(3.236.222.124) 您好!臺灣時間:2021/05/14 16:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:王涵生
研究生(外文):Wang, Han-Sheng
論文名稱:Al2O3及ZnO薄膜成長暨Mn摻雜ZnO特性之研究
論文名稱(外文):The Studies of ZnO /Al2O3 Thin Film Growth and Properties of Mn-doped ZnO
指導教授:謝輝煌謝輝煌引用關係
指導教授(外文):Hsieh, Hui-Huang
口試委員:牛寰李建階洪雪行
口試委員(外文):Niu, HuanLi, Chien-ChiehHung, Hseuh-Hsing
口試日期:2011-05-18
學位類別:碩士
校院名稱:國防大學理工學院
系所名稱:光電工程碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:77
中文關鍵詞:氧化鋅三氧化二鋁錳離子佈植氮離子佈植X-光繞射光譜X-光吸收光譜磁圓偏振
外文關鍵詞:ZnOAl2O3Mn ion implantationN ion implantationXRDXASMagnetic Circular Dichroism
相關次數:
  • 被引用被引用:0
  • 點閱點閱:197
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:16
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要分為兩個部分。第一部分使用熱蒸鍍法在Si(111)與ITO玻璃基板上成長ZnO/Al2O3薄膜,在Si(111)及ITO基板先鍍一層Al膜,送進高溫爐以O2退火製作Al2O3薄膜。使用氣相傳輸法(VPT, Vapor Phase Transport)來製成ZnO薄膜,醋酸鋅在高溫爐管內以O2 20%與N2 80%的混合氣體作為載流氣體,爐溫控制在300~500℃,製作ZnO薄膜,針對ZnO薄膜分別成長在Si(111)與ITO玻璃基板上及Al2O3作為緩衝層,比較其結構和性質。另外我們也試著以在醋酸鋅粉末混合特定比例Mn粉末,以氣相傳輸法製作(Zn0.95Mn0.05)O薄膜。第二部分使用離子佈植技術,共摻雜N及Mn離子於ZnO單晶塊材,N離子佈植劑量分為4 1016、5 1016和6 1016 ions / cm2,佈植能量為78keV,Mn離子佈植劑量2.8 1018 ions / cm2,佈植能量為249keV,在一大氣壓的氧環境下溫度以600℃退火1小時。量測X-光繞射和X-光吸收光譜,探討薄膜的品質與成長方向,並對摻雜過後的ZnO做結構分析。
XRD繞射圖譜證實Al2O3/Si(111)薄膜為具晶面指向性薄膜。從Zn L3-edge XAS光譜圖分析,成長溫度為400℃,隨後在O2環境下退火400℃1小時的薄膜具有與ZnO標準樣品相同的吸收峰,證實長成ZnO薄膜。從Mn K-edge XAS及Mn L3-edge XAS得知以氣相傳輸法成長之(Zn0.95Mn0.05)O薄膜吸收峰與MnO相同,證實Mn-O的鍵結存在。但尚無法判別是否為Mn取代Zn形成(Zn, Mn)O或是MnO及ZnO相分離的混合物。因磁圓偏振的吸收光譜訊噪比較差,導致無法判斷磁圓偏振訊號是否存在,樣品鐵磁性質尚無法確認。從Mn及N離子共同佈植的ZnO單晶XRD,在略低於(200)繞射峰角度出現另一個繞射峰,同時無雜相繞射峰存在。Mn K-edge XAS吸收光譜判斷Mn屬於+2價,樣品內為Mn-O鍵結。此2種實驗結果確定離子佈植樣品晶相為Mn及N取代之(Zn,Mn)(N,O)晶相。

There are two parts in this thesis. The first part, ZnO/Al2O3 thin films were deposited on Si(111) wafer and ITO glass substrates. Al2O3 thin films were made by annealing Al metal deposited film under O2 gas at temperature between 850-500 0C. Vapor Phase Transport (VPT) method was used to fabricate ZnO film in furnace. Zinc acetate dehydrate was used as basic evaporated source, the temperature of furnace temperature was controlled between 300-500 0C under 50cc/min carrying gas, which is a mixing of 20% O2 and 80% N2. The studies were to compare the difference between ZnO on substrates with and without Al2O3 buffer layer and different growth condition. We also try to grow (Zn0.95Mn0.05)O thin film by VPT using zinc acetate dehydrate and Mn mixing powder as evaporated source, the mixing ratio was determined to get atomic ratio 0.95:0.05 for Zn and Mn. The second part, nitrogen and manganese ions were co-doped into ZnO crystal by ion implantation. The doses of nitrogen ions are 4 1016, 5 1016 and 6 1016 ions / cm2, with incident energy 78 keV and the doses of manganese ions is 2.8 1018 ions / cm2 with incident energy 249 keV respectively, all samples were annealed at 600°C for 1 hour with 1 atm. O2 gas. The X-Ray diffraction and X-Ray absorption were used to study the property and quality for all of samples.
The crystal face oriented Al2O3(111)/ Si(111) thin films were proved by XRD. From the edge energy of Zn L3-edge XAS of samples is same with standard ZnO, the thin films grown at 400 oC following 400 oC annealing under O2 gas were identified as ZnO thin films. From the Mn K-edge XAS and L3-edge XAS of VPT deposited (Zn0.95Mn0.05)O samples, the Mn-O bonding was exist in thin film. It still not enough to prove the Mn-O bonding come from the substitution of Zn by Mn ion or from the phase separated MnO compound. The low signal/noise ratio caused the difficult to judge magnetic circular dichroism signal exist or not. The ferromagnetic property of samples was not proved. The XRD of Mn and N ion co-doping ZnO single crystal show the pure phases except the sublattice diffraction peak of (Zn, Mn)(N,O) structure found at low angle side of Zn(200) peak. The valence of Mn ion was proved to be 2+ that show the Mn-O bonding exist in thin films. Based on both XRD and Mn K-edge XAS results, the Mn and N substituted (Zn,Mn)(N,O) is the dominated phase of samples.

誌謝........................................................................II
摘要.......................................................................III
ABSTRACT.....................................................................V
目錄.......................................................................VII
表目錄.......................................................................X
圖目錄......................................................................XI
1.前言.......................................................................1
2.研究背景與動機.............................................................6
2.1 材料的結構與基本性質.....................................................6
2.1.1 氧化鋅(ZnO)............................................................6
2.1.2 三氧化二鋁(Al2O3)......................................................7
2.2 稀磁性半導體.............................................................9
2.2.1 居禮溫度(Curie Temperature)............................................9
2.2.2 尼爾溫度(Neel Temperature).............................................9
2.2.3 磁性物質的種類........................................................10
3.實驗原理..................................................................12
3.1鍍膜理論.................................................................12
3.1.1 鍍膜方法..............................................................12
3.1.2 沉積現象..............................................................13
3.1.3 薄膜的形成三種形式....................................................14
3.2 離子佈值的基礎..........................................................15
3.2.1 離子化................................................................16
3.2.2 阻滯機制..............................................................17
3.2.3 離子射程..............................................................19
3.2.4 晶格破壞及退火........................................................20
3.3 量測原理................................................................21
3.3.1 X-光繞射之基本理論....................................................21
3.3.2 X-光吸收光譜(XAS).....................................................23
3.3.2.1 吸收光譜基本原理....................................................23
3.3.2.2 X-光吸收近邊緣結構(XANES)...........................................24
4. 實驗設備及步驟......................................................28
4.1 實驗流程................................................................28
4.2 實驗設備................................................................29
4.2.1 真空熱蒸鍍系統........................................................29
4.2.2 熱退火系統(Furnace System)..........................................30
4.2.3 X-光繞射分析之實驗設備................................................32
4.2.4 X-光吸收近邊緣之實驗設備..............................................33
4.3 實驗步驟................................................................37
4.3.1 基板處理..............................................................37
4.3.2 熱蒸鍍及爐管氣相傳輸製作流程..........................................37
4.3.3 模擬離子佈值參數設定..................................................41
5.實驗結果與討論............................................................44
5.1 Al2O3與ZnO薄膜的特性分析................................................44
5.1.1 Al2O3成長在Si和ITO玻璃的XRD...........................................44
5.1.2 Al2O3成長在Si和ITO玻璃的電性分析......................................47
5.1.3 Al2O3成長在Si和ITO玻璃的XAS...........................................48
5.1.4 以不同成長參數製成ZnO薄膜的XAS........................................50
5.1.5 ZnO薄膜在不同基板上成長的XAS..........................................54
5.1.6 在真空環境下熱蒸鍍成長ZnO薄膜的XAS研究................................58
5.1.7 (Zn0.95Mn0.05)O薄膜XAS的研究..........................................59
5.1.8 光學顯微鏡的表面形貌..................................................63
5.2 Mn和N離子佈值ZnO單晶的結構與特性分析....................................68
5.2.1 Mn和N離子佈值ZnO單晶的XRD.............................................68
5.2.2 ZnO單晶離子佈值的XAS..................................................69
6.結論與後續研究展望........................................................72
參考文獻....................................................................74
自傳........................................................................77


[1] Ye, Z. Z., Zeng, Y. J., Lu, Y. F., Lin, S. S., Sun, L., Zhu, L. P., and Zhao, B. H., “Donor/acceptor Doping and Electrical Tailoring in ZnO Quantum Dots,” Applied Physics Letters, Vol. 91, pp. 112110, April, 2007.

[2] Ku, Ching-Shun, Huang, Jheng-Ming, Cheng, Ching-Yuan, Lin, Chih-Ming and Lee, Hsin-Yi, “Annealing Effect on the Optical Response and Interdiffusion of n-ZnO/p-Si(111) Heterojunction Grown by Atomic Layer Deposition,” Applied Physics Letters, Vol. 97, pp. 181915, April, 2010.

[3] Kumar, M., and Mehra, R. M., Wakahara, A., Ishida, M., and Yoshida, A., “Epitaxial Growth of High Quality ZnO: Al Film on Silicon with a Thin γ-Al2O3 Buffer Layer,” Applied Physics Letters, Vol. 93, pp. 3837-3843, April, 2003.
[4]Dietl, T., “Ferromagnetic semiconductors,” Semicond Science Techology, Vol. 17, pp. 377, 2002.

[5] Cheng, X. M., and Chien, C. L., “Magnetic Properties of Epitaxial Mn-Doped ZnO Thin Films,” Journal of Applied Physics, Vol. 93, pp. 7876-7878, May, 2003.
[6]Dietl, T., Ohno, H., and Matsukura, F., “Zener Model Description of Ferromagnetism in Zinc-Blende Magnetic Semiconductors,” Science, Vol. 287, pp. 1019-1022, 2000.

[7] Ohtomo, A., Tamura, K., Takahashi, K., Makino, T., Segawa, Y., Koinuma, H., and Kawasaki, M., “Single Crystalline ZnO Film Grown on Lattice-Matched ScAlMgO4(0001) Substrates,” Applied Physics Letters, Vol. 75, pp. 2635-2637, October, 1999.

[8] Wu, Ke-Yue, Fang, Qing-Qing, Wang, Wei-Na, Zhou, Chang, Huang, Wen-Juan, Li, Jim-Guang, Lv, Qing-Rong, Liu, Yan-Mei, Zhang, Qi-Ping and Zhang, Han-Ming, “Influence of Nitrogen on the Defects and Magnetism of ZnO:N Thin Films,” Journal of Applied Physics, Vol. 108, pp. 063530, September, 2010.

[9] Villars, P., and Calvert, L. D., Pearson’s Handbook of Crystallgraphic Data for Itermetallic Phases, American Society for Metals International, U.S.A., pp. 4795, 1985.

[10] Tardı´o, M., Ramı´rez, R., Gonza´lez, R., Chen, Y. and Kokta, M. R., “Photochromic Effect in Magnesium-doped α-Al2O3 Single Crystals,” Applied Physics Letters, Vol. 83, pp. 881-883, August, 2003.

[11] Merckling, C., El-Kazzi, M., Saint-Girons, G., Hollinger, G., Largeau, L., and Patriarche, G., “Growth of Cystalline γ-Al2O3 on Si by Molecular Beam Epitaxy : Influence of the Substrate Orientation,” Journal of Applied Physics, Vol. 102, pp. 024101, March, 2007.

[12] Robert, C., Moden Magnetic Materials : Principles and Applications, Wiley, New York, pp. 20-46, 1999.

[13] 衛泰宇,光學薄膜製鍍技術及應用,行政院國科會,台北,光電科技叢書27,第7-50頁,1998。

[14] http://elearning.stut.edu.tw/m_facture/Nanotech/Web/ch3.htm

[15] 田民波,薄膜技術與薄膜材料,五南圖書出版公司,台北,第230-258頁,2007。

[16] Xiao, Hong, Introduction to Semiconductor Manufacturing Technology, Prentice Hall, U.S.A., pp. 255-300, 2000.

[17] Cullity, B. D., and Srock, S. R., Elements of X-Ray Diffraction, Prentice Hall, U.S.A., pp. 19-122, 2001.

[18] Fowles, Grant R., Introduction to Modern Optics, Dover Publications, U.S.A., pp. 226-262, 1989.

[19] Chiou, J. W., Jan, J. C., Tsai, H. M., Bao, C. W., Ponga, W. F., Tsai, M. H., Klauser, R., and Lee, J. F., “Electronic Structure of ZnO Nanorods Studied by Angle-Dependent X-Ray Absorption Spectroscopy and Scanning Photoelectron Microscopy,” Applied Physics Letters, Vol.84, pp. 3462-3464, April, 2004.

[20] Pool, V. L., Klem, M. T., Holroyd, J., Harris, T., Arenholz, E., Young, M., Douglas, T., and Idzerda, Y. U., “Site Determination of Zn Doping in Protein Encapsulated ZnxFe3−xO4 Nanoparticles,” Journal of Applied Physics, Vol. 105, pp. 07B515, February, 2009.

[21] http://www.srrc.gov.tw/chi/about/index.html

[22] Lu, J. G., Ye, Z. Z., Huang, J. Y., Zhu L. P., and Zhao, B. H., “ZnO Quantum Dots Synthesized by a Vapor Phase Transport Process,” Applied Physics Letters, Vol. 88, pp. 063110, February, 2006.

[23] Song, J. E., and Kang, Y. S., “Synthesis of Indium Tin Oxide Nanoparticles and Application to Near IR-reflective Film,” Materials Research Society, Vol. 818, pp. 791-795, July, 2004.

[24] Won, Seok-Jun, Huh, M. S., Park, S., Suh, Sungin, Park T. J., Kim, J. H., Hwang,C. S., and Kim, H. J., “Capacitance and Interface Analysis of Transparent Analog Capacitor Using Indium Tin Oxide Electrodes and High-k Dielectrics,” Journal of The Electrochemical Society, Vol. 157, pp. G170-G175, May, 2010.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔