( 您好!臺灣時間:2021/03/04 18:39
字體大小: 字級放大   字級縮小   預設字形  


研究生(外文):Shao-En Chang
論文名稱(外文):AAD01 reduces tumor hypoxia by increasing tissue perfusion in high grade malignant gliomas
指導教授(外文):Henrich Cheng
  • 被引用被引用:0
  • 點閱點閱:165
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
背景:腫瘤缺氧會增加對放療及化療的抗性,使腫瘤惡化。大多抑制血管新生藥物作用在血管內皮細胞生長因子 (VEGF) 或其受器,雖可抑制腫瘤生長,但會造成腫瘤缺氧。抗血管新生藥物一號 (Anti-angiogenic drug 01, AAD01) 則是直接作用於血管內皮細胞。最近也有文獻指出,川芎嗪 (Tetramethylpyrazine, TMP) 可以下降VEGF進而抑制血管新生,本實驗將探討這兩種藥物對於治療惡性腦腫瘤有無降低缺氧的影響。
實驗材料與方法:於C6膠質瘤細胞植入雌性Sprague-Dawley成鼠顱內,第五天開始隨機分成三組,開始給與AAD01 (10 µg / 每3 days) 或TMP (2.4 mg/day, for 7 days),於第13天犧牲動物,以組織染色分析血管及缺氧相關因子,並以西方墨點法定量,並利用單因子變異數分析(one-way ANOVA) 統計分析,p值小於0.05以下為顯著差異。
結果:經由AAD01治療後,腫瘤變小 (60.42%),體重下降速度明顯趨緩,缺氧基因HIF-1α表現較少,VEGF表現降低,表現VEGF receptor 2 (VEGFR2) 形成血管新枝的細胞減低,腫瘤內總體的血管密度變少,但具有血流循環的血管較多,且腫瘤向外侵潤情況變少;在TMP的組別,血管密度、HIF-1α和VEGF表現量也有下降,但沒有AAD01的效果好,有血流循環的血管也沒有比對照組多。

Background: Intra-tumoral hypoxia is associated with malignant progression, tumor invasion and resistance to radiotherapy and chemotherapy of cancers. Anti-angiogenic therapies targeting the vascular endothelial growth factor (VEGF) / VEGF receptor (V EGFR) have shown therapeutic effect for malignant tumors. However, they also increase intra-tumoral hypoxia. Anti-angiogenic drug 01 (AAD01), on the other hand, targets endothelial cells directly. Tetramethylpyrazine (TMP) decreased the expression of VEGF and reduced angiogenesis. This study would test these two drugs to decrease tumor hypoxia in malignant gliomas in rat.
Hypothesis: It is hypothesized that by limiting the rapid proliferation of endothelial cells, AAD01 increase tissue perfusion in gliomas, which in turn result in the decrease of intra-tumoral hypoxia. This study has also evaluated if TMP has similar effect.
Materials and Methods: Suspended 1x107 C6 glioma cells were implanted intracerebrally of the adult female Sprague-Dawley rats. The treatment group received AAD01 (10 µg / every 3 days) or TMP (2.4 mg/day, for 7 days) beginning for the 5th day. At day 13, animals were sacrificed. Tumor hypoxia and angiogenic factors were analyzed by immunohistochemistry and quantified by Western blot. Multiple groups were analyzed by one-way analysis of variance (ANOVA). P-value of less than 0.05 was considered significant.
Results: In the AAD01 treated group, tumor size was decreased (60.42%). These rats also showed less body weight loss. The expression of hypoxic inducible factor-1 α (HIF-1α) and VEGF both decreased significantly in the treatment group than in control group. The sprouting vessel, which is evaluated by staining of VEGFR2 was inhibited in the AAD01 group. The density of total vessels was decreased. The contrast, the density of perfused vessels was increased. The peri-tumor infiltration was less prominent in the AAD01 group. On the hand, the expression of HIF-1α and VEGF in the TMP group was decreased but less effect than AAD01 group. The density of perfused vessels was not significant statistically different from control.
Conclusion: AAD01 reduced tumor hypoxia by increasing tissue perfusion. Otherwise, it can reduce peri-tumor infiltration.

Signature Page i

Thesis Approval Form ii

Acknowledgments iii

Chinese Abstract iv

English Abstract v

Table of contents vi

List of Figures vii

I. Introduction 1

1.1 Malignant Brain Tumor 1

1.2 Treatment Options 2
1.2.2 Radiotherapy 2 External beam radiotherapy 2 Brachytherapy… 3 Whole-brain radiotherapy 3 Radioisotope Therapy 4
1.2.3 Chemotherapy 4 Nitrosoureas 4 Temozolomide 5 Epipodophylotoxins 5 Topoisomerase I Inhibitors 5 New Chemotherapeutic Drugs 6

1.3 The Bottleneck of Therapies in Brain Tumor 8
1.4 Angiogenesis 8
1.4.1 Biology of Angiogenesis in Malignant Gliomas 8
1.4.2 Mechanisms of Antiangiogenic Therapy 10
1.4.3 Kringle domain 10

1.5 Does Anti-Angiogenic Agent Induce Hypoxia? 12

1.6 Hypoxia in Malignant Gliomas 13
1.6.1 Biology of Hypoxia in Malignant Gliomas 13
1.6.2 Defects of Hypoxia in Clinical Trails 14
1.6.3 Tetramethylpyrazine 15

II. Hypothesis 16
2.1 The Purpose in this study 16
2.2 Specific aims 16

III. Materials And Methods 17
3.1 Experiment Animals and Surgical Procedures 17
3.2 Cell Culture 19
3.3 Immunocytochemistry 19
3.4 Perfused Vessels Analysis 21
3.5 Western Blot Assay 21
3.6 Statistical Analysis 23

IV.Results 23
4.1 High-grade malignant C6 gliomas animals’ model23
4.2 AAD01 impairs both angiogenesis and tumor infiltration 24
4.3AAD01 treatment suppressed the hypoxia critical
transcription factor - hypoxia inducible factor-1α (HIF-1α) in malignant C6 gliomas 24
4.4Vascular endothelial growth factor (VEGF), the critical
hypoxia downstream molecular was inhibited in AAD01 group 25
4.5AAD01 inhibits vascular endothelial growth factor
receptor-2 (VEGFR2), the key of angiogenesis 25
4.6The possible mechanism in AAD01 treatment which
Decreased hypoxia 26

V. Discussion 27
5.1 AAD01 and TMP altered the structure of tumor vessels 27
5.2 AAD01 decreased tumor hypoxia and the expression of
VEGF in high-grade malignant gliomas 28
5.3 AAD01 decreased sprouting vessels 29
5.4 AAD01 and other Angiogenic Agents 30
5.5 Conclusions 31

VI. References 32
VII. Appendices 48

1. Bailey PC, H. (1926) A Classification of Tumours of the Glioma Group on a Histogenic Basis. J B Lippincott, Philadelphia.
2. Kleihues P, Louis DN, Scheithauer BW, Rorke LB, Reifenberger G, et al. (2002) The WHO classification of tumors of the nervous system. J Neuropathol Exp Neurol 61: 215-225; discussion 226-219.
3. Rineer J, Schreiber D, Choi K, Rotman M (2010) Characterization and outcomes of infratentorial malignant glioma: A population-based study using the Surveillance Epidemiology and End-Results database. Radiother Oncol.
4. Thiessen B, Stewart C, Tsao M, Kamel-Reid S, Schaiquevich P, et al. (2009) A phase I/II trial of GW572016 (lapatinib) in recurrent glioblastoma multiforme: clinical outcomes, pharmacokinetics and molecular correlation. Cancer Chemother Pharmacol.
5. Kaleita TA, Wellisch DK, Cloughesy TF, Ford JM, Freeman D, et al. (2004) Prediction of neurocognitive outcome in adult brain tumor patients. J Neurooncol 67: 245-253.
6. Anderson E, Grant R, Lewis SC, Whittle IR (2008) Randomized Phase III controlled trials of therapy in malignant glioma: where are we after 40 years? Br J Neurosurg 22: 339-349.
7. Triebel KL, Martin RC, Nabors LB, Marson DC (2009) Medical decision-making capacity in patients with malignant glioma. Neurology 73: 2086-2092.
8. Liang BC, Thornton AF, Jr., Sandler HM, Greenberg HS (1991) Malignant astrocytomas: focal tumor recurrence after focal external beam radiation therapy. J Neurosurg 75: 559-563.
9. Minniti G, Traish D, Ashley S, Gonsalves A, Brada M (2005) Risk of second brain tumor after conservative surgery and radiotherapy for pituitary adenoma: update after an additional 10 years. J Clin Endocrinol Metab 90: 800-804.
10. Alexander E, 3rd, Moriarty TM, Davis RB, Wen PY, Fine HA, et al. (1995) Stereotactic radiosurgery for the definitive, noninvasive treatment of brain metastases. J Natl Cancer Inst 87: 34-40.
11. Teh BS, Woo SY, Butler EB (1999) Intensity modulated radiation therapy (IMRT): a new promising technology in radiation oncology. Oncologist 4: 433-442.
12. Slatkin DN (1991) A history of boron neutron capture therapy of brain tumours. Postulation of a brain radiation dose tolerance limit. Brain 114 ( Pt 4): 1609-1629.
13. Paine CH, Ash DV (1991) Interstitial brachytherapy: past-present-future. Int J Radiat Oncol Biol Phys 21: 1479-1483.
14. Khuntia D, Brown P, Li J, Mehta MP (2006) Whole-brain radiotherapy in the management of brain metastasis. J Clin Oncol 24: 1295-1304.
15. Dagnew E, Kanski J, McDermott MW, Sneed PK, McPherson C, et al. (2007) Management of newly diagnosed single brain metastasis using resection and permanent iodine-125 seeds without initial whole-brain radiotherapy: a two institution experience. Neurosurg Focus 22: E3.
16. Wittig A, Moss RL, Stecher-Rasmussen F, Appelman K, Rassow J, et al. (2005) Neutron activation of patients following boron neutron capture therapy of brain tumors at the high flux reactor (HFR) Petten (EORTC Trials 11961 and 11011). Strahlenther Onkol 181: 774-782.
17. VA L (1986) Pharmacokinetics and central nervous system chemotherapy In: Hellmann K, Carter SK, eds. Fundamentals of Cancer chemotherapy. 28-40 p.
18. Group. TBT (1999) Multicenter phase II trail of temozolomide in patients with anaplastic astrocytoma or anaplastic oligoastrocytoma at first relapse. J Clin Oncol 17: 2762-2771.
19. Watts RG (1992) Combination chemotherapy with ifosfamide and etoposide is effective in the treatment of central nervous system metastasis of childhood neuroblastoma. Cancer 69: 3012-3014.
20. Lamond JP, Mehta MP, Boothman DA (1996) The potential of topoisomerase I inhibitors in the treatment of CNS malignancies: report of a synergistic effect between topotecan and radiation. J Neurooncol 30: 1-6.
21. Mackenzie SE, Tucker WR, Poole TR (2009) Bevacizumab (avastin) for corneal neovascularization--corneal light shield soaked application. Cornea 28: 246-247.
22. Ziemssen F, Luke M, Messias A, Beutel J, Tatar O, et al. (2008) Safety monitoring in bevacizumab (Avastin) treatment: retinal function assessed by psychophysical (visual fields, colour vision) and electrophysiological (ERG/EOG) tests in two subgroups of patients. Int Ophthalmol 28: 101-109.
23. Zheng H, Chen JZ, Liao WJ, Luo RC (2006) [Efficacy of Avastin in combination with irinotecan for metastatic colorectal cancer]. Nan Fang Yi Ke Da Xue Xue Bao 26: 689-691.
24. Los M, Roodhart JM, Voest EE (2007) Target practice: lessons from phase III trials with bevacizumab and vatalanib in the treatment of advanced colorectal cancer. Oncologist 12: 443-450.
25. Parast CV, Mroczkowski B, Pinko C, Misialek S, Khambatta G, et al. (1998) Characterization and kinetic mechanism of catalytic domain of human vascular endothelial growth factor receptor-2 tyrosine kinase (VEGFR2 TK), a key enzyme in angiogenesis. Biochemistry 37: 16788-16801.
26. Verhoeff JJ, Stalpers LJ, Van Noorden CJ, Troost D, Ramkema MD, et al. (2009) Angiogenesis inhibitor DC101 delays growth of intracerebral glioblastoma but induces morbidity when combined with irradiation. Cancer Lett 285: 39-45.
27. Huang J, Frischer JS, Serur A, Kadenhe A, Yokoi A, et al. (2003) Regression of established tumors and metastases by potent vascular endothelial growth factor blockade. Proc Natl Acad Sci U S A 100: 7785-7790.
28. Bellmunt J, Szczylik C, Feingold J, Strahs A, Berkenblit A (2008) Temsirolimus safety profile and management of toxic effects in patients with advanced renal cell carcinoma and poor prognostic features. Ann Oncol 19: 1387-1392.
29. Chiappori A, Bepler G, Barlesi F, Soria JC, Reck M, et al. (2010) Phase II, double-blinded, randomized study of enzastaurin plus pemetrexed as second-line therapy in patients with advanced non-small cell lung cancer. J Thorac Oncol 5: 369-375.
30. Rieger J, Lemke D, Maurer G, Weiler M, Frank B, et al. (2008) Enzastaurin-induced apoptosis in glioma cells is caspase-dependent and inhibited by BCL-XL. J Neurochem 106: 2436-2448.
31. Weinkauf M, Hutter G, Zimmermann Y, Hartmann E, Rosenwald A, et al. (2010) Combined RNA-expression and 2D-PAGE-screening identifies comprehensive interaction networks affected after bortezomib or enzastaurin exposure of mantle cell lymphoma. Talanta 80: 1539-1544.
32. Stupp R, Hegi ME, Gilbert MR, Chakravarti A (2007) Chemoradiotherapy in malignant glioma: standard of care and future directions. J Clin Oncol 25: 4127-4136.
33. Ausprunk DH, Folkman J (1977) Migration and proliferation of endothelial cells in preformed and newly formed blood vessels during tumor angiogenesis. Microvasc Res 14: 53-65.
34. Patan S (2000) Vasculogenesis and angiogenesis as mechanisms of vascular network formation, growth and remodeling. J Neurooncol 50: 1-15.
35. Dvorak HF (2002) Vascular permeability factor/vascular endothelial growth factor: a critical cytokine in tumor angiogenesis and a potential target for diagnosis and therapy. J Clin Oncol 20: 4368-4380.
36. Ferrara N, Gerber HP, LeCouter J (2003) The biology of VEGF and its receptors. Nat Med 9: 669-676.
37. Sulpice E, Plouet J, Berge M, Allanic D, Tobelem G, et al. (2008) Neuropilin-1 and neuropilin-2 act as coreceptors, potentiating proangiogenic activity. Blood 111: 2036-2045.
38. Starzec A, Vassy R, Martin A, Lecouvey M, Di Benedetto M, et al. (2006) Antiangiogenic and antitumor activities of peptide inhibiting the vascular endothelial growth factor binding to neuropilin-1. Life Sci 79: 2370-2381.
39. Reed MJ, Corsa AC, Kudravi SA, McCormick RS, Arthur WT (2000) A deficit in collagenase activity contributes to impaired migration of aged microvascular endothelial cells. J Cell Biochem 77: 116-126.
40. Zijlstra A, Aimes RT, Zhu D, Regazzoni K, Kupriyanova T, et al. (2004) Collagenolysis-dependent angiogenesis mediated by matrix metalloproteinase-13 (collagenase-3). J Biol Chem 279: 27633-27645.
41. Parfyonova YV, Plekhanova OS, Tkachuk VA (2002) Plasminogen activators in vascular remodeling and angiogenesis. Biochemistry (Mosc) 67: 119-134.
42. Kamba T, Tam BY, Hashizume H, Haskell A, Sennino B, et al. (2006) VEGF-dependent plasticity of fenestrated capillaries in the normal adult microvasculature. Am J Physiol Heart Circ Physiol 290: H560-576.
43. Tozer GM, Akerman S, Cross NA, Barber PR, Bjorndahl MA, et al. (2008) Blood vessel maturation and response to vascular-disrupting therapy in single vascular endothelial growth factor-A isoform-producing tumors. Cancer Res 68: 2301-2311.
44. O'Reilly MS, Holmgren L, Shing Y, Chen C, Rosenthal RA, et al. (1994) Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell 79: 315-328.
45. Folkman J (2006) Antiangiogenesis in cancer therapy--endostatin and its mechanisms of action. Exp Cell Res 312: 594-607.
46. Abdollahi A, Hahnfeldt P, Maercker C, Grone HJ, Debus J, et al. (2004) Endostatin's antiangiogenic signaling network. Mol Cell 13: 649-663.
47. Cosgrove D, Rodgers K, Meehan D, Miller C, Bovard K, et al. (2000) Integrin alpha1beta1 and transforming growth factor-beta1 play distinct roles in alport glomerular pathogenesis and serve as dual targets for metabolic therapy. Am J Pathol 157: 1649-1659.
48. Varner JA, Cheresh DA (1996) Tumor angiogenesis and the role of vascular cell integrin alphavbeta3. Important Adv Oncol: 69-87.
49. Eliceiri BP, Klemke R, Stromblad S, Cheresh DA (1998) Integrin alphavbeta3 requirement for sustained mitogen-activated protein kinase activity during angiogenesis. J Cell Biol 140: 1255-1263.
50. Terai Y, Abe M, Miyamoto K, Koike M, Yamasaki M, et al. (2001) Vascular smooth muscle cell growth-promoting factor/F-spondin inhibits angiogenesis via the blockade of integrin alphavbeta3 on vascular endothelial cells. J Cell Physiol 188: 394-402.
51. Morikawa S, Baluk P, Kaidoh T, Haskell A, Jain RK, et al. (2002) Abnormalities in pericytes on blood vessels and endothelial sprouts in tumors. Am J Pathol 160: 985-1000.
52. Abramsson A, Lindblom P, Betsholtz C (2003) Endothelial and nonendothelial sources of PDGF-B regulate pericyte recruitment and influence vascular pattern formation in tumors. J Clin Invest 112: 1142-1151.
53. Sennino B, Falcon BL, McCauley D, Le T, McCauley T, et al. (2007) Sequential loss of tumor vessel pericytes and endothelial cells after inhibition of platelet-derived growth factor B by selective aptamer AX102. Cancer Res 67: 7358-7367.
54. Fathers KE, Stone CM, Minhas K, Marriott JJ, Greenwood JD, et al. (2005) Heterogeneity of Tie2 expression in tumor microcirculation: influence of cancer type, implantation site, and response to therapy. Am J Pathol 167: 1753-1762.
55. Inai T, Mancuso M, Hashizume H, Baffert F, Haskell A, et al. (2004) Inhibition of vascular endothelial growth factor (VEGF) signaling in cancer causes loss of endothelial fenestrations, regression of tumor vessels, and appearance of basement membrane ghosts. Am J Pathol 165: 35-52.
56. Cao JG, Peng SP, Sun L, Li H, Wang L, et al. (2006) Vascular basement membrane-derived multifunctional peptide, a novel inhibitor of angiogenesis and tumor growth. Acta Biochim Biophys Sin (Shanghai) 38: 514-521.
57. Carbonell WS, Ansorge O, Sibson N, Muschel R (2009) The vascular basement membrane as "soil" in brain metastasis. PLoS One 4: e5857.
58. Nicosia RF (1998) What is the role of vascular endothelial growth factor-related molecules in tumor angiogenesis? Am J Pathol 153: 11-16.
59. Shpitz B, Gochberg S, Neufeld D, Grankin M, Buklan G, et al. (2003) Angiogenic switch in earliest stages of human colonic tumorigenesis. Anticancer Res 23: 5153-5157.
60. Ferrara N (2004) Vascular endothelial growth factor: basic science and clinical progress. Endocr Rev 25: 581-611.
61. Carmeliet P, Jain RK (2000) Angiogenesis in cancer and other diseases. Nature 407: 249-257.
62. Kamphaus GD, Colorado PC, Panka DJ, Hopfer H, Ramchandran R, et al. (2000) Canstatin, a novel matrix-derived inhibitor of angiogenesis and tumor growth. J Biol Chem 275: 1209-1215.
63. Colorado PC, Torre A, Kamphaus G, Maeshima Y, Hopfer H, et al. (2000) Anti-angiogenic cues from vascular basement membrane collagen. Cancer Res 60: 2520-2526.
64. Folkman J, Merler E, Abernathy C, Williams G (1971) Isolation of a tumor factor responsible for angiogenesis. J Exp Med 133: 275-288.
65. Ferrara N (2002) VEGF and the quest for tumour angiogenesis factors. Nat Rev Cancer 2: 795-803.
66. Cao Y, Ji RW, Davidson D, Schaller J, Marti D, et al. (1996) Kringle domains of human angiostatin. Characterization of the anti-proliferative activity on endothelial cells. J Biol Chem 271: 29461-29467.
67. Tanaka T, Cao Y, Folkman J, Fine HA (1998) Viral vector-targeted antiangiogenic gene therapy utilizing an angiostatin complementary DNA. Cancer Res 58: 3362-3369.
68. Cao Y, Cao R, Veitonmaki N (2002) Kringle structures and antiangiogenesis. Curr Med Chem Anticancer Agents 2: 667-681.
69. Cao Y, Chen A, An SS, Ji RW, Davidson D, et al. (1997) Kringle 5 of plasminogen is a novel inhibitor of endothelial cell growth. J Biol Chem 272: 22924-22928.
70. Galaup A, Magnon C, Rouffiac V, Opolon P, Opolon D, et al. (2005) Full kringles of plasminogen (aa 1-566) mediate complete regression of human MDA-MB-231 breast tumor xenografted in nude mice. Gene Ther 12: 831-842.
71. Schmitz V, Raskopf E, Gonzalez-Carmona MA, Vogt A, Rabe C, et al. (2007) Plasminogen fragment K1-5 improves survival in a murine hepatocellular carcinoma model. Gut 56: 271-278.
72. Veitonmaki N, Cao R, Wu LH, Moser TL, Li B, et al. (2004) Endothelial cell surface ATP synthase-triggered caspase-apoptotic pathway is essential for k1-5-induced antiangiogenesis. Cancer Res 64: 3679-3686.
73. Cao R, Wu HL, Veitonmaki N, Linden P, Farnebo J, et al. (1999) Suppression of angiogenesis and tumor growth by the inhibitor K1-5 generated by plasmin-mediated proteolysis. Proc Natl Acad Sci U S A 96: 5728-5733.
74. Wedge SR, Ogilvie DJ, Dukes M, Kendrew J, Chester R, et al. (2002) ZD6474 inhibits vascular endothelial growth factor signaling, angiogenesis, and tumor growth following oral administration. Cancer Res 62: 4645-4655.
75. Tonra JR, Deevi DS, Corcoran E, Li H, Wang S, et al. (2006) Synergistic antitumor effects of combined epidermal growth factor receptor and vascular endothelial growth factor receptor-2 targeted therapy. Clin Cancer Res 12: 2197-2207.
76. Franco M, Man S, Chen L, Emmenegger U, Shaked Y, et al. (2006) Targeted anti-vascular endothelial growth factor receptor-2 therapy leads to short-term and long-term impairment of vascular function and increase in tumor hypoxia. Cancer Res 66: 3639-3648.
77. Gong H, Pottgen C, Stuben G, Havers W, Stuschke M, et al. (2003) Arginine deiminase and other antiangiogenic agents inhibit unfavorable neuroblastoma growth: potentiation by irradiation. Int J Cancer 106: 723-728.
78. Willett CG, Boucher Y, di Tomaso E, Duda DG, Munn LL, et al. (2004) Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects in human rectal cancer. Nat Med 10: 145-147.
79. Winkler F, Kozin SV, Tong RT, Chae SS, Booth MF, et al. (2004) Kinetics of vascular normalization by VEGFR2 blockade governs brain tumor response to radiation: role of oxygenation, angiopoietin-1, and matrix metalloproteinases. Cancer Cell 6: 553-563.
80. Jain RK (2005) Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307: 58-62.
81. Fukumura D, Jain RK (2007) Tumor microvasculature and microenvironment: targets for anti-angiogenesis and normalization. Microvasc Res 74: 72-84.
82. Harada H, Itasaka S, Zhu Y, Zeng L, Xie X, et al. (2009) Treatment regimen determines whether an HIF-1 inhibitor enhances or inhibits the effect of radiation therapy. Br J Cancer 100: 747-757.
83. Moeller BJ, Dewhirst MW (2006) HIF-1 and tumour radiosensitivity. Br J Cancer 95: 1-5.
84. Yasuda H (2008) Solid tumor physiology and hypoxia-induced chemo/radio-resistance: novel strategy for cancer therapy: nitric oxide donor as a therapeutic enhancer. Nitric Oxide 19: 205-216.
85. Vaupel P, Mayer A (2005) Hypoxia and anemia: effects on tumor biology and treatment resistance. Transfus Clin Biol 12: 5-10.
86. Wang Y, Saad M, Pakunlu RI, Khandare JJ, Garbuzenko OB, et al. (2008) Nonviral nanoscale-based delivery of antisense oligonucleotides targeted to hypoxia-inducible factor 1 alpha enhances the efficacy of chemotherapy in drug-resistant tumor. Clin Cancer Res 14: 3607-3616.
87. Semenza GL (2001) HIF-1 and mechanisms of hypoxia sensing. Curr Opin Cell Biol 13: 167-171.
88. Semenza GL (2001) HIF-1, O(2), and the 3 PHDs: how animal cells signal hypoxia to the nucleus. Cell 107: 1-3.
89. Jeong JW, Bae MK, Ahn MY, Kim SH, Sohn TK, et al. (2002) Regulation and destabilization of HIF-1alpha by ARD1-mediated acetylation. Cell 111: 709-720.
90. Zagzag D, Zhong H, Scalzitti JM, Laughner E, Simons JW, et al. (2000) Expression of hypoxia-inducible factor 1alpha in brain tumors: association with angiogenesis, invasion, and progression. Cancer 88: 2606-2618.
91. Forsythe JA, Jiang BH, Iyer NV, Agani F, Leung SW, et al. (1996) Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol Cell Biol 16: 4604-4613.
92. Hockel M, Schlenger K, Knoop C, Vaupel P (1991) Oxygenation of carcinomas of the uterine cervix: evaluation by computerized O2 tension measurements. Cancer Res 51: 6098-6102.
93. Sathornsumetee S, Cao Y, Marcello JE, Herndon JE, 2nd, McLendon RE, et al. (2008) Tumor angiogenic and hypoxic profiles predict radiographic response and survival in malignant astrocytoma patients treated with bevacizumab and irinotecan. J Clin Oncol 26: 271-278.
94. Industry BIoP (1977) Studies of active components of Ligusticum Wallichii Franch. I. Extraction, isolation and structure identification of tetramethylpyrazine. Chin Med J (Engl): 420-241.
95. Zou Y, Jiang W, Chiou GC (2007) Effect of tetramethylpyrazine on rat experimental choroidal neovascularization in vivo and endothelial cell cultures in vitro. Curr Eye Res 32: 71-75.
96. Chen SX, Wang LX, Xing LL (1997) [Effects of tetramethylpyrazine on platelet functions of advanced cases of lung carcinoma]. Zhongguo Zhong Xi Yi Jie He Za Zhi 17: 531-533.
97. Chen L, Lu Y, Wu JM, Xu B, Zhang LJ, et al. (2009) Ligustrazine inhibits B16F10 melanoma metastasis and suppresses angiogenesis induced by Vascular Endothelial Growth Factor. Biochem Biophys Res Commun 386: 374-379.
98. Shih YH, Wu SL, Chiou WF, Ku HH, Ko TL, et al. (2002) Protective effects of tetramethylpyrazine on kainate-induced excitotoxicity in hippocampal culture. Neuroreport 13: 515-519.
99. Fu YS, Lin YY, Chou SC, Tsai TH, Kao LS, et al. (2008) Tetramethylpyrazine inhibits activities of glioma cells and glutamate neuro-excitotoxicity: potential therapeutic application for treatment of gliomas. Neuro Oncol 10: 139-152.
100. Vaupel P, Kelleher DK, Hockel M (2001) Oxygen status of malignant tumors: pathogenesis of hypoxia and significance for tumor therapy. Semin Oncol 28: 29-35.
101. Yetkin FZ, Mendelsohn D (2002) Hypoxia imaging in brain tumors. Neuroimaging Clin N Am 12: 537-552.
102. Korkolopoulou P, Patsouris E, Konstantinidou AE, Pavlopoulos PM, Kavantzas N, et al. (2004) Hypoxia-inducible factor 1alpha/vascular endothelial growth factor axis in astrocytomas. Associations with microvessel morphometry, proliferation and prognosis. Neuropathol Appl Neurobiol 30: 267-278.
103. Cooney MM, van Heeckeren W, Bhakta S, Ortiz J, Remick SC (2006) Drug insight: vascular disrupting agents and angiogenesis--novel approaches for drug delivery. Nat Clin Pract Oncol 3: 682-692.
104. Martiny-Baron G, Marme D (1995) VEGF-mediated tumour angiogenesis: a new target for cancer therapy. Curr Opin Biotechnol 6: 675-680.
105. Marchand GS, Noiseux N, Tanguay JF, Sirois MG (2002) Blockade of in vivo VEGF-mediated angiogenesis by antisense gene therapy: role of Flk-1 and Flt-1 receptors. Am J Physiol Heart Circ Physiol 282: H194-204.
106. Horiuchi A, Imai T, Shimizu M, Oka K, Wang C, et al. (2002) Hypoxia-induced changes in the expression of VEGF, HIF-1 alpha and cell cycle-related molecules in ovarian cancer cells. Anticancer Res 22: 2697-2702.
107. Driessen A, Landuyt W, Pastorekova S, Moons J, Goethals L, et al. (2006) Expression of carbonic anhydrase IX (CA IX), a hypoxia-related protein, rather than vascular-endothelial growth factor (VEGF), a pro-angiogenic factor, correlates with an extremely poor prognosis in esophageal and gastric adenocarcinomas. Ann Surg 243: 334-340.
108. Zagzag D, Lukyanov Y, Lan L, Ali MA, Esencay M, et al. (2006) Hypoxia-inducible factor 1 and VEGF upregulate CXCR4 in glioblastoma: implications for angiogenesis and glioma cell invasion. Lab Invest 86: 1221-1232.
109. Raleigh JA, Calkins-Adams DP, Rinker LH, Ballenger CA, Weissler MC, et al. (1998) Hypoxia and vascular endothelial growth factor expression in human squamous cell carcinomas using pimonidazole as a hypoxia marker. Cancer Res 58: 3765-3768.
110. Du R, Lu KV, Petritsch C, Liu P, Ganss R, et al. (2008) HIF1alpha induces the recruitment of bone marrow-derived vascular modulatory cells to regulate tumor angiogenesis and invasion. Cancer Cell 13: 206-220.
111. Kaur B, Khwaja FW, Severson EA, Matheny SL, Brat DJ, et al. (2005) Hypoxia and the hypoxia-inducible-factor pathway in glioma growth and angiogenesis. Neuro Oncol 7: 134-153.
112. Folkman J, Kalluri R (2004) Cancer without disease. Nature 427: 787.
113. Matsumoto T, Claesson-Welsh L (2001) VEGF receptor signal transduction. Sci STKE 2001: re21.
114. Robinson SD, Reynolds LE, Kostourou V, Reynolds AR, da Silva RG, et al. (2009) Alphav beta3 integrin limits the contribution of neuropilin-1 to vascular endothelial growth factor-induced angiogenesis. J Biol Chem 284: 33966-33981.
115. Gerhardt H, Golding M, Fruttiger M, Ruhrberg C, Lundkvist A, et al. (2003) VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J Cell Biol 161: 1163-1177.
116. Sawamiphak S, Seidel S, Essmann CL, Wilkinson GA, Pitulescu ME, et al. (2010) Ephrin-B2 regulates VEGFR2 function in developmental and tumour angiogenesis. Nature 465: 487-491.
117. Budd S, Byfield G, Martiniuk D, Geisen P, Hartnett ME (2009) Reduction in endothelial tip cell filopodia corresponds to reduced intravitreous but not intraretinal vascularization in a model of ROP. Exp Eye Res 89: 718-727.
118. Miller JC, Pien HH, Sahani D, Sorensen AG, Thrall JH (2005) Imaging angiogenesis: applications and potential for drug development. J Natl Cancer Inst 97: 172-187.
119. Rosen L (2000) Antiangiogenic strategies and agents in clinical trials. Oncologist 5 Suppl 1: 20-27.
120. Anderson H, Price P, Blomley M, Leach MO, Workman P (2001) Measuring changes in human tumour vasculature in response to therapy using functional imaging techniques. Br J Cancer 85: 1085-1093.
121. McDonald DM, Choyke PL (2003) Imaging of angiogenesis: from microscope to clinic. Nat Med 9: 713-725.
122. Kozin SV, Winkler F, Garkavtsev I, Hicklin DJ, Jain RK, et al. (2007) Human tumor xenografts recurring after radiotherapy are more sensitive to anti-vascular endothelial growth factor receptor-2 treatment than treatment-naive tumors. Cancer Res 67: 5076-5082.
123. Tong RT, Boucher Y, Kozin SV, Winkler F, Hicklin DJ, et al. (2004) Vascular normalization by vascular endothelial growth factor receptor 2 blockade induces a pressure gradient across the vasculature and improves drug penetration in tumors. Cancer Res 64: 3731-3736.
124. Lee CG, Heijn M, di Tomaso E, Griffon-Etienne G, Ancukiewicz M, et al. (2000) Anti-Vascular endothelial growth factor treatment augments tumor radiation response under normoxic or hypoxic conditions. Cancer Res 60: 5565-5570.
125. Klement G, Baruchel S, Rak J, Man S, Clark K, et al. (2000) Continuous low-dose therapy with vinblastine and VEGF receptor-2 antibody induces sustained tumor regression without overt toxicity. J Clin Invest 105: R15-24.
126. Shusterman S, Grupp SA, Maris JM (2000) Inhibition of tumor growth in a human neuroblastoma xenograft model with TNP-470. Med Pediatr Oncol 35: 673-676.
127. Yasuda C, Sakata S, Kakinoki S, Takeyama Y, Ohyanagi H, et al. (2010) In vivo evaluation of microspheres containing the angiogenesis inhibitor, TNP-470, and the metastasis suppression with liver metastatic model implanted neuroblastoma. Pathophysiology 17: 149-155.

註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔