跳到主要內容

臺灣博碩士論文加值系統

(100.28.132.102) 您好!臺灣時間:2024/06/21 22:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張昌碩
研究生(外文):Chang, Chang-Shuo
論文名稱:無電鍍鎳磷基複合鍍層之製程發展及性質分析研究
論文名稱(外文):The Fabrication and Properties Analysis of Electroless Ni-P Based Composite Coatings
指導教授:侯光煦侯光煦引用關係
指導教授(外文):Hou, Kung-Hsu
口試委員:陳彥政白清源王高粱葛明德侯光煦
口試日期:2011-05-16
學位類別:碩士
校院名稱:國防大學理工學院
系所名稱:兵器系統工程碩士班
學門:軍警國防安全學門
學類:軍事學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:125
中文關鍵詞:Ni-P/Al2O3複合鍍層Ni-P/SiC複合鍍層無電複合鍍Ni-P基雙微粒複合鍍層
外文關鍵詞:Ni-P/Al2O3 composite coatingsNi-P, Ni-P/SiC composite coatingselectroless composite platingNi-P base dual-particles composite coatings
相關次數:
  • 被引用被引用:3
  • 點閱點閱:758
  • 評分評分:
  • 下載下載:205
  • 收藏至我的研究室書目清單書目收藏:0
Ni-P基複合鍍層因其優異的耐蝕性能、磨耗阻抗及接近均一的厚度,被廣泛運用於化學、機械、電子、車輛、紡織、航空、太空等工業。本研究以Ni-P鍍液系統,輔以次微米級SiC、奈米級Al2O3硬質微粒及自潤性PTFE微粒,以無電鍍方式發展Ni-P/PTFE-SiC及Ni-P/PTFE-Al2O3雙微粒複合鍍層,期於鍍層兼具硬質微粒之機械性質及自潤性微粒之磨潤特性。
研究首先探討界面活性劑輔助耐磨性微粒與Ni-P合金鍍層之沉積效能,再以離心沉降實驗評估界面活性劑濃度對微粒之懸浮性能。耐磨性鍍層製程操作參數係改變鍍液中微粒濃度及界面活性劑濃度,進行2因子、3水準之全因子實驗,鍍製Ni-P/SiC及Ni-P/Al2O3耐磨性複合鍍層,選擇高P含量、高硬度及高微粒含量之製程參數後於鍍液系統引入PTFE微粒,發展Ni-P/PTFE-SiC及Ni-P/PTFE-Al2O3雙微粒複合鍍層。
鍍層分析以SEM觀察鍍層表面形貌及微結構,以EDS檢測鍍層元素成份,EPMA分析鍍層元素分佈,並以XRD分析鍍層熱處理前後之晶相變化,機械性質測試以微硬度儀檢測鍍層微硬度,選擇較佳製程參數後覆鍍於磨耗試件(JIS FC 25 灰鑄鐵)上,再以往復式磨耗試驗機於乾摩擦環境下測試鍍層磨耗性質。
研究結果顯示界面活性劑CO890能有效幫助SiC及Al2O3微粒與Ni-P合金鍍層共沉積;鍍層內微粒含量隨著鍍液系統微粒濃度增加而增加;Ni-P合金鍍層與微粒共沉積後使得表面呈現球結形貌;雙微粒於鍍液系統中彼此可能產生干擾,導致鍍層內產生不均勻分佈;表面粗糙度隨著鍍層內微粒含量增加而增加。
Ni-P基複合鍍層未經熱處理前XRD分析結果為非晶相,經400°C、1小時熱處理後鍍層呈現結晶相,具最大硬度(N-P:776HV,N-P/SiC:1205HV,Ni-P/Al2O3:830 HV);磨潤性質顯示Ni-P/SiC及Ni-P/Al2O3複合鍍層摩擦係數最大(Ni-P/SiC:0.42804,Ni-P/Al2O3:0.47531),Ni-P/PTFE複合鍍層具最低摩擦係數(0.06112),Ni-P/PTFE-SiC及Ni-P/PTFE-Al2O3雙微粒複合鍍層摩擦係數界於單質硬質微粒鍍層及Ni-P/PTFE複合鍍層之間(Ni-P/PTFE-SiC:0.31296; Ni-P/PTFE-Al2O3:0.21664);磨耗軌跡方面,雙微粒複合鍍層亦展現極佳的磨耗阻抗,使得鍍層兼具耐磨耗及自潤滑性。

Ni-P based composite coatings with well corrosion resistance, excellent wear resistance and uniform coating thickness, have widely applied in the industries of chemistry, machinery, electronics, automotives, textiles, aviation and aerospace. In this research, the Ni-P plating system was introduced hard ceramic SiC and Al2O3 particles and self-lubrication PTFE particles, and electroless plating as the method of development of Ni-P/PTFE-SiC and Ni-P/PTFE-Al2O3 dual-particles composite coatings. It hoped that the Ni-P based dual-particles composite coatings exhibited both the mechanical properties of high-strength ceramic particles and tribological properties of self-lubrication particles.
It was first discussed that the surfactant assisted the deposition performance of ceramic particles in Ni-P alloy. Experimental design with 2 factors and 3 levels that included both the concentration of ceramic particles and surfactant was performed to develop Ni-P/SiC and Ni-P/Al2O3 composite coatings. The PTFE particles were introduced into plating system after evaluated the operation parameters of high phosphorus content, high hardness and high particle dispersion in coatings.
The morphology and microstructure of Ni-P based composite coatings were characterized using scanning electron microscopy (SEM). The elements content in coatings were detected by EDS. Elements dispersion of coatings were analyzed by EPMA. The phase transformation before and after heat-treatment was evaluated by XRD. The coating hardness was measured by micro-hardness tester. Dry wear tests were performed using a reciprocating type wear apparatus after estimated the optimal operation parameters and plated on the wear specimens that were made of cast iron.
The results indicated that the surfactant CO890 was effectively to assist SiC and Al2O3 particles co-deposition in Ni-P alloy. The morphology of Ni-P alloy deposited with ceramic particles showed the nodular structures with a rougher surface.
Dual-particles might produce some interference affection in plating system, resulting in the particles being non-uniformly distributed in the coatings. The greater the particles content in coatings increased, the greater the roughness on the top of the coatings increased.
The XRD analysis of Ni-P base composite coatings showed the amorphous phase before heat-treatment, and the crystalline phase transformed with the highest hardness (N-P:776HV,N-P/SiC:1205HV,Ni-P/Al2O3:830 HV) appeared after 400°C heat-treatment for 1 hour. Tribological properties of Ni-P based composite coatings indicated that Ni-P/SiC and Ni-P/Al2O3 composite coatings exhibited the highest friction coefficient (Ni-P/SiC:0.42804,Ni-P/Al2O3:0.47531). Ni-P/PTFE composite coatings exhibited the lowest friction coefficient (0.06112). By comparison with Ni-P, Ni-P/SiC and Ni-P/Al2O3 composite coatings, both of Ni-P/PTFE-SiC and Ni-P/PTFE-Al2O3 dual-particles composite coatings demonstrated the friction coefficient between single-hard and Ni-P/PTFE composite coatings (Ni-P/PTFE-SiC:0.31296; Ni-P/PTFE-Al2O3:0.21664). Bisides, the worn surfaces of Ni-P/PTFE-SiC and Ni-P/PTFE-Al2O3 dual-particles composite coatings were smoother than the other, and the edge of the worn surface did not show the worn out indication. Ni-P based dual-particles revealed both the performance of wear resistance and self-lubrication.

目錄

致謝 ii
摘要 iv
ABSTRACT vi
目錄 viii
表目錄 xii
圖目錄 xiii
1. 緒論 1
1.1 研究背景 1
1.2 研究目的 2
2. 文獻回顧 7
2.1 無電鍍原理 7
2.2 無電複合鍍技術 9
2.3 Ni-P基複合鍍層之性質 9
2.3.1 Ni-P鍍層 9
2.3.2 Ni-P基耐磨性複合鍍層 11
2.3.3 Ni-P基自潤性複合鍍層 14
2.3.4 Ni-P基雙微粒複合鍍層 16
2.4 操作參數對複合鍍層影響 17
3. 實驗方法 20
3.1 Ni-P鍍液系統之建置 27
3.2 施鍍基材之前處理 27
3.3 界面活性劑遴選實驗 27
3.4 離心沉降實驗 31
3.5 Ni-P基無電複合鍍層製程規劃 31
3.5.1 Ni-P/SiC與Ni-P/Al2O3無電複合鍍層製程 31
3.5.2 Ni-P/PTFE-SiC與Ni-P/PTFE-Al2O3雙微粒無電複合鍍層發展 32
3.6 鍍層分析及檢測 32
3.6.1 鍍層顯微結構形貌 32
3.6.2 EDS成分分析 32
3.6.2.1 Ni-P/SiC複合鍍層成份分析 32
3.6.2.2 Ni-P/Al2O3複合鍍層成份分析 33
3.6.3 EPMA成份分析 33
3.6.4 表面粗糙度 33
3.6.5 XRD分析 33
3.6.6 電化學分析 33
3.6.7 鍍層硬度測試 33
3.7 高溫熱處理 33
3.8 鍍層磨耗試驗 34
3.8.1 磨耗試件前處理 34
3.8.2 磨耗試件之鍍製 34
3.8.3 試件之後處理 34
3.8.4 鍍層磨耗試驗 34
3.8.5 磨耗行為分析 36
4. 結果與討論 37
4.1 界面活性劑對微粒沉積效能影響 37
4.1.1 界面活性劑對SiC微粒的沉積效能 37
4.1.2 界面活性劑對Al2O3微粒的沉積效能 40
4.1.3 微粒懸浮性能分析 42
4.2 操作參數對Ni-P基複合鍍層性質影響 46
4.2.1 Ni-P/SiC複合鍍層性質分析 46
4.2.1.1 Ni-P/SiC複合鍍層表面形貌及微粒含量 46
4.2.1.2 Ni-P/SiC複合鍍層P含量 50
4.2.1.3 Ni-P/SiC複合鍍層表面EPMA分析 52
4.2.1.4 Ni-P/SiC複合鍍層表面粗糙度 53
4.2.1.5 Ni-P/SiC複合鍍層XRD分析 57
4.2.2 Ni-P/Al2O3複合鍍層性質分析 57
4.2.2.1 Ni-P/Al2O3複合鍍層表面形貌及微粒含量 57
4.2.2.2 Ni-P/Al2O3複合鍍層P含量 62
4.2.2.3 Ni-P/Al2O3複合鍍層表面EPMA分析 64
4.2.2.4 Ni-P/Al2O3複合鍍層表面粗糙度 65
4.2.2.5 Ni-P/Al2O3複合鍍層XRD分析 68
4.2.3 Ni-P/PTFE-SiC雙微粒複合鍍層性質分析 68
4.2.3.1 Ni-P/PTFE-SiC雙微粒複合鍍層成份分析及表面形貌 68
4.2.3.2 Ni-P/PTFE-SiC雙微粒複合鍍層XRD分析 74
4.2.4 Ni-P/PTFE-Al2O3雙微粒複合鍍層性質分析 74
4.2.4.1 Ni-P/PTFE-SiC雙微粒複合鍍層成份分析及表面形貌 74
4.2.4.2 Ni-P/PTFE-Al2O3雙微粒複合鍍層XRD分析 80
4.2.5 小結 80
4.3 極化曲線分析 81
4.4 溫度對鍍層性質影響 84
4.4.1 鍍層XRD繞射分析及晶相變化 84
4.4.2 鍍層微硬度 88
4.5 Ni-P基複合鍍層於乾摩擦環境之磨耗性能 89
4.5.1 Ni-P基複合鍍層熱處理前之摩擦係數曲線 90
4.5.2 Ni-P基複合鍍層熱處理前之磨痕微觀結構 94
4.5.3 Ni-P基複合鍍層熱處理後之摩擦係數曲線 101
4.5.4 Ni-P基複合鍍層經400°C熱處理後之磨痕微觀結構 103
4.5.5 小結 107
5. 結論 108
參考文獻 111
論著發表 124
自傳 125


[1] Department of Defence, “System Engineering Fundamentals,” Defence Acquisition University Press, Chap. 1, pp. 3, 2001.
[2] 陳仲宜,莊允中,“前瞻奈米鍍膜技術與潛力市場探索”,經濟部技術處產業技術知識服務計畫(I),台北,第4-9頁,2004。
[3] Arthur, G., Birch, D. J., Michie, G. M., Moorhouse, P. T., Wells, C. and Bell, T., “Wear Resistant Surfaces in Engineering,” HMSO Publications Book, Chap. 2, pp.11, 1985.
[4] Williams, J. A., “Engine Tribology,” Oxford University Press, New York, USA, Chap. 2, pp.71, 1994.
[5] 柯賢文,“表面與薄膜處理技術”,全華圖書股份有限公司,台北,第7-7頁,2005。
[6] Watson, S. W., “Electrochemical Study of SiC Particle Occlusion during Nickel Electrodeposition,” Journal of the Electrochemical Society, Vol. 140, No. 8, pp. 2235-2237, 1993.
[7] Maner, A., Harsch, S., and Ehrfeld, W., “Mass Production of Microdevices with Extreme Aspect Ratios by Electroforming,” Plating and Surface Finishing, Vol. 113, No. 4, pp. 214, 1988.
[8] Chakravorty, K. K., Chien, C. P., Cech, J. M., Tanielian, M. H., and Young, P. L., “High-Density Interconnection Using Photosensitive Polyimide and Electroplated Copper Conductor Lines,” IEEE Transactions on Components. Hybrids, and Manufacturing Technology, Vol. 13, No. 1, pp. 200-206, 1990.
[9] Hessami, S. and Tobias, C. W., “A Mathematical Model for Anomalous Codeposition of Nickel-Iron on a Rotating Disk Electrode,” Journal of the Electrochemical Society, Vol. 136, No. 12, pp. 3611-3616, 1989.
[10] Socha, R. P., Nowak, P., Laajalehto, K., and Väyrynen, J., “Particle-Electrode Surface Interaction during Nickel Electrodeposition from Suspensions Containing SiC and SiO2 Particles,” Colloids and Surfaces A: Physicochem. Eng., Vol. 235, pp. 45-55, 2004.
[11] Panda, A. and Podlaha, E. J., “Nanoparticles to Improve Mass Transport Inside Deep Recesses,” Electrochemical and Solid-State Letters, Vol. 6, No. 11, pp. c149-c152, 2003.
[12] Li, X. and Li, Z, “Nano-Sized Si3N4 Reinforced NiFe Nanocomposites by Electroplating,” Materials Science and Engineering, Vol. A358, No. 1-2, pp. 107-113, 2003.
[13] Van Der Putten, A. M. T. and De Bakker, J. W. G., “Anisotropic Deposition of Electroless Nickel,” Journal of the Electrochemical Society, Vol. 140, No. 8, pp. 2229-2234, 1993.
[14] Watanabe, H. and Honma, H., “Fabrictation of Nickefl Microbump on Aluminum Using Electroless Nickel Plating,” Journal of the Electrochemical Society, Vol. 14, No. 42, pp. 471-476, 1997.
[15] Diamand, Y. S., “100nm Wide Copper Lines Made by Selective Electroless Deposition,” J. Micromech. Microeng, Vol. 1, pp. 66-72, 1991.
[16] Elansezhian, R., Ramamoorthy, B., and Kesavan Nair, P., “The Influence of SDS and CTAB Surfactants on the Surfacemorphology and Surface Topography of Electroless Ni–P deposits,” Journal of Materials Processing Technology, Vol. 209, pp. 233-240, 2009.
[17] Baskaran, I., Sankara Narayanan, T. S. N., and Stephen, A., “Effect of Accelerators and Stabilizers on the Formation and Characteristics of Electroless Ni-P Deposits,” Materials Chemistry and Physics, Vol. 99, pp. 117-126, 2006.
[18] Gao, J., Liu, L., Wu, Y., Shen, B., and Hu, W., “Electroless Ni-P-SiC Composite Coatings with Superfine Particles,” Surface and Coatings Technology, Vol. 200, pp. 5836-5842, 2006.
[19] Jeong, D. H., Erb, U., Aust, K. T., and Palumbo, G., “The relationship Between Hardness and Abrasive Wear Resistance of Electrodeposited Nanocrystalline Ni-P Coatings,” Scripta Materialia, Vol. 48, pp. 1067-1072, 2003.
[20] He, Y. D., Fu, H. F., Li, X. G., and Gao, W., “Microstructure and Properties of Mechanical Attrition Enhanced Electroless Ni-P Plating on Magnesium Alloy,” Scripta Materialia, Vol. 58, pp. 504-507, 2008.
[21] Jin, J. G., Lee, S. K., and Kim, Y. H., “Adhesion Improvement of Electroless Plated Ni Layer by Ultrasonic Agitation During Zincating Process,” Thin Solid Films, Vol. 466, pp. 272-278, 2004.
[22] Niwa, D., Takano, N., Yamada, T., and Osaka, T., “Nickel Electroless Deposition Process on Chemically Pretreated Si(100) Wafers in Aqueous Alkaline Solution,” Electrochimica Acta, Vol. 48, pp. 1295-1300, 2003.
[23] Henry, J. R., “Electroless (Autocatalytic) Plating,” Metal Finishing, Vol. 99, pp. 424-435, 2001.
[24] Sahoo, P. and Das, S. K., “Tribology of Electroless Nickel Coatings – A Review”, Materials and Design, Vol. 32, pp. 1760-1775, 2011.
[25] Agarwala, R. C. and Vijaya, A., “Electroless Alloy/Composite Coatings: A Review,” Sadhana, Vol. 28, pp. 475-493, 2003.
[26] Grosjean, A., Rezrazi, M., Takadoum, J., and Bercota, P., “Hardness, Friction and Wear Characteristics of Nickel-SiC Electroless Composite Deposits,” Surface and Coatings Technology, Vol. 137, pp. 92-96, 2001.
[27] Balaraju, J. N., Kalavati, and Rajam, K. S., “Influence of Particle Size on the Microstructure, Hardness and Corrosion Resistance of Electroless Ni-P-Al2O3 Composite Coatings,” Surface and Coatings Technology, Vol. 200, pp. 3933-3941, 2006.
[28] Ger, M. D. and Hwang, B. J., “Effect of Surfactants on Codeposition of PTFE Particles with Electroless Ni-P Coating,” Materials Chemistry and Physics, Vol. 76, pp. 38-45, 2002.
[29] Rudnik, E., Kokoszka, K., and Łapsa, J., “Comparative Studies on the Electroless Deposition of Ni-P, Co-P and Their Composites with SiC Particles,” Surface & Coatings Technology, Vol. 202, pp. 2584-2590, 2008.
[30] Alirezaei, S., Monirvaghefi, S. M., Salehi, M., and Saatchi, A., “Effect of Alumina Content on Surface Morphology and Hardness of Ni-P-Al2O3(α) Electroless Composite Coatings,” Surface and Coatings Technology, Vol. 184, pp. 170-175, 2004.
[31] Ger, M. D., Hou. K. H., Wang, L. M., and Hwang, B. J., “The Friction and Wear of Ni-P-PTFE Composite Deposits Under Water Lubrication,” Materials Chemistry and Physics, Vol. 77, pp. 755-764, 2002.
[32] Moonir-Vaghefi, S. M. and Saatchi, A., “The Effect of Agitation on Electroless Nickel-Phosphorus-Molybdenum Disulfide Composite Plating,” Metal Finishing, Vol. 95, pp. 102, 1997.
[33] Izzard, M. and Dennis, J. K., “Deposition and Properties of Electroless Nickel/Graphite Coatings,” Transactions of the Institute of Metal Finishing, Vol. 65, pp. 85-89, 1987.
[34] Chen, C. K., Feng, H. M., Lin, H. C., and Hon, M. H., “The Effect of Heat Treatment on the Microstructure of Electroless Ni-P Coatings Containing SiC Particles,” Thin Solid Films, Vol. 416, pp. 31-37, 2002.
[35] Balaraju, J. N., Kalavati, and Rajam, K. S., “Influence of Particle Size on the Microstructure, Hardness and Corrosion Resistance of Electroless Ni-P-Al2O3 Composite Coatings,” Surface & Coatings Technology, Vol. 200, pp. 3933, 2006.
[36] Ebrahimian-Hosseinabadi, M., Azari-Dorcheh, K., and Moonir Vaghefi, S. M., “Wear Behavior of Electroless Ni-P-B4C Composite Coatings,” Wear, Vol. 260, pp. 123, 2006.
[37] Abdel Hamid, Z., El Badry, S. A., and Abdel Aal, A., “Electroless Deposition and Characterization of Ni-P-WC Composite Alloys,” Surface & Coatings Technology, Vol. 201, pp. 5948, 2006.
[38] Shella, G. and Pushpavanam, M., “Diamond-Dispersed Electroless Nickel Coatings,” Metal Finishing, Vol. 100, pp. 45, 2002.
[39] Sahoo, P., “Wear Behaviour of Electroless Ni-P Coatings and Optimization of Process Parameters Using Taguchi Method,” Materials and Design, Vol. 30, pp. 1341-1349, 2009.
[40] Dong, D., Chen, X. H., Xiao, W. T., Yang, G. B., and Zhang, P. Y., “Preparation and Properties of Electroless Ni-P-SiO2 Composite Coatings,” Applied Surface Science, Vol. 255, pp. 7051-7055, 2009.
[41] Keong, K. G., Sha, W., and Malinov, S., “Crystallisation Kinetics and Phase Transformation Behaviour of Electroless Nickel-Phosphorus Deposits with High Phosphorus Content,” Journal of Alloys and Compounds, Vol. 334, pp. 192-199, 2002.
[42] Zhang, Y.Z., Zhang, K., Fan, J.H., and Zhang, S.M., “Hardness and wear resistance of electroless nickel deposits,” Transactions of Nonferrous Metals Society of China, Vol. 8, pp. 642-647, 1998.
[43] Zangeneh-Madar, K. and Monir Vaghefi, S. M., “The Effect of Thermochemical Treatment on the Structure and Hardness of Electroless Ni-P Coated Low Alloy Steel,” Surface and Coatings Technology, Vol. 182, pp. 65-71, 2004.
[44] Berr´ıos, J. A., Staia, M. H., Herna´ndez, E. C., Hintermann, H., and Puchi, E. S., “Effect of the Thickness of an Electroless Ni-P Deposit on the Mechanical Properties of an AISI 1045 Plain Carbon Steel,” Surface and Coatings Technology, Vol. 108-109, pp. 466-472, 1998.
[45] Rabizadeh, T., Allahkaram, S. R., and Zarebidaki, A., “An Investigation on Effects of Heat Treatment on Corrosion Properties of Ni-P Electroless Nano-Coatings,” Materials and Design, Vol. 31, pp. 3174-3179, 2010.
[46] Rajendran, R., Sha, W., and Elansezhian, R., “Abrasive Wear Resistance of Electroless Ni-P Coated Aluminium after Post Treatment,” Surface and Coatings Technology, Vol. 205, pp. 766-772, 2010.
[47] Garces, Y., Sanchez, H., Berrõos, J., Pertuz, A., Chitty, J., Hintermann, H., and Puchi, E. S., “Fatigue Behavior of a Quenched and Tempered AISI 4340 Steel Coated with an Electroless Ni-P Deposit,” Thin Solid Films, Vol. 355-356, pp. 487-493, 1999.
[48] Pertuz, A., Berrıos, J. A., and Puchi Cabrera, E. S., “Influence of a Commercial Electroless Ni-P Deposit on the Fatigue Properties of a Notched and Unnotched SAE 4140 Steel,” Surface and Coatings Technology, Vol. 133-134, pp. 572-582, 2000.
[49] Wu, Y. T., Lei, L., Shen, B., and Hu, W. B., “Investigation in Electroless Ni–P–Cg(Eraphite)–SiC Composite Coating,” Surface & Coatings Technology, Vol. 201, pp. 441-445, 2006.
[50] Kalantary, M. R., Holbrook, K. A., and Wells, P. B., “Optimisation of a Bath for Electroless Plating and Its Use for the Production of Nickel-Phosphorus-Silicon Carbide Coatings,” Transactions of the Institute of Metal Finishing, Vol. 71, pp. 55, 1993.
[51] Balaraju, J. N., Kalavati, and Rajam, K. S., “Influence of Particle Size on the Microstructure, Hardness and Corrosion Resistance of Electroless Ni-P-Al2O3 Composite Coatings,” Surface & Coatings Technology, Vol. 200, pp. 3933-3941, 2006.
[52] Winowlin Jappes, J. T., Ramamoorthy, B., and Kesavan Nair, P., “Novel Approaches on the Study of Wear Performance of Electroless Ni-P/Diamond Composite Deposites,” Journal of Materials Processing Technology, Vol. 209, pp. 1004-1010, 2009.
[53] Zhang, S., Han, K., and Cheng, L., “The Effect of SiC Particles Added in Electroless Ni–P Plating Solution on the Properties of Composite Coatings,” Surface and Coatings Technology, Vol. 202, pp. 2807-2812, 2008.
[54] Broszeit, E., “Mechanical, Thermal and Tribological Properties of Electro and Chemodeposited Composite Coatings,” Thin Solid Films, Vol. 95, pp. 133-142, 1982.
[55] Wu, Y. C., Li, G. H., and Zhang, L., “Wear Resistance of Electroless Deposited Ni-P and Ni-P/SiC Composite Coatings on Low Alloy Cast Iron,” Surface Engineering, Vol. 16, pp.506, 2000.
[56] Keong, K. G., Sha, W., and Malinov, S., “Crystallisation Kinetics and Phase Transformation Behaviour of Electroless Nickel–Phosphorus Deposits with High Phosphorus Content,” Journal of Alloys and Compounds, Vol. 334, pp. 192-199, 2002.
[57] Merk, N., “Electron Microscopy Study of the Thermal Decomposition in Ni-SiC Electrodeposits,” Journal of Materials Science Letters, Vol. 14, pp. 592, 1999.
[58] Yu, S. J., Song, L. X., Huang, Y. S., Zhao, R. G., and Hu, X. F., “Electroless Ni-P-SiC Composite Coating,” Journal of Inorganic Materials, Vol. 19, pp. 647, 2004.
[59] Deng, Z., Wei, C., and Zhu, D., “Wear Resistance of Electroless Deposited Ni-P-SiC Coatings,” Transactions of Metal Heat Treatment, Vol. 7, pp. 81, 1987.
[60] Gou, Y. N., Huang, W. J. Zeng, R. C., and Y. Zhu, “Influence of pH Values on Electroless Ni-P-SiC Plating on AZ91D Magnesium Alloy,” Transactions of Nonferrous Metals Society of China, Vol. 20, pp. 674-678, 2010.
[61] Lin, C. J., Chen, K. C., and He, J. L., “The Cavitation Erosion Behavior of Electroless Ni-P-SiC Composite Coating,” Wear, Vol. 261, pp. 1390-1396, 2006.
[62] Chou, M. C., Ger, M. D., Ke, S. T., Huang, Y. R., and Wu, S. T., “The Ni-P-SiC Composite Produced by Electro-Codeposition,” Materials Chemistry and Physics, Vol. 92, pp. 146-151, 2005.
[63] Malfatti, C. F., Veit, H. M., Menezes, T. L., Zoppas Ferreira, J., Rodriguês, J. S., and Bonino, J. P., “The Surfactant Addition Effect in the Elaboration of Electrodepositated NiP-SiC Composite Coatings,” Surface and Coatings Technology, Vol. 201, pp. 6318-6324, 2007.
[64] Alirezaei, S., Monirvaghefi, S. M., Salehi, M., and Saatchi, A., “Wear Behavior of Ni-P and Ni-P-Al2O3 Electroless Coatings,” Wear, Vol. 262, pp. 978-985, 2007.
[65] Novak, M., Vojtech, D., and Vitu, T., “Influence of Heat Treatment on Tribological Properties of Electroless Ni-P and Ni-P-Al2O3 Coatings on Al-Si Casting Alloy,” Applied Surface Science, Vol. 256, pp. 2956-2960, 2010.
[66] Titov, V. M., Anisichkin, V. F., and Alkiv, I. Y., “Synthesis of Ultrafine Diamondsin Detonation Waves,” In:Wanda, J. M. ed. Proceedings of the Ninth Symposium (International )on Detonation, Arlington Office of the Chief of Naval Research, 1989.
[67] Reddy, V. V. N., Ramamoorthy, B., and Kesavan Nair, P., “A study on the Wear Resistance of Electroless Ni-P/Diamond Composite Coatings,” Wear, Vol. 239, pp. 111-116, 2000.
[68] Xu, H., Yang, Z., Li, M. K., Shi, Y. L., Huanga, Y., and Li, H. L., “Synthesis and Properties of Electroless Ni-P-Nanometer Diamond Composite Coatings,” Surface & Coatings Technology, Vol. 191, pp. 161-165, 2005.
[69] Winowlin Jappes, J. T., Ramamoorthy, B., and Kesavan Nair, P., “Novel Approaches on the Study of Wear Performance of Electroless Ni-P/Diamond Composite Deposites,” Journal of Materials Processing Technology, Vol. 209, pp. 1004-1010, 2009.
[70] Sheela, G. and Pushpavanam, M., “Diamond-Dispersed Electroless Nickel Coatings,” Metal Finishing, Vol. 100, pp. 45-47, 2002.
[71] Park, H. K., Onikura, H., Ohnishi, O., and Sharifuddin, A., “Development of Micro-Diamond Tools Through Electroless Composite Plating and Investigation into Micro-Machining Characteristics,” Precision Engineering, Vol. 34, pp. 376-386, 2010.
[72] Friction, Lubrication, and Wear Technology, ASM Handbook, Vol. 18, Published by the Materials Information Society, 1992.
[73] Voevodin, A.A., O’Neill, J.P., Zabinski, J.S., “Nanocomposite Tribological Coatings for Aerospace Applications,” Surface and Coatings Technology, Vol. 116-119, pp. 36-45, 1999.
[74] Voevodin, A.A., Bultman, J., Zabinski, J.S., “Investigation into Three-Dimensional Laser Processing of Tribological Coatings,” Surface and Coatings Technology, Vol. 107, pp. 12-19, 1998.
[75] Tenne, R., Margulis, L., Genut, M., and Hodes, G., “Polyhedral and Cylindrical Structures of Tungsten Disulphide,” Nature, Vol. 360, pp. 444-446, 1992.
[76] Margulis, L., Salitra, G., Tenne, R., and Talianker, M., “Nested Fullerene-Like Structures,” Nature, Vol. 365, pp. 113-114, 1993.
[77] Zou, T.Z., Tu, J.P., Zhang, S.C., Chen, L.M., Wang, Q., Zhang, L.L., and He, D.N., “Friction and Wear Properties of Electroless Ni-P-(IF-MoS2) Composite Coatings in Humid Air and Vacuum,” Materials Science and Engineering A, Vol. 426, pp. 162-168, 2006.
[78] Rao, M., Hooke, C. J., Kukureka, S. N., Liao, P., and Chen, Y. K., “The Effect of PTFE on the Friction and Wear Behavior of Polymers in Rolling-Sliding Contact,” Polymer Engineering and Science, Vol. 38, pp. 1946, 1998.
[79] Ger, M. D. and Hwang, B. J., “Effect of Surfactants on Codeposition of PTFE Particles with Electroless Ni-P Coating,” Materials Chemistry and Physics, Vol. 76, pp. 38-45, 2002.
[80] Straffelini, G., Colombo, D., and Molinari, A., “Surface Durability of Electroless Ni-P Composite Deposits,” Wear, Vol. 236, pp. 179-188, 1999.
[81] Huang, Y. S., Zeng, X. T., Annergren, I., and Liu, F. M., “Development of Electroless NiP-PTFE-SiC Composite Coating,” Surface and Coatings Technology, Vol. 167, pp. 207-211, 2003.
[82] Huang, Y. S., Zeng, X. T., Hu, X. F., and Liu, F. M., “Heat Treatment Effects on EN-PTFE-SiC Composite Coatings,” Surface & Coatings Technology, Vol. 198, pp. 173-177, 2005.
[83] Wu, Y., Liu, H., Shen, B., Liu, L., and Hu, W., “The Friction and Wear of Electroless Ni-P Matrix with PTFE and/or SiC Particles Composite,” Tribology, Vol. 39, pp. 553-559, 2006.
[84] Wu, Y. T., Lei, L., Shen, B., and Hu, W. B., “ Investigation in Electroless Ni-P-Cg(graphite)-SiC Composite Coating,” Surface & Coatings Technology, Vol. 201, pp. 441-445, 2006.
[85] Wu, Y., Shen, B., Liu, L., and Hu, W., “ The Tribological Behaviour of Electroless Ni-P-Gr-SiC Composite,” Wear, Vol. 261, pp. 201-207, 2006.
[86] 郭鶴桐,張三元,複合鍍層,天津大學出版社,天津,第121-130頁。
[87] Hazan, Y. de, Werner, D., Z’graggen, M., Groteklaes, M., and Graule, T., “Homogeneous Ni-P/Al2O3 Nanocomposite Coatings from Stable Dispersions in Electroless Nickel Baths,” Journal of Colloid and Interface Science, Vol. 328, pp. 103-109, 2008.
[88] 柯世宗,“Ni基微模具電鑄之研究”,博士論文,國防大學中正理工學院,桃園,第5頁,2004。
[89] Shao, I., Vereecken, P. M., Cammarata, R. R., and Searson, P. C., “Kinetics of Particle Codeposition of Nanocomposites,” Journal of the Electrochemical Society, Vol. 149, No. 11, pp. C610-C614, 2002.
[90] Wang, S. C. and Wei, W. C. -J., “Kinetics of Electroplating Procss of Nano-Sized Ceramic Particle/Ni Composite,” Materials Chemistry and Physics, Vol. 78, pp. 574-580, 2003.
[91] Shao, I., Vereecken, P. M., Chien, C. L., Searson, P. C., and Cammarata, R. C., “Synthesis and Characterization of Particle-Reinforced Ni/Al2O3 Nanocomposites,” Journal of Materials Research, Vol. 17, No.6, pp. 1412-1418, June, 2002.
[92] Grosjean, A., Rezrazi, M., and Tachez, M., “Study of the Surface Charge of Silicon Carbide (SiC) Particles for Electroless Composite Deposits: Nickel-SiC,” Surface and Coatings Technology, Vol. 96, pp. 300-304, 1997.
[93] Grosjean, A., Rezrazi, M., and Bercot, P., “Some Morphological Characteristics of the Incorporation of Silicon Carbide (SiC) Particles into Electroless Nickel Deposits,” Surface and Coatings Technology, Vol. 130, pp. 252-256, 2000.
[94] Grosjean, A., Rezrazi, M., Takadoum, J., and Bercot, P., “Hardness, Friction and Wear Characteristics of Nickel-SiC Electroless Composite Deposits,” Surface and Coatings Technology, Vol. 137, pp. 92-96, 2001.
[95] Hu, F. and Chan, K. C., “Deposition Behaviour and Morphology of Ni-SiC Electro-Composites Under Triangular Waveform,” Applied Surface Science, Vol. 243, pp. 251-258, 2005.
[96] Vaezi, M. R., Sadrnezhaad, S. K., and Nikzad, L., “Electrodeposition of Ni-SiC Nano-Composite Coatings and Evaluation of Wear and Corrosion Resistance and Electroplating Characteristics,” Colloids and Surfaces A, Vol. 315, pp.176-182, 2008.
[97] Zhou, X. W., Jin, H. M., and Zhang, L. N., “ Influence of pH Value on Microstructure and Thermal Stability of Ni-P Electroless Coating Prepared in Acidic Condition,” Chinese Chemical Letters, Vol. 20, pp. 845-848, 2009.
[98] Apachitei, I., Tichelaar, F. D., Duszczyk, J., and Katgerman, L., “The Effect of Heat Treatment on the Structure and Abrasive Wear Resistance of Autocatalytic NiP and NiP-SiC Coatings,” Surface and Coatings Technology, Vol. 149, pp. 263-278, 2002.
[99] Xu, H., Yang, Z., Li, M. K., Shi, Y. L., Huang, Y., and Li, H. L., “Synthesis and Properties of Electroless Ni-P-Nanometer Diamond Composite Coatings,” Surface & Coatings Technology, Vol. 191, pp. 161-165, 2005.
[100] Chen, C. K. and Hon, M. H., “The Morphology and Mechanical Properties of TiN/Ni-P-SiC Hybrid Coatings,” Surface and Coatings Technology, Vol. 155, pp. 214-220, 2002.
[101] Hou, K. H., Hwu, W. H., Ke, S. T., and Ger, M. D., “Ni–P–SiC composite produced by pulse and direct current plating,” Materials Chemistry and Physics, Vol. 100, pp. 54–59, 2006.
[102] Abdel Hamid, Z. and Abou Elkhair, M. T., “Development of Electroless Nickel-Phosphorous Composite Deposits for Wear Resistance of 6061 Aluminum Alloy,” Materials Letters, Vol. 57, pp. 720-726, 2002.
[103] Apachitei, I. and Duszczyk, J., “Autocatalytic Nickel Coatings on Aluminium with Improved Abrasive Wear Resistance,” Surface and Coatings Technology, Vol. 132, pp. 89-98, 2000.
[104] Apachitei, I., Tichelaar, F. D., Duszczyk, J., and Katgerman, L., “Solid-State Reactions in Low-Phosphorus Autocatalytic NiP-SiC Coatings,” Surface and Coatings Technology, Vol. 148, pp. 284-295, 2001.
[105] Duncan, R. N., “Effect of Solution Age on Corrosion Resistance of Electroless Nickel Deposits,” Plating and Surface Finishing, Vol. 83, pp. 65, 1996.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top