(3.239.33.139) 您好!臺灣時間:2021/03/05 17:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李曉茜
研究生(外文):Hsiao-Chien Lee
論文名稱:休息狀態及工作記憶狀態之間功能性連結的重整
論文名稱(外文):Reallocation of Functional Connectivity Between the Resting State and the Working Memory state
指導教授:吳育德
指導教授(外文):Yu-Te Wu
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:腦科學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:53
中文關鍵詞:功能性磁振造影圖論功能性連結資源重整
外文關鍵詞:fMRIgraph theoryfunctional connectivityresource reallocation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:251
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
背景:在功能性磁振造影的研究中,休息狀態時的去活化區域被認為是個『預設模式網路』,這種去活化現象被認為是一種資源的重整,以便大腦能將資源分布給所需的工作利用。而在功能性連結的研究上,低頻率的自發性內部同步波動代表著功能性連結,而研究顯示有許多功能的網路連結存在於休息狀態的腦內,包含運動網路、視覺網路、工作記憶網路、預設網路等等。這些網路被視為是一個功能性連結的基態,會因為不同的工作而改變,因此我們將此改變視為功能性連結的資源重整。
目標與假設:我們希望能探討休息狀態和工作記憶作業狀態的功能性連結改變及資源重整的方式。我們假設休息狀態的基態網路中,當一個工作記憶執行時,工作記憶網路的連結會上升,其它功能的網路連結會下降。並用圖論參數來量化資源重分配的方式。
資料與方法:三十位受試者皆接受休息狀態及工作記憶狀態的功能性磁振造影掃描,利用時頻交互訊息法以及多對一連結等級計算,用配對t 檢定檢測每個腦區在兩個狀態下的改變。再將連結等級在工作記憶狀態下有顯著上升的腦區當做工作記憶子網路,而在工作記憶狀態下有顯著下降的腦區當做休息狀態子網路,用圖論參數檢定兩個子網路在兩種狀態下變化的情形。
結果:後扣帶腦皮質等二十區在休息狀態的連結等級顯著的大於工作記憶狀態,而另外有額中葉等二十一區則完全相反。在全腦的圖論參數比較顯示,工作記憶狀態和休息狀態的連結沒有差別。但在子網路的比較時發現,工作記憶子網路在工作記憶時連結數、連結強度、連結群聚度及連結效率都比在休息狀態時高,而休息狀態子網路在休息狀態時,連結數、連結強度,連結群聚度及連結效率都比在工作記憶時高。
結論:此結果證實了工作記憶網路在工作記憶時功能連結等級會上升,而運動、視覺等其它基態網路則因資源重分配導致功能連結等級比休息狀態時下降。我們可以用圖論參數了解,這樣的資源調整是使工作區域的網路連結數上升、連結強度增加、連結群聚度上升及連結效率增強以支援所需工作,而其他區域則以連結數下降、連結強度減弱、連結群聚度下降及效率下降來平衡腦內的資源利用。
Background: In the functional magnetic resonance imaging (fMRI) studies, ‘Default Mode Network’ deactivated because of reallocation of processing resource for accomplishing a goal-directed task. Many studies related to functional connectivity have demonstrated that the low-frequency spontaneous fluctuation coherence in the resting brain may exhibit many functional networks such as motor network, visual network, default mode network and working-memory network. The functional connectivity in the resting state can be considered as baseline connectivity, and it modulates during performing a task. This motivates us to consider the modulation of functional connectivity as reallocation of processing resource.
Hypothesis and Aim: We hypothesize that the brain requires reallocation of processing resources while the brain changes the state form resting to performing a task. In specific, we hypothesize the stronger functional connectivity strength, more functional connections, a more cliqueness network, or a more efficient network occurs so that more processing resources are recruited from the resting state networks and transferred to the task-related network.
Materials and Methods: Thirty subjects performed both the resting-state and n-back tasks during the fMRI scans. After the analysis of time-frequency cross-mutual-information and calculation of n-to-1 functional connectivity, we compared the functional connectivity between two states using the paired-t test. Regions with larger increase of functional connectivity during the working-memory state were referred to the working-memory subnet, and regions with larger increase of functional connectivity during the resting state were referred to the resting subnet. Topological properties in graph theory of both subnets were computed and compared in the resting and working-memory state.
Results: The bilateral posterior cingulate gyrus, bilateral calcarine fissure, bilateral cuneus, bilateral superior occipital gyrus, left inferior occipital gyrus, left middle occipital gyrus, bilateral paracentral lobule, bilateral precentral gyrus, bilateral postcentral gyrus, right thalamus, right rolandic operculum, right fusiform gyrus, and right insula manifested a significantly larger connectivity degree in the resting state than that in the working-memory state. On the contrary, The bilateral median cingulate cortex, left insula, left superior parietal gyrus, right superior temporal gyrus, left rolandic operculum, bilateral middle frontal gyrus, left inferior parietal gyrus, left inferior frontal gyrus_opercular pole, left fusiform gyrus, right supplementary motor area, left superior temporal gyrus_temporal pole, bilateral inferior frontal gyrus_triangular pole, bilateral amygdala, bilateral hippocampus, and bilateral superior frontal gyrus presented a significantly larger connectivity degree during the working-memory state. Although the topological properties of whole brain between two states had no significant differences, the degree, strength, clustering coefficient, and global efficiency were larger for the working-memory subnet in the working-memory state, and that were larger for the resting subnet in the resting state.
Conclusions: The results demonstrated that in the working-memory state, the working-memory network recruited processing resources from motor network, visual network, and default mode network by increasing the connection number, connection strength, and rearranging the connection pattern to increase the efficiency.

論文電子檔著作權授權書…………………………………………………………………Ⅰ
論文審定同意書……………………………………………………………………………Ⅱ
誌謝…………………………………………………………………………………………Ⅲ
中文摘要……………………………………………………………………………………Ⅳ
英文摘要……………………………………………………………………………………Ⅴ
目錄…………………………………………………………………………………………Ⅶ
圖目錄………………………………………………………………………………………XI
表目錄………………………………………………………………………………………VII
第一章 前言…………………………………………………………………………… -1-
第一節 功能性特化及整合………………………………………………………… -2-
第二節 休息狀態相關研究………………………………………………………… -3-
第三節 工作記憶相關研究………………………………………………………… -4-
第三節 假設及目標………………………………………………………………… -4-
第二章 材料與方法 …………………………………………………………………… -6-
第一節  材料 …………………………………………………………………… -7-
第二節  實驗設計 ……………………………………………………………… -7-
第三節  取像方法 ……………………………………………………………… -8-
第四節 影像前處理 …………………………………………………………… -8-
第五節 解剖分區 ……………………………………………………………… -8-
第六節 時頻互訊息法 ………………………………………………………… -9-
第七節 全腦圖論分析 ………………………………………………………… -11-
第八節 動態連結網路選取 …………………………………………………… -13-
第九節 動態網路功能性連結強度分析 ……………………………………… -13-
第十節 子網路圖論分析 ……………………………………………………… -14-
第三章 結果…………………………………………………………………………… -15-
第一節  全腦圖論參數比較 …………………………………………………… -16-
第二節  選取的動態連結網路 ………………………………………………… -16-
第三節  兩狀態功能性連結強度調節 ………………………………………… -16-
第四節  子網路圖論參數比較 ………………………………………………… -17-
第四章 討論…………………………………………………………………………… -18-
第一節  腦內網路調節 ………………………………………………………… -19-
第二節  功能性連節強度排行 ………………………………………………… -21-
第三節  資源重整 ……………………………………………………………… -21-
第四節  時頻互訊息法的特性 ………………………………………………… -22-
第五章 結論…………………………………………………………………………… -23-
參考文獻………………………………………………………………………………… -25-

1. Karl J. Friston JTA, Stefan J, Kiebel, Thomas E. Nichols, William D. Penny: Statistical Parametric Mapping 2006.
2. Baumgartner G, Creutzfeldt O, Schoen L: [Reaction of single neurons of the sensory motor cortex after electrical stimulation. I. Inhibition and excitation after direct and contralateral single stimulation.]. Arch Psychiatr Nervenkr Z Gesamte Neurol Psychiatr. 1956, 194:597-619.
3. Channon S, Crawford S: Mentalising and social problem-solving after brain injury. Neuropsychol Rehabil:1-21.
4. Seiyama A, Seki J, Tanabe HC, et al.: Circulatory basis of fMRI signals: relationship between changes in the hemodynamic parameters and BOLD signal intensity. Neuroimage. 2004, 21:1204-1214.
5. Rogers BP, Morgan VL, Newton AT, Gore JC: Assessing functional connectivity in the human brain by fMRI. Magn Reson Imaging. 2007, 25:1347-1357.
6. Damoiseaux JS, Rombouts SA, Barkhof F, et al.: Consistent resting-state networks across healthy subjects. Proc Natl Acad Sci U S A. 2006, 103:13848-13853.
7. Cordes D, Haughton VM, Arfanakis K, et al.: Mapping functionally related regions of brain with functional connectivity MR imaging. AJNR Am J Neuroradiol. 2000, 21:1636-1644.
8. Biswal B, Yetkin FZ, Haughton VM, Hyde JS: Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med. 1995, 34:537-541.
9. De Luca M, Beckmann CF, De Stefano N, Matthews PM, Smith SM: fMRI resting state networks define distinct modes of long-distance interactions in the human brain. Neuroimage. 2006, 29:1359-1367.
10. Mantini D, Perrucci MG, Del Gratta C, Romani GL, Corbetta M: Electrophysiological signatures of resting state networks in the human brain. Proc Natl Acad Sci U S A. 2007, 104:13170-13175.
11. Anand A, Li Y, Wang Y, et al.: Activity and connectivity of brain mood regulating circuit in depression: a functional magnetic resonance study. Biol Psychiatry. 2005, 57:1079-1088.
12. Yu C, Liu Y, Li J, et al.: Altered functional connectivity of primary visual cortex in early blindness. Hum Brain Mapp. 2008, 29:533-543.
13. Hampson M, Peterson BS, Skudlarski P, Gatenby JC, Gore JC: Detection of functional connectivity using temporal correlations in MR images. Hum Brain Mapp. 2002, 15:247-262.
14. D'Esposito M: From cognitive to neural models of working memory. Philos Trans R Soc Lond B Biol Sci. 2007, 362:761-772.
15. Buckner RL, Andrews-Hanna JR, Schacter DL: The brain's default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci. 2008, 1124:1-38.
16. Pyka M, Beckmann CF, Schoning S, et al.: Impact of working memory load on FMRI resting state pattern in subsequent resting phases. PLoS One. 2009, 4:e7198.
17. Jansma JM, Ramsey NF, de Zwart JA, van Gelderen P, Duyn JH: fMRI study of effort and information processing in a working memory task. Hum Brain Mapp. 2007, 28:431-440.
18. Persson J, Lustig C, Nelson JK, Reuter-Lorenz PA: Age differences in deactivation: a link to cognitive control? J Cogn Neurosci. 2007, 19:1021-1032.
19. Cordes D, Haughton VM, Arfanakis K, et al.: Frequencies contributing to functional connectivity in the cerebral cortex in "resting-state" data. AJNR Am J Neuroradiol. 2001, 22:1326-1333.
20. Fox MD, Corbetta M, Snyder AZ, Vincent JL, Raichle ME: Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems. Proc Natl Acad Sci U S A. 2006, 103:10046-10051.
21. Vincent JL, Snyder AZ, Fox MD, et al.: Coherent spontaneous activity identifies a hippocampal-parietal memory network. J Neurophysiol. 2006, 96:3517-3531.
22. Treserras S, Boulanouar K, Conchou F, et al.: Transition from rest to movement: brain correlates revealed by functional connectivity. Neuroimage. 2009, 48:207-216.
23. Jiang T, He Y, Zang Y, Weng X: Modulation of functional connectivity during the resting state and the motor task. Hum Brain Mapp. 2004, 22:63-71.
24. Fox MD, Snyder AZ, Vincent JL, et al.: The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci U S A. 2005, 102:9673-9678.
25. Baddeley A: Working memory: looking back and looking forward. Nat Rev Neurosci. 2003, 4:829-839.
26. Smith EE, Jonides J: Neuroimaging analyses of human working memory. Proc Natl Acad Sci U S A. 1998, 95:12061-12068.
27. Owen AM, McMillan KM, Laird AR, Bullmore E: N-back working memory paradigm: a meta-analysis of normative functional neuroimaging studies. Hum Brain Mapp. 2005, 25:46-59.
28. Smith EE, Jonides J, Marshuetz C, Koeppe RA: Components of verbal working memory: evidence from neuroimaging. Proc Natl Acad Sci U S A. 1998, 95:876-882.
29. Woodward TS, Cairo TA, Ruff CC, et al.: Functional connectivity reveals load dependent neural systems underlying encoding and maintenance in verbal working memory. Neuroscience. 2006, 139:317-325.
30. Achard S, Salvador R, Whitcher B, Suckling J, Bullmore E: A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. J Neurosci. 2006, 26:63-72.
31. Liu Y, Liang M, Zhou Y, et al.: Disrupted small-world networks in schizophrenia. Brain. 2008, 131:945-961.
32. Watts DJ, Strogatz SH: Collective dynamics of 'small-world' networks. Nature. 1998, 393:440-442.
33. Laughlin SB, Sejnowski TJ: Communication in neuronal networks. Science. 2003, 301:1870-1874.
34. Alemán-Gómez Y. M-GL, Valdés-Hernandez. P. : IBASPM: Toolbox for automatic parcellation of brain structures . the 12th Annual Meeting of the Organization for Human Brain Mapping. 2006, 27.
35. Salvador R, Suckling J, Schwarzbauer C, Bullmore E: Undirected graphs of frequency-dependent functional connectivity in whole brain networks. Philos Trans R Soc Lond B Biol Sci. 2005, 360:937-946.
36. Chen CC, Hsieh JC, Wu YZ, et al.: Mutual-information-based approach for neural connectivity during self-paced finger lifting task. Hum Brain Mapp. 2008, 29:265-280.
37. CE. S: A mathematical theory of communication. The Bell System Technical Journal. 1948, 27:379-423.
38. Sons JW: Elements of Information Theory.
39. C. Studholme DLGH, and D.J. Hawkes: an overlap invariant entropy measure of 3D medical image alignment. pattern recognition. 1999, 32:71-86.
40. Achard S, Bullmore E: Efficiency and cost of economical brain functional networks. PLoS Comput Biol. 2007, 3:e17.
41. Liao W, Zhang Z, Pan Z, et al.: Altered functional connectivity and small-world in mesial temporal lobe epilepsy. PLoS One, 5:e8525.
42. Lopez L SM: relation between structure and size in social networks. phys Rev E. 2002, 65:036107.
43. Jonides J, Schumacher EH, Smith EE, et al.: The role of parietal cortex in verbal working memory. J Neurosci. 1998, 18:5026-5034.
44. Hopfinger JB, Buonocore MH, Mangun GR: The neural mechanisms of top-down attentional control. Nat Neurosci. 2000, 3:284-291.
45. Greicius MD, Krasnow B, Reiss AL, Menon V: Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci U S A. 2003, 100:253-258.
46. Pastor J, Lafon M, Trave-Massuyes L, et al.: Information processing in large-scale cerebral networks: the causal connectivity approach. Biol Cybern. 2000, 82:49-59.
47. Bassett DS, Bullmore E: Small-world brain networks. Neuroscientist. 2006, 12:512-523.
48. David O, Cosmelli D, Friston KJ: Evaluation of different measures of functional connectivity using a neural mass model. Neuroimage. 2004, 21:659-673.
49. Koch C, Segev I: The role of single neurons in information processing. Nat Neurosci. 2000, 3 Suppl:1171-1177.



連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔