跳到主要內容

臺灣博碩士論文加值系統

(44.221.73.157) 您好!臺灣時間:2024/06/20 20:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:歐政隴
研究生(外文):Ou, Jeng-Lung
論文名稱:β-碳化矽/尖晶石錳鋅鐵氧磁體/碳黑複合材料的吸波研究
論文名稱(外文):The study of microwave absorbing properties for composites β-SiC/spinel Mn-Zn ferrite/carbon black
指導教授:張章平洪耀勳洪耀勳引用關係
指導教授(外文):Chang, Chang-PinHong, Yaw-Shun
口試委員:劉敏憲陳世忠張中維
口試委員(外文):Liu, Min-HsienChen, Shyh-JongZhang, Zhong-Wei
口試日期:2011-05-05
學位類別:碩士
校院名稱:國防大學中正理工學院
系所名稱:應用化學碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:81
中文關鍵詞:水溶液燃燒法微波吸收材料尖晶石鐵氧磁體
外文關鍵詞:solution aqueous combustion synthesiscubic ferritesmicrowave absorbers
相關次數:
  • 被引用被引用:0
  • 點閱點閱:190
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
奈米Mn-Zn立方晶鐵氧磁體粉末,Mn1-XZnXFe2O4已經引用溶膠-凝膠水溶液燃燒法(Aqueous Combustion Synthesis, ACS)合成。本研究是以金屬硝酸鹽原料充當金屬離子的來源及充當氧化劑,而以甘氨酸當做還原劑及螯合劑,使金屬離子與甘氨酸在水溶液中結合成錯離子。最後利用溶膠-凝膠的自蔓性燃燒所放出的熱量,使燃燒後的灰達到尖晶石的晶體結構。
X光繞射結果顯示灰已呈現立方晶或尖晶石(spinel)鐵氧磁體。掃瞄式電子顯微鏡(SEM)照相顯示灰的大小分佈於60 nm~100 nm,但經1200 ℃熱處理後,粉體平均直徑約1.0 μm。震盪樣品式磁測儀(VSM)量測結果顯示Mn0.8Zn0.2Fe2O4粉體具有最佳磁性,此樣品的飽和磁化量(Ms)、殘留磁化量(Mr)及矯頑磁力(Hc)分別為109.80 emu/g、11.712 emu/g及81.398 Oe。
由於尖晶石錳鋅鐵氧磁體材料只具有導磁損失的性質,因此導電性碳黑及具有介電特性的β-碳化矽被添加至鐵氧磁體中,並與有機聚合物混合而成強吸收且低密度的吸波複合材料,向量網路分析儀(Agilent Technologies E8362B)被用來測量複合材料的微波吸收性質。

Nano MnZn cubic ferrite powders (Mn1-XZnXFe2O4) were prepared by sol-gel aqueous combustion synthesis (ACS) method in this study. The starting materials of Fe, Mn, and Zn nitrates were used as the sources of metallic ions and oxidizing agents, while glycine was applied as the reducing agent as well as the chelating reagent. Accordingly, the metallic nitrates combined with glycine in aqueous solution forming complex ions. Spinel structure of the final product was driven by the self-propagation combustion of the sol-gel solution.
X-ray diffraction pattern of the as-burnt product indicated a cubic or spinel ferrites crystal structure. Scanning electron microscopy (SEM) images revealed that the grain sized of the as-burnt powders ranged in 60~100 nm. However, the average diameter of the powder after a heat treatment at 1200 ℃ were found at ~1.0 μm. For a composition of Mn0.8Zn0.2Fe2O4, the powders were obtained to have the optimal magnetic properties by using VSM instrument. The saturated magnetization (Ms), remanence magnetization (Mr), and the coercivity (Hc) of Mn0.8Zn0.2Fe2O4 are 109.80 emu/g, 11.712 emu/g and 81.398 Oe, respectively.
Because of the only magnetic lose properties of the Mn-Zn spinel ferrites can have, therefore the conductive carbon black and dielectric material of β-SiC were mixted with ferrites and organic polymers to form the high absorbability and low density of microwave absorbing composite materials. In which Agilent Technologies E8362B Analyzer were used to characterize the microwave absorption properties of the materials.

誌謝
摘要
ABSTRACT
目錄
表目錄
圖目錄
1. 緒論
1.1 前言
1.2 文獻回顧
1.3 研究動機
1.4 研究目的
1.5 吸波材料的吸波原理
2. 研究方法
2.1 實驗材料
2.2 儀器設備
2.3 化學法合成錳鋅鐵氧磁體
2.3.1 水溶液燃燒合成法(ACS, Aqueous Combustion Synthesis)
2.3.2 水熱法(Hydrothermal Method)
2.3.3 橡膠吸波膠體製備
2.4 各種儀器測試
2.4.1 FT-IR(傅立葉轉換式紅外線光譜儀測量)
2.4.2 XRD(粉體的X光繞射儀測試)
2.4.3 SEM(掃描式電子顯微鏡測量)
2.4.4 VSM(樣品振盪磁測試儀測量)
2.4.5 微波吸收測試
3. 結果與討論
3.1 溶膠-凝膠傅立葉紅外線光譜儀(FT-IR)分析
3.2 粉體的X光繞射圖譜分析
3.2.1 水溶液燃燒法合成粉體的X光繞射圖譜分析
3.2.1 水熱法合成粉體的X光繞射圖譜分析
3.3 微結構特性分析
3.3.1 水溶液燃燒法合成錳鋅鐵氧磁體微結構特性分析
3.3.2 水熱法合成錳鋅鐵氧磁體微結構特性分析
3.3.3 橡膠吸波膠體微結構特性分析-SEM及TEM照片
3.4 磁性值分析
3.4.1 水溶液燃燒法合成錳鋅鐵氧體粉體的磁性值分析
3.4.2 水熱法合成錳鋅鐵氧體粉體的磁性值分析
3.5 微波吸收特性分析
4. 結論
參考文獻
附錄A 水溶液燃燒法合成粉體的X光繞射圖譜分析
附錄B 水溶液燃燒法合成粉體的X光繞射圖譜之d值及晶相
附錄C 水溶液燃燒法合成粉體的SEM照片
附錄D 水溶液燃燒法合成粉體的磁滯迴線圖譜
自傳


[1]Botta, P. M., Bercoff, P. G., Aglietti, E. F., Bertorello, H.R., and Porto López, J. M., “Two alternative synthesis routes for MnZn ferrites using mechanochemical treatments,” Ceramics International, Vol. 32, pp. 857-863, 2006.
[2]Papazoglou, P., Eleftheriou, E., and Zaspalis, V. T., “Low sintering temperature MnZn-ferrites for power applications in the frequency region of 400 kHz,” Journal of Magnetism and Magnetic Materials, Vol 296, pp. 25-31 , 2006.
[3]刑麗英,隱形材料,新文京開發出版股份有限公司,台灣, 2006年。
[4]Wang, H., Ma, Y., Yi, G., and Chen, Y. D., “Synthesis of Mn-doped Zn2SiO4 rodlike nanoparticles through hydrothermal method,” Materials Chemistry and Physics, Vol 82, pp. 414-418, 2003.
[5]Hu, X., Guan, P., and Yan, X., “Hydrothermal synthesis of nano-meter microporous zinc ferrite,” China Particuology, Vol 2, pp. 135-137, 2004.
[6]Lu, X., Tao, Z., and Jia, M., “Hydrothermal synthesis of Mn–Zn ferrites from spent alkaline Zn–Mn batteries,” Particuology, Vol 7, pp. 491-495, 2009.
[7]Xiao, Q., “Synthesis and characterization of 3D ZnO superstructures via a template-free hydrothermal method,” Powder Technology, Vol 189, pp. 103-107, 2009.
[8]Wang, J. F., Ponton, C. B., and Harris, I. R., “A study of Sm-substituted SrM magnets sintered using Hydrothermally synthesised powders,” Particuology, Vol 7, pp. 491-495, 2009.
[9]Xiao, S. H., Jiang, W. F., Li, L. Y., and Li, X. J., “Low-temperature auto-combustion synthesis and magnetic properties of cobalt ferrite nanopowder,” Materials Chemistry and Physics, Vol 106, pp. 82-87, 2007.
[10]Suresh, P., Rodrigues, S., Shukla, A. K., Vasan, H. N., and Munichandraiah, N., “Synthesis of LiCo1−xMnxO2 from a low-temperature route and characterization as cathode materials in Li-ion cells,” Solid State Ionics, Vol 176, pp. 281-290, 2005.
[11]Kishan, J., Mangam, V., Reddy, B. S. B., Das, S., and Das, K., “Aqueous combustion synthesis and characterization of zirconia–alumina nanocomposites,” Journal of Alloys and Compounds, Vol 490, pp. 631-636, 2010.
[12]Iano, R. and Barvinschi, P., “Solution combustion synthesis of calcium zirconate, CaZrO3, powders,” Journal of Solid State Chemistry, Vol 183, pp. 491-496, 2010.
[13]Yan, S., Ling, W., and Zhou, E.,“Rapid synthesis of Mn0.65Zn0.35Fe2O4/SiO2 homogeneous nanocomposites by modified sol–gel auto-combustion method,” Journal of Crystal Growth, Vol 273, pp. 226-233, 2004.
[14]Zheng, Z. G., Zhong, X. C., Zhang, Y. H., Yu, H. Y., and Zeng, D. C., “Synthesis, structure and magnetic properties of nanocrystalline ZnxMn1−xFe2O4 prepared by ball milling,” Journal of Alloys and Compounds, Vol 466, pp. 377-382, 2008.
[15]Kong, L. B., Zhu, W., and Tan, O. K., “Preparation and characterization of Pb(Zr0.52Ti0.48)O3 ceramics from high-energy ball milling powders,” Materials Letters, Vol 42, pp. 232-239, 2000.
[16]Dunlap, R. A., Alghamdi, A., O’Brien, J. W., and Penney, S. J., “A Mössbauer effect investigation of superparamagnetic behavior in ball milled Mn–Zn ferrites,” Journal of Alloys and Compounds, Vol 365, pp. 84-88 , 2004.
[17]Xia, A. and Zhang, H., “Effects of excessive Zn2+ ions on intrinsic magnetic and structural properties of Ni0.2Zn0.6Cu0.2Fe2O4 powder prepared by chemical coprecipitation method,” Current Applied Physics, Vol 10, pp. 825-827, 2010.
[18]Zi, Z. F., Sun, Y. P., Zhu, X. B., Yang, Z. R., Dai, J. M., and Song, W. H., “Synthesis of magnetoresistive La0.7Sr0.3MnO3 nanoparticles by an improved chemical coprecipitation method,” Journal of Magnetism and Magnetic Materials, Vol 321, pp. 2378-2381, 2009.
[19]Hsiang, H. I., and Yao, R. Q., “Hexagonal ferrite powder synthesis using chemical coprecipitation,” Materials Chemistry and Physics, Vol 104, pp. 1-4, 2007.
[20]賴元泰,王宏文“電磁波吸收材質之研究”,中原大學化學系碩士學位論文,2002。
[21]Huang, P., Deng, L. J., Xie, J. X., Liang, D. F., and Chen, L., “Effect of BST Additive on The Complex Permeability and Permittivity of Z-Type Hexaferrite in The Range of 1MHz-1GHz,” Journal of Magnetism and Magnetic Materials, Vol. 271, pp. 97-102, 2004.
[22]Yu, X. M., Zhou, W. C., Luo, F., Zheng, W. J. and Zhu, D. M., “Effect of Fabrication Atmosphere on Dielectric Properties of SiC/SiC Composites,” Journal of Alloys and Compounds, Vol. 479, L1-L3, 2009.
[23]Feng, J., Guo, L. Q., Xu, X., Qi, S. Y., and Zhang, M. L., “Hydrothermal synthesis and characterization of Mn1-xZnxFe2O4 nanoparticles,” Physica B, Vol 394, pp.100-103, 2007.
[24]Ramajo, L. A., Cristobal, A. A., Botta, P. M., Porto Lopez, J. M., Reboredo, M. M., and Castro, M. S., “Dielectric and magnetic response of Fe3O4/epoxy composites,” Composites Part A: Applied Science and Manufacturing, Vol 40, pp. 388-393, 2009
[25]Qi, X., Yang, Y., Zhong, W., Deng, Y., Au, C., and Du, Y., “Large-scale synthesis, characterization and microwave absorption properties of carbon nanotubes of different helicities,” Journal of Solid State Chemistry, Vol. 182, pp. 2691-2697, 2009.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top