跳到主要內容

臺灣博碩士論文加值系統

(44.211.117.197) 您好!臺灣時間:2024/05/27 04:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:曹道恒
研究生(外文):Tiao-Heng Tsao
論文名稱:量子點硒化鎘製備及光電轉換應用研究
論文名稱(外文):CdSe quantum dots for photoelectric convenction
指導教授:王健聰王健聰引用關係
指導教授(外文):Chien-Tsung Wang
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:化學工程與材料工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:45
中文關鍵詞:太陽能電池硒化鎘量子點
外文關鍵詞:CdSeSolar cellQuantum dot
相關次數:
  • 被引用被引用:0
  • 點閱點閱:470
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文以研究Ⅱ-Ⅵ 族半導體硒化鎘(CdSe)量子點的合成反應、光學性質和結構為主,並探討其合成反應時對於光學性質、晶體結構、電子能階的影響;從紫外光-可見光吸收光譜圖和光激發光光譜圖、X-射線繞射圖譜、高解析穿透式電子顯微鏡照片、高解析電子能譜儀來了解CdSe奈米晶粒的光學性質及其結構。
以熱解法來製備CdSe結構之量子點、在相同的反應溫度下,利用反應時間的長短來合成不同粒徑的CdSe量子點和反應動力學控制合成時的Cd/Se 原子數比,並且經由不同時間的成核和成長機制來達到粒徑分佈均勻。
光學性質方面,CdSe量子點均呈現量子限量化效應,即表示隨著粒子尺寸的增加,能隙(energy gap)變小,在光吸收和光激發圖譜中有紅位移(red shift)現象,此外,藉由紫外光-可見光吸收光譜圖,利用公式估算粒徑大小與光激發光光譜圖觀察CdSe量子點發光量子效率(quantum yield)的測量上。
在結構性質方面,CdSe 量子點為wurtzite 結構,屬於六方最密堆積,從X-射線繞射圖譜觀察,與理論值相符,隨著成長時間改變,晶型結構也隨之成長改變。在高解析穿透式電子顯微鏡方面,針對不同反應時間的CdSe 量子點,從圖中比例,隨著反應時間CdSe 量子點在粒徑與形狀都有明顯的改變,其晶格間距都與X-射線繞射圖譜大約符合。在高解析電子能譜方面,可觀察到不同反應CdSe 量子點,表面狀態的改變和元素比例的變化。
製作簡易且低成本的CdSe-TiO2電極。利用二氧化鈦的高表面積有助於吸附CdSe奈米微粒,提高光電轉換效率;使用三極式電化學裝置進行量測與探討CdSe-TiO2電極的光電流轉換效率(IPCE)、電流-電位特性與元件之內建電阻,應用於太陽能電池上。
This paper is to study in II-VI semiconductor cadmium selenide (CdSe) quantum dot synthesis, optical properties and structure-based, and to explore the reaction time for the optical properties, crystal structure, the impact of electronic energy bands; from UV - visible light absorption spectra, and excitation photoelectron spectra, X-ray diffraction patterns, high resolution transmission electron microscope, high resolution electron spectroscopy to understand the optical properties of CdSe nanocrystals. To pyrolysis to prepare CdSe quantum dot structures, in the same temperature, using the reaction time to synthesize CdSe quantum dots of different size and dynamics are the synthesis of
Cd / Se atomic ratio, and by different time of nucleation and growth mechanisms to achieve the particle size distribution.
Optical properties, CdSe quantum dots were present limit of the quantum effect, it means that as the particle size increases, the energy gap (energy gap) become smaller, in the light absorption and excitation patterns in the red shift (red shift) phenomenon, in addition, by UV - visible absorption spectra, using the formula estimating the particle size and optical observation of excited photoelectron spectra of CdSe quantum dot emission quantum efficiency (quantum yield) of the measurements.
Simple and low cost production of CdSe-TiO2 electrodes. Use of high surface area titanium dioxide adsorbed CdSe nanoparticles help improve the photoelectric conversion efficiency; use of three-pole measurements and electrochemical device of CdSe-TiO2 electrode photocurrent conversion efficiency (IPCE), the current - potential characteristics and components built-in resistance, used in solar cells.
中文摘要 ----------------------------------------------------------------------------- i
英文摘要 ----------------------------------------------------------------------------- ii
致謝 ----------------------------------------------------------------------------- iii
目錄 ----------------------------------------------------------------------------- iv
表目錄 ----------------------------------------------------------------------------- vi
圖目錄 ----------------------------------------------------------------------------- vii
一、 緒論----------------------------------------------------------------------- 1
1.1 概述----------------------------------------------------------------------- 1
1.2 研究動機與目的-------------------------------------------------------- 3
二、 文獻回顧----------------------------------------------------------------- 4
2.1 半導體量子點----------------------------------------------------------- 4
2.1-1 量子點簡介-------------------------------------------------------------- 4
2.1-2 量子侷限效應----------------------------------------------------------- 5
2.1-3 II-VI族化合物半導體------------------------------------------------ 6
2.2 硒化鎘量子點----------------------------------------------------------- 7
2.2-1 硒化鎘材料特性-------------------------------------------------------- 7
2.2-2 硒化鎘之反應合成----------------------------------------------------- 8
2.2-3 硒化鎘之表面修飾----------------------------------------------------- 8
2.2-4 硒化鎘形狀變化-------------------------------------------------------- 9
2.2-5 硒化鎘粒徑計算-------------------------------------------------------- 10
2.2-6 硒化鎘元素組成影響-------------------------------------------------- 11
2.3 半導體化學-------------------------------------------------------------- 12
2.3-1 能帶構造----------------------------------------------------------------- 12
2.4 染料敏化太陽能電池-------------------------------------------------- 14
2.4-1 DSSC工作原理--------------------------------------------------------- 14
2.4-2 量子點與氧化物半導體之能階搭配-------------------------------- 15
2.4-3 量子點應用在QDSSC 發展現況----------------------------------- 16
2.4-4 太陽能電池的特性分析----------------------------------------------- 17
三、 實驗方法----------------------------------------------------------------- 20
3.1 研究大綱----------------------------------------------------------------- 20
3.2 實驗藥品----------------------------------------------------------------- 20
3.3 實驗儀器----------------------------------------------------------------- 21
3.4 材料製備----------------------------------------------------------------- 21
3.5 材料結構鑑定----------------------------------------------------------- 21
四、 結果與討論-------------------------------------------------------------- 23
4.1 材料特徵分析----------------------------------------------------------- 23
4.1-1 光學特性----------------------------------------------------------------- 23
4.1-2 晶體特徵分析----------------------------------------------------------- 24
4.1-3 TEM結構鑑定---------------------------------------------------------- 25
4.1-4 元素組成與狀態分析-------------------------------------------------- 26
4.2 TiO2-CdSe 光電極評估---------------------------------------------- 27
4.2-1 ITO/TiO2 電極--------------------------------------------------------- 27
4.2-2 ITO/TiO2/MPA/CdSe 電極------------------------------------------ 29
4.2-3 ITO/TiO2/MPA/CdSe 光電轉換特性------------------------------ 29
4.2-4 ITO/TiO2/MPA/CdSe光電流與電壓特性曲線分析------------- 30
4.2-5 ITO/TiO2/MPA/CdSe元件之內建電阻---------------------------- 32
五、 結論----------------------------------------------------------------------- 33
參考文獻 ----------------------------------------------------------------------------- 34
[1] http://mepopedia.com/forum/read.php?127,6293
[2] http://www.omdl.org.
[3] 莊嘉琛,“太陽能工程-太陽電池篇”, 全華出版社, (1997).
[4] B. O’Regan, M. Gr?鱸zel, Nature, 353, 737, (1991).
[5] Martin A. Green1, Keith Emery, Yoshihiro Hishikawa and Wilhelm Warta, Photovolt, Res. Appl. 2008; 16:61–67.
[6] 馬遠榮, “低維奈米材料”, 科學發展382, 72 (2004).
[7] 陳光華, “奈米薄膜技術與應用”, 五南圖書出版股份有限公司, (2005).
[8] 鄭凱安, “量子點光電應用專利地圖及分析”, 行政院國家科學委員會科學技術資中心 (2003).
[9] Mackowski S, Prechtl G, Heiss W, Kyrychenko F V, Karczewski G, Kossut J Phys. Rev. B 69 205325 (2004).
[10] Kuo M C, Hsu J S, Shen J L, Chiu K C, Fan W C, Lin Y C, Chia C H, Chou W C, Yasar M, Mallory R, Petrou A, Luo H Appl. Phys. Lett. 89 263111 (2006).
[11] Y. Wang and N. Herron, J. Phys. Chem. 95, 525 (1991).
[12] Yuh-Lang Lee, Chi-Hsiu Chang, Yu-Jen Shen, Applied Physics Letters, 90, (2007) 143517.
[13] R. Rossetti, J. L. Ellison, J. M. Gibson, L. E. Brus, J. Chem. Phys. 80, 4464 (1983).
[14] W. W. Yu and X. Peng, Angew. Chem. Int. Ed., 41, 2368(2002).
[15] Landholt-Boernstein (1982).
[16] M. A. Haase, J. Qiu, J. M. Depuyde, and H. Cheng, 59(11) (1991) 1272.
[17] Ben G. Streetman and Sanjay Banerjee. Prentice hall, 2000.
[18] Anusorn Kongkanand, Kevin Tvrdy, Kensuke Takechi, Masaru Kuno, and Prashant V. Kamat J. Am. Chem. Soc., 2008, 130 (12), 4007-4015.
[19] Peng Z A, Peng X. J. Am. Chem. Soc, 123:183 (2001) .
[20] Qu L, Peng Z A, Peng X. Nano Leter, 1:333 (2001) .
[21] Peng Z A, Peng X. J. Am. Chem. Soc, 124:343 (2002) .
[22] Stva´n Robel, Vaidyanathan Subramanian, Masaru Kuno, and Prashant V. Kamat, J. Am. Chem. Soc. 2006, 128, 2385-2393.
[23] Wei Wang, Sarbajit Banerjee, Shengguo Jia, Michael L. Steigerwald, and Irving P. Herman, Chem. Mater. 2007, 19, 2573-2580.
[24] L. E. Brus, J. Chem. Phys., 80(9), 4403-4409 (1984).
[25] A. D. Yoffe, Adv. Phys., 42(2), 173-266 (1993).
[26] W. William Yu, Lianhua Qu, Wenzhuo Guo, and Xiaogang Peng, Chem. Mater. 2003, 15, 2854-2860.
[27] Jacek Jasieniak and Paul Mulvaney, J. AM. CHEM. SOC. 2007, 129, 2841-2848.
[28] S. Wang, Fundamentals of Semiconductor Theory and Device Phtsics, Prentice hall (1989).
[29] A. L. Linsebigler, G. Lu, J. T. Yates, Chem. Rev. 95 (1995) 735.
[30] Coordination Chemistry Reviews 248 1455–1478, 2004.
[31] Michael Gr?鱸zel, Journal of Photochemistry and Photobiology C: Photochemistry Reviews 4 (2003) 145–153.
[32] M. Gr?鱸zel, Nature 414, 338 (2001).
[33] Prashant V. Kamat, J. Phys. Chem. C 2008, 112, 18737–18753.
[34] Y. Kang, D. Kim, Sol. Energy Mater. Sol. Cells 90 (2006) 166.
[35] D. Xi, H. Zhang, S. Furst, B. Chen, Q. Pei, J. Phys. Chem. C 112 (2008) 19765.
[36] L. Wang, Y. Liu, X. Jiang, D.H. Qin, Y. Cao, J. Phys. Chem. C 111 (2007) 9538.
[37] S. C. Lin, Y. L. Lee, C. H. Chang, Y. L. Shen and Y. M. Yang, Appl. Phys. Lett. 90, 143517 (2007).
[38] W.U. Huynh, J.J. Dittmer, A.P. Alivisatos, Science 295 (2002) 2425.
[39] O.H. Salinas, C. Lopez-Mata, H. Hu, M.E. Nicho, Sol. Energy Mater. Sol. Cells 90 (2006) 2421.
[40] J. Liu, T. Tanaka, K. Sivula, A.P. Alivisatos, J.M.J. Frechet, J. Am. Chem. Soc. 126 (2004) 6550.
[41] N.C. Greenham, X. Peng, A.P. Alivisatos, Phys. Rev. B 54 (1996) 17628.
[42]. I. Robel, V. Subramanian, M. Kuno and P. V. Kamat, J. Am. Chem. Soc. 128, 2385 (2006).
[43] Luther, J. M.; Law, M.; Beard, M. C.; Song, Q.; Reese, M. O. Ellingson, R. J.; Nozik, A. J. Nano Lett. 2008, 8, 3488.
[44] Koleilat, G. I.; Levina, L.; Shukla, H.; Myrskog, S. H.; Hinds, S.; Pattantyus-Abraham, A. G.; Sargent, E. H. ACS Nano 2008, 2, 833.
[45] Johnston, K. W.; Pattantyus-Abraham, A. G.; Clifford, J. P.; Myrskog, S. H.; Hoogland, S.; Shukla, H.; Klem, J. D.; Levina, L.; Sargent, E. H. Appl. Phys. Lett. 2008, 92, 122111.
[46] Fritz, K. P.; Guenes, S.; Luther, J.; Kumar, S.; Saricifitci, N. S.; Scholes, G. D. J. Photochem. Photobiol., A: Chem. 2008, 195, 39.
[47]V. D. Mihailetchi, P. W. M. Blom, J. C. Hummelen, M. T. Rispens , J.Appl, Phys, 94, 6849,(2003).
[48]C. J. Brabec, A. Cravino, D. Meissner, N. S. Sariciftci, T. Fromherz, M. T. Rispens, L. Sanchez, J. C. Hummelen, Adv. Fun. Mater., 11, 374,(2001).
[49] Liyuan Han , Naoki Koide,Yasuo Chiba, Ashraful Islam, Takehito Mitate, C. R. Chimie 9 (2006) 645–651.
[50] Liyuan Han, Naoki Koide,Yasuo Chiba, Takehito Mitate, Appl. Phys. Lett., Vol.84, (2004), 2433-2435.
[51] Murray, C. B.; Norris, D. J.; Bawendi, M. G. J. Am. Chem. Soc. 1993, 115, 8706-8715.
[52] Dmitri V. Talapin, Elena V. Shevchenko,nAndreas Kornowski, Nikolai Gaponik, Markus Haase,Andrey L. Rogach, and Horst Weller, Adv. Mater. 2001, 13, No. 24, December 17.
[53] W. William Yu, Lianhua Qu, Wenzhuo Guo, and Xiaogang Peng, Chem. Mater. 2003, 15, 2854-2860.
[54] Brus, L. E. J. Chem. Phys. 1984, 80, 4403-4409.
[55] Brus, L. E.; Rossetti, R. J. Chem. Phys. 1984, 80, 4464-4469.
[56] Robel, I.; Subramanian, V.; Kuno, M.; Kamat, P. V., J. Am. Chem. Soc. (2006), 128, 2385–2393.
[57] C. D. Wagner, Perkin-Elmer, MN, (1979).
[58] Himani Sharma , Shailesh N. Sharma , Sukhvir Singh , Ram Kishore Gurmeet Singh , S.M. Shivaprasad , Applied Surface Science 253 (2007) 5325–5333.
[59] N. C. Tansil, H.Xie, X.Gao, J. Phys. Chem. B 108 (2004) 16850.
[60] Anusorn Kongkanand, Kevin Tvrdy, Kensuke Takechi, Masaru Kuno, and
Prashant V. Kamat, J. AM. CHEM. SOC. 2008, 130, 4007-4015.
[61] Md. K. Nazeeruddin, R. Humphry-Baker, P. Liska, M. Gr?鱸zel, J. Phys. Chem. B 107, 8981 (2003).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top