(18.206.187.91) 您好!臺灣時間:2021/05/19 02:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:陳育慶
研究生(外文):Chen, Yu-Ching
論文名稱:含富鉻鍍層之鐵基及鋁基金屬雙極板特性研究
論文名稱(外文):The characteristics of Fe- and Al- based metallic bipolar plates with chromium-rich coating
指導教授:葛明德葛明德引用關係白清源白清源引用關係
指導教授(外文):Ger, Ming-DerBai, Ching-Yuan
口試委員:葛明德王朝正林招松白清源李九龍
口試委員(外文):Ger, Ming-DerWang, Chao-ZhengLin, Zhao-SongBai, Ching-YuanLi, Jiu-Long
口試日期:2011-05-17
學位類別:碩士
校院名稱:國防大學中正理工學院
系所名稱:材料科學碩士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:108
中文關鍵詞:雙極板粉浴法抗蝕性導電性疏水性碳鋼
外文關鍵詞:bipolar platecementationcorrosion resistanceelectric conductivityhydrophobicitycarbon steel
相關次數:
  • 被引用被引用:2
  • 點閱點閱:197
  • 評分評分:
  • 下載下載:23
  • 收藏至我的研究室書目清單書目收藏:0
此研究係以AISI 1045、AISI 1080碳鋼以及AA 7075鋁合金為基材,分別利用粉浴法及電鍍法在基材表面製備耐蝕且導電之富鉻鍍層,作為改善基材抗蝕性、導電性及疏水性之表面改質製程,並應用在燃料電池雙極板。由於碳鋼熔點較高,適合以較高的溫度在表面生成富鉻鍍層,故使用粉浴製程作為處理並搭配電鍍細晶粒鎳鍍層作為活化處理降低粉浴操作溫度;而鋁合金熔點較低,較適合使用電鍍法製備鉻碳鍍層,唯鋁合金基材難以直接電鍍鉻碳合金,需要搭配適當中間層才能形成均勻鍍層。研究結果顯示真空粉浴處理之碳鋼試片後發現表面形成緻密富鉻鍍層,主要組成相為碳化鉻(CrxNy)及氮化鉻(CrxCy);其富鉻鍍層能有效提昇耐蝕性、導電性及疏水性。以AA 7075鋁合金為基材,以電鍍鎳、置換鋅或電鍍銅作為中間層後電鍍富鉻鍍層,試片之富鉻鍍層組成相主要為金屬鉻(Cr)及碳化鉻(CrxCy),其中電鍍銅中間層試片之表面鉻碳鍍層連續且緻密,因此具有較佳的抗蝕性及導電性。整體而言,非真空粉浴技術製備之碳鋼試片其耐蝕性、導電性與疏水性皆優於以電鍍鉻碳處理之鋁合金試片,較適合應用於燃料電池金屬雙極板。
The main object of this study is to improve the corrosion resistance, electric conductivity and hydrophobicity of AA7075 aluminum alloy and carbon steels (AISI 1045, 1080) by eletrodeposition and pack cementation, respectively, to produce a Cr-rich (Cr-C alloy) coating on the substrates for the demands of proton exchange membrane fuel cell (PEMFC). The carbon steels were treated with pack cementation to form a Cr-rich coating because the melting point of carbon steels is high enough to sustain thermal reaction process. Electroplating a Ni coating with fine grain size on the carbon steels can activate the surface and lower the pack cementation temperature. The electroplating process is more suitable to deposit Cr-rich coating on Al alloys due to their low melting point, but it is difficult to electroplate a uniform Cr-C coating on aluminum alloys without a interlayer. Experimental results showed that a compact and crack-free Cr-rich coating was formed on the carbon steels after pack cementation, which increased the corrosion resistance, electric conductivity, and hydrophobicity of the steels. The main constituent phases of the chromized layer are chromium-carbides and chromium-nitrides. The Cr-rich coating, electroplated on the Al alloys with different interlayers (Ni, Zn, or Cu coating), were composed of chromium and chromium-carbide. Among these Cr-electroplated Al alloys, the specimen with copper interlayer processes formed a dense and continuous Cr-C alloy layer and therefore has the higher corrosion resistance, electric conductivity, and hydrophobicity. Conclusively, the corrosion resistance, electric conductivity, and hydrophobicity of the chromized carbon steels are superior to those of Cr-electroplated Al alloys. Therefore, the carbon steels improved with pack chromization are more suitable to applied to metallic bipolar plates.
摘要 ....................................................................................... ii
Abstract .................................................................................. iii
目錄 ....................................................................................... iv
表目錄 ..................................................................................... vii
圖目錄 ..................................................................................... viii
1. 緒論 .............................................................................. 1
1.1研究背景 ........................................................................... 1
1.2研究目的 ........................................................................... 2
2. 文獻回顧及理論 ...................................................................... 4
2.1燃料電池發電原理 .................................................................... 4
2.2燃料電池種類及組成元件 ............................................................... 6
2.2.1燃料電池種類 ...................................................................... 6
2.2.2質子交換膜燃料電池組成元件 .......................................................... 8
2.3金屬雙極板性能需求 ................................................................... 10
2.3.1抗蝕性及電化學檢測 ................................................................. 10
2.3.2接觸阻抗 .......................................................................... 16
2.3.3疏水性 ............................................................................ 18
2.4表面改質 ............................................................................ 22
2.4.1粉浴鉻化及電鍍鉻碳鍍層之性質 ......................................................... 22
2.4.2粉浴鉻化製程及擴散反應機構 ........................................................... 23
2.4.3粉浴鉻化之活化原理 .................................................................. 26
2.4.4電鍍鉻碳鍍層之原理 .................................................................. 29
2.4.5電鍍鉻碳鍍層之中間層製備及原理 ........................................................ 30
2.5金屬雙極板發展近況 .................................................................... 33
3. 實驗方法 ............................................................................. 36
3.1實驗流程 ............................................................................. 36
3.2詴片之製備 ........................................................................... 38
3.3粉浴製程 ............................................................................. 39
3.3.1表面活化製程 ........................................................................ 39
3.3.2粉浴鉻化製程 ........................................................................ 39
3.4電鍍製程 .............................................................................. 40
3.4.1中間層製備 .......................................................................... 40
3.4.2電鍍鉻碳製程 ........................................................................ 40
3.5分析與檢測 ............................................................................ 41
3.5.1鍍層結構與組成分析 ................................................................... 41
3.5.2腐蝕性質測詴 ........................................................................ 42
3.5.3接觸阻抗量測 ........................................................................ 43
3.5.4接觸角量測 .......................................................................... 45
3.5.5單電池檢測 .......................................................................... 45
4.結果與討論 ............................................................................. 46
4.1碳鋼之富鉻鍍層特性分析 ................................................................. 46
4.1.1 富鉻鍍層形貌與結構 .................................................................. 46
4.1.2 鉻化鍍層之組成分析 .................................................................. 55
4.1.3 動電位測詴結果分析 .................................................................. 60
4.2鋁合金之富鉻鍍層特性分析................................................................. 64
4.2.1富鉻鍍層形貌與結構 ................................................................... 64
4.2.2 中間層及鉻碳鍍層組成分析 ............................................................. 77
4.2.3 動電位測詴結果分析 .................................................................. 82
4.3 燃料電池操作環境模擬測詴................................................................ 85
4.3.1靜電位測詴結果分析 ................................................................... 85
4.3.2接觸阻抗及疏水性分析 ................................................................. 87
4.4單電池性能分析 ........................................................................ 93
5.結論 .................................................................................. 95
未來展望望 ............................................................................... 96
參考文獻 ................................................................................. 97
自傳......................................................................................105
[1]Patil, A. S., Dubois T. G., Sifer, N., Bostic, E., Gardner, K., Quah, M. and Bolton, C., “Portable Fuel Cell Systems for America's Army: Technology Transition to the Field,” Journal of Power Sources, Vol. 136, pp.220-225, 2004.

[2]Makkus, R. C., and Janssen, H. H., “Stainless Steel for Cost-Competitive Bipolar Plates in PEMFCs,” Fuel Cells Bulletin, Vol. 3, pp. 5-9, 2000.

[3]U.S. Department of Energy, Hydrogen, Fuel Cells and Infrastructure Technologies Program, “Hydrogen, Fuel Cells and Infrastructure Technologies Multi-Year Research, Development and Demonstration Plane,” DOE/GO-102003-1741, January 2005.

[4]Chaudhuri, T., Hermann, A., and Spagnol, P., “Bipolar Plates for PEMFC: A Review,” International Journal of Hydrogen Energy, Vol. 30, pp. 1297-1302, 2005.

[5]Tawfik, H., Hung, Y., and Mahajan, D., “Metal Bipolar Plates for PEMFC-A Review,” Journal of Power Sources, Vol. 163, pp. 755-767, 2007.

[6]Lee, S. J., Huang, C. H., Lai, J. J., and Chen, Y. P., ”CFD to Predict Temperature Profile for Scale Up of Micro-tubular SOFC Stacks,” Journal of Power Sources, Vol. 131, pp. 243-257, 2003.

[7]Wang, H., Sweikart, M. A., and Turner, J. A., “Stainless Steel as Bipolar Plate Material for Polymer Electrolyte Membrane Fuel Cells,”Journal of Power Sources , Vol. 115, pp. 243-251, 2003.

[8]Juri, P., Mart, V., Sergei, L., Kristjan, J., “Reactive carburizing sintering-A novel production method for high quality chromium carbide-nickel cermets,” International Journal of Refractory Metals & Hard Materials, Vol.24, pp.263-270, 2006.

[9]Matsumoto, T., Niikura, J., Ohara , H., Uchida, M., Gyoten, H., Hatoh, K., and Kanbara, E., European Patent EP 1094535, 2001.

[10]Nikam, V. V., and Reddy, R. G., “Copper Alloy Bipolar Plates for Polymer Electrolyte Membrane Fuel Cell,” Electrochimica Acta, Vol. 51, pp. 6338-6345, 2006.

[11]Nikam, V. V., and Reddy, R. G., “Corrosion Studies of A Copper-Beryllium Alloy in a Simulated Polymer Electrolyte Membrane Fuel Cell Environment,” Journal of Power Sources, Vol. 152, pp. 146-155, 2005.

[12]黃鎮江,燃料電池,全華科技圖書公司出版,台北,第41-42頁,2003。

[13]趙鉅隆,“以鎳基合金鍍層進行鋁合金雙極板表面改質之研究”,國防大學理工學院應用化學研究所碩士學位論文,桃園,第8頁,2007。

[14]Lee, S. J. , Hsu C. D., and Huang, C. H., “Analyses of the Fuel Cell Stack Assembly Pressure,” Journal of Power Sources, Vol. 145, pp. 353-361, 2005.

[15]曲新生,“質子交換膜燃料電池技術探討”,化工技術第12卷,第112頁,2004。

[16]Lee, S. J., Huang, C. H., and Chen, Y. P., “Investigation of PVD Coating on Corrosion Resistance of Metallic Bipolar Plates in PEMFC,” Journal of Materials Processing Technology, Vol. 140, pp. 688-693, 2003.

[17]Wang, Y., and Northwood, D. O., “An Investigation of the Electrochemical Properties of PVD TiN-Coated SS 410 in Simulated PEM Fuel Cell Environments,” International Journal of Hydrogen Energy, Vol. 42, pp. 895-902, 2007.

[18]網站:http://corrosion.kaist.ac.kr/download/2007/chap05.pdf.

[19]Wang, Y., and Northwood, D. O., “Effects of O2 and H2 on the Corrosion of SS316L Metallic Bipolar Plate Materials in Simulated Anode and Cathode Environments of PEM Fuel Cells,” Electrochimica Acta, Vol. 52, pp. 6793-6798, 2007.

[20]Jiang, R. and Chu, D., “Stack Design and Performance of Polymer Electrolyte Membrane Fuel Cells,” Journal of Power Sources, Vol. 93, pp. 25-31, 2001.

[21]Pozio, A., Silva, R. F., Francesco, M. D., and Giorgi, L., “Nafion Degradation in PEMFCs from End Plate Iron Contamination,” Electrochimica Acta, Vol. 48, pp. 1543-1549, 2003.

[22]Hornung, R. and Kappelt, G., “Bipolar Plate Materials Development Using Fe-Based Alloys for Solid Polymer Fuel Cells,” Journal of Power Sources, Vol. 72, pp. 20-21, 1998.

[23]Davies, D. P., Adcock, P. L., Turpin, M., and Rowen, S. J., “Stainless Steel as a Bipolar Plate Material for Solid Polymer Fuel Cells,” Journal of Power Sources, Vol. 86, pp. 237-242, 2000.

[24]Weil, K. S., Kim, J. Y., Xia, G., Coleman, J., and Yang, G., ”Boronization of Nickel and Nickel Clad Materials for Potential Use in Polymer Electrolyte Membrane Fuel Cells,” Surface & Coatings Technology, Vol. 201, pp. 4436-4441, 2006.

[25]Ho, W. Y., Pan, H. J., Chang, C. L., Wang, D. Y., and Hwang, J. J., “Corrosion And Electrical Properties of Multi-Layered Coatings on Stainless Steel for PEMFC Bipolar Plate Applications,” Surface and Coatings Technology, Vol. 204, pp. 1297-1301, 2007.

[26]Kim, K. Y., and Kim, K. Y., “A New Alloy Design Concept for Austenitic Stainless Steel with Tungsten Modification for Bipolar Plate Application in PEMFC,” Journal of Power Sources, Vol. 173, pp. 917-924, 2007.

[27]Xinmin, L., Dongan, L., Linfa, P., Jun, N., “A mechanical-electrical finite element method model for predicting contact resistance between bipolar plate and gas diffusion layer in PEM fuel cells,” Journal of Power Sources, Vol.182, pp.153-159, 2008.

[28]Cunningham, N., Lefevre, M., Lebrun, G., and Dodelet, J. P., “Measuring the Through-Plane Electrical Resistivity of Bipolar Plates,” Journal of Power Sources, Vol. 143, pp. 93-102, 2005.

[29]Escribano, S., Franc, J., and Blachot, O., “Characterization of PEMFCs Gas Diffusion Layers Properties,” Journal of Power Sources, Vol. 156, pp. 8-13, 2006.

[30]Zhang, L., Liu, Y., and Song, H., “Estimation of Contact Resistance in Proton Exchange Membrane Fuel Cells,” Journal of Power Sources, Vol. 162, pp. 1165-
1171, 2006.

[31]Hwang, J. J., Weng, F. B., and Chan, S. H., “Effect of Clamping Pressure on the Performance of a PEMFC,” Journal of Power Sources, Vol. 166, pp. 149-154, 2007.

[32]Lin, G., Shih, A. J., and Hu, S. J., “A Micro-Scale Model for Predicting Contact Resistance between Bipolar Plate and Gas Diffusion Layer in PEMFEs,” Journal of Power Sources, Vol. 163, pp. 777-783, 2007.

[33]Kraytsberg, A., Auinat, M., and Ein-Eli, Y., ”Reduced Contact Resistance of PEM Fuel Cell’s Bipolar Plates via Surface Texturing,” Journal of Power Sources, Vol. 164, pp. 697-703, 2007.

[34]Silva, R. F., Franchi, D., Leone, A., Pilloni, L., Masci, A., and Pozio, A., ”Surface Conductivity and Stability of Metallic Bipolar Plate Materials for Polymer Electrolyte Fuel Cells,” Electrochimica Acta, Vol. 51, pp. 3592-3598, 2006.

[35]Davies, D.P., Adcock, P.L., Turpin, M., and Rowen, S. J., “Bipolar Plate Materials for Solid Polymer Fuel Cells,” Journal of Applied Electrochemistry, Vol. 30, pp. 101-105, 2000.

[36]Shibuichi, S., Yamamoto, T., Onda T., Satoh, N., and Tsujii, K., “Super Water- and Oil-Repellent Surfaces Resulting from Fractal Structure,” Journal of colloil and interface science, Vol. 208, pp. 287-294, 1998.

[37]Wenzel, R.N., “Resistance of Solid Surface to Wetting by Water,"Industrial and Engineering Chemistry , Vol. 40 , pp. 988-994 , 1936.

[38]Wenzel, R. N., “Surface Roughness and Contact Angle,"Journal of Physical and Chemistry, Vol. 53, pp. 1466-1467, 1949.

[39]Scott Weil, K., Xia, G., Yang, Z. G., and Kim, J. Y., “Development of a Niobium Clad PEM Fuel Cell Bipolar Plate Material,” International Journal of Hydrogen Energy, Vol. 32, pp. 3724-3733, 2007.

[40]Scott Weil, K., Kim, J. Y., Xia, G., Coleman, J., and Yang, Z. G., ”Boronization of Nickel and Nickel Clad Materials for Potential Use in Polymer Electrolyte Membrane Fuel Cells,” Surface and Coatings Technology, Vol. 201, pp. 4436-4441, 2006.

[41]Northwood, D. O., “An Investigation into TiN-Coated 316L Stainless Steel as a Bipolar Plate Material for PEM Fuel Cells,” Journal of Power Sources, Vol. 164, pp. 293-298, 2007.

[42]Ozdemir, O., Sen, S., and Sen, U., “Formation of Chromium Nitride Layers on AISI 1010 Steel by Nitro-Chromizing Treatment,” Vacuum, Vol. 81, pp. 567-570, 2007.

[43]Wei, C. Y., and Chen, F. S., “Thermoreactive Deposition/Diffusion Coating of Chromium Carbide by Contact-Free Method,” Materials Chemistry and Physics, Vol. 91, pp. 192-199, 2005.

[44]Perez, F. J., Pedraza, F., Hierro, M. P., Carpintero, M. C., and Mez, C. G., “Chromising of Stainless Steels by the Use of the CVD-FBR Technology,” Surface and Coatings Technology, Vol. 184, pp. 47-54, 2004.

[45]Kung, S. C., and Rapp, R. A., “Kinetic Study of Aluminization of Iron by Using the Pack Cementation Technique,” Journal of the Electrochemical Society, Vol. 135, pp. 731-741, 1988.
[46]Bianco, R., Harper, M. A., and Rapp, R. A., “Codepositing Elements by Halide-Activated Pack Cementation,” Journal of Material, Vol. 43, pp. 68-73, 1991.

[47]Lu, K., and Lu, J., “Nanostructured Surface Layer on Metallic Materials Induced by Surface Mechanical Attrition Treatment,” Materials Science and Engineering A, Vol. 375-377, pp. 38-45, 2004.

[48]Wang, Z. B., Lu, J., and Lu, K., “Chromizing Behaviors of a Low Carbon Steel Processed by Means of Surface Mechanical Attrition Treatment,” Acta Materialia, Vol. 53, pp. 2081-2089, 2005.

[49]A.A. Edigaryan., V.A. Safonov., E.N.Lubnin., L.N. Vykhodtseva .,G.E. Chusova., Yu. M. Polukarov ., ”Properties and preparation of amorphous chromium carbide Electroplates,” Electrochimica Acta, Vol. 47, pp. 2775-2786, 2002

[50]Y.B. Song., D.T. Chin., ”Current efficiency and polarization behavior of trivalent chromium electrodeposition process,” Electrochimica Acta, Vol. 48, pp. 349-
356, 2002

[51]V. Protsenko., F. Danilov., ”Kinetics and mechanism of chromium electrodeposition from formate and oxalate solutions of Cr(III) compounds,” Electrochimica Acta, Vol. 54, pp. 5666-5672, 2009

[52]Detroye, M., Reniers, F., Buess-Herman, C., and Vereecken, J., “Synthesis and Characterization of Chromium Carbides,” Applied Surface Science, Vol. 120, pp. 85-93, 1997.

[53]Hentall, P. L., Lakeman, J. B., Mepsted, G. O., Adcock, P. L., and Moore, J. M., “New Materials for Polymer Electrolyte Membrane Fuel Cell Current Collectors,” Journal of Power Sources, Vol. 80, pp. 235-2419, 1999.

[54]Lee, S. J., and Lai, J. J., “The Effects of Electropolishing (EP) Process Parameters on Corrosion Resistance of 316L Stainless Steel,” Journal of Materials Processing Technology, Vol. 140, pp. 206-210, 2003.

[55]Lee, S. J., Huang, C. H., Lai J. J., and Chen, Y. P., “Corrosion-Resistant Component for PEM Fuel Cells,” Journal of Power Sources, Vol. 131, pp. 162-168, 2004.

[56]Wang, Heli, and Turner, J. A., “Ferritic Stainless Steels as Bipolar Plate Material for Polymer Electrolyte Membrane Fuel Cells,” Journal of Power Sources, Vol 128, pp. 193-200, 2004.

[57]Fleury, E., Jayaraj, J., Kim,Y. C., Seok, H. K., Kim, K. Y., and Kim, K. B., “ Fe-Based Amorphous Alloys as Bipolar Plates for PEM Fuel Cell,” Journal of Power Sources, Vol. 159, pp. 34-37, 2006.

[58]Wang, J., Sun, J, Tian, R., and Jing, X., “Plain Carbon Steel Bipolar Plates for PEMFC,” Rare Metals, Vol. 25, pp. 235-239, 2006.


[59]Nam, D. G., and Lee, H. C., “Thermal Nitridation of Chromium Electroplated AISI316L Stainless Steel for Polymer Electrolyte Membrane Fuel Cell Bipolar Plate,” Journal of Power Sources, Vol. 170, pp. 268-274, 2007.

[60]Wang, Heli, Turner, J. A., and Li, X., “SnO2F Coated Austenite Stainless Steels for PEM Fuel Cell Bipolar Plates,” Journal of Power Sources, Vol. 171, pp. 567-574, 2007.

[61]Fu, Y., Hou, M., and Lin, G., “Coated 316L Stainless Steel With CrxN Film as Bipolar Plate for PEMFC Prepared by Pulsed Bias Arc Ion Plating,” Journal of Power Sources, Vol. 176, pp. 282-286, 2008.

[62]Feng, K., Shen, Y., and Mai, J., “An Investigation Into Nickel Implanted 316L Stainless Steel as a Bipolar Plate for PEM Fuel Cell,” Journal of Power Sources, Vol. 182, pp. 145-152, 2008.

[63]Cho, K. H., Lee, W. G., Lee, S. B., and Jang, H., “Corrosion resistance of chromized 316L stainless steel for PEMFC bipolar plates,” Journal of Power Sources, Vol. 178, pp. 671-676, 2008.

[64]Bo, W., Guoqiang, L., Yu, F., Ming, H., Baolian, Y., “Chromium containing carbon film on stainless steel as bipolar plates for proton exchange membrane fuel cells,” Journal of Hydrogen Energy, Vol. 35, pp. 13255-13261, 2010.

[65]網站:http://www.calphad.com/iron-nickel.html

[66]Haitao, X., Tianjun, L., Yadong, L., “Synthesis and characterize of trivalent chromium Cr(OH)3 and Cr2O3 microspheres,” Inorganic chemistry communications, Vol.
7, pp. 666-668, 2004.





QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top