor prognosis. Oncol Rep, 2006. 16(6): p. 1225-30.

88. Veugelers, M., et al., Glypican-6, a new member of the glypican family of cell surface heparan sulfate proteoglycans. J Biol Chem, 1999. 274(38): p. 26968-77.

89. Capurro, M., et al., Glypican-3: a novel serum and histochemical marker for hepatocellular carcinoma. Gastroenterology, 2003. 125(1): p. 89-97.

90. Nakatsura, T., et al., Identification of glypican-3 as a novel tumor marker for melanoma. Clin Cancer Res, 2004. 10(19): p. 6612-21.

91. Hippo, Y., et al., Identification of soluble NH2-terminal fragment of glypican-3 as a serological marker for early-stage hepatocellular carcinoma. Cancer Res, 2004. 64(7): p. 2418-23.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔