(3.80.6.131) 您好!臺灣時間:2021/05/15 01:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:王建亞
研究生(外文):Wang Chien-Ya
論文名稱:彈藥儲存安定性監測之感測元件材料之研究
論文名稱(外文):Ammunition Storage Stability of the Sensing Element to Monitor the Materials Research
指導教授:張章平
指導教授(外文):Chang Chang-Pin
口試委員:李世鵬王楀譚張章平洪耀勳何子萬
口試委員(外文):Lee Shih-PingWang Yu-TanChang Chang-PinHong Yaw-ShunHo Chi-Man
口試日期:2011-05-12
學位類別:碩士
校院名稱:國防大學中正理工學院
系所名稱:應用化學碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:69
中文關鍵詞:二氧化氮靈敏度複合吸附材料氣體感測器多璧奈米碳管
外文關鍵詞:sensitivityNO2sensoradsorptionMWCNTs
相關次數:
  • 被引用被引用:1
  • 點閱點閱:118
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
國軍近年來因為儲存彈藥自燃,爆炸等因素,造成財產損失及軍譽受損更是難以估計,分析其原因,主要是因為我國軍彈藥久儲,易造成彈藥中的火炸藥變質,增加屯儲不確定性。本研究應用奈米碳管的導電性、比表面積及吸附特性,作為氣體感測器的感測材料基材,以甲基乙基酮 (Methyl Ethyl Ketone, MEK)為分散劑,配合四種功能性高分子(分別為Poly(Vinyl/Pynolidone) (PVP)、Poly(Ethylene Adipate) (PEA)、Poly(Methyl/Trifluoropropyl Siloxanc) (OV-210)及Polystyrene(PS) ),使用半導體黃光製程,製作感測器吸附材料元件,比較奈米碳管與不同高分子製作的氣體感測元件,在不同二氧化氮氣體濃度條件下的氣體感測性質分析。本研究使用原子力顯微鏡(AFM)與掃描式電子顯微鏡(SEM)觀察元件表面形貌與微結構,以熱重分析儀(TGA)量測材料的熱安定性,並觀察量測各項性質對氣體感測的導電性影響。
由AFM可知元件材料吸附二氧化氮後有澎潤現象。以SEM觀察元件材料表面形貌發現皆具細微孔洞,有利於感測氣體吸附。實驗結果顯示奈米碳管/聚苯乙烯,吸脫附的變化穩定度較純奈米碳管製成的感測材料佳。操作靈敏度隨感測氣體NO2濃度增加而增加。奈米碳管/高分子複合吸附材料,脫附過程僅以氮氣吹除即可,可有效簡化感測器製程。

There are many bomb explosions assistant in Army. The feasibility of thin-film chemical sensors based on carbon nanotubes-functional polymer nanocomposite to reialy detect NO2 has been studied. The sensors were exposed to NO2 with air. Therefore, a serirs of nanocomposite sensors array on silicon wafer microelectrode substrate using micromachining technology. In this study, commercial Multi-wall carbon nanotubes(MWCNTs) were modified with polymer like Poly(Vinyl /Pynolidone) (PVP)、Poly(Ethylene Adipate) (PEA)、Poly(Methyl/Trifluoropropyl Siloxanc) (OV-210) and Polystyrene(PS) and applied to NO2 adsorption.
The atomic force microscope (AFM) and scanning electron microscope (SEM) were used to observe the surface morphology. The physicochemical properties were by Thermogravimetry (TGA). The absorption NO2 was analyed under MWCNTs/ polymers sensor condition by Digital Souremeter (Keithley Setup2410). The sensors are carbon nanotubes-polymer nanocomposite films, which swell reversibly and cause a resistance change upon exposure to a wide variety of NO2. The resistance of carbon nanotubes-polymer nanocomposite films increase with the increasing of NO2. The sensitivity for NO2 depends on the operation temperature, which is at room temperature. The MWCNTs/Polystyrene thin film shows higher sensitivity for NO2, more than the MWCNTs thin film.

目錄

誌謝 ii
摘要 iii
ABSTRACT iv
目錄 v
表目錄 vii
圖目錄 viii
1.緒論 1
1.1 研究緣起 1
1.2 研究目的 4
1.3 研究流程 5
2.文獻回顧 6
2.1 奈米碳管 6
2.1.1 基本特性 6
2.1.2 奈米碳管的應用 8
2.1.3 奈米碳管之合成與製備方法 10
2.2 吸附理論 15
2.2.1 物理吸附與化學吸附 15
2.2.2 液相吸附擴散機制 17
2.2.3 吸附曲線 18
2.2.4 等溫吸附曲線 20
2.2.5 影響吸附之因素 21
2.2.6 奈米碳管的吸附現象 22
2.3 感測器 23
3. 實驗方法 27
3.1 實驗藥品 28
3.2 實驗儀器設備 28
3.3 電阻式氣體感測器元件及複合材料製作 29
3.3.1 半導體製程矽晶基材 29
3.3.2 奈米碳管溶液製備 30
3.3.3 複合材料感測薄膜製備 30
3.3.4 奈米碳管/高分子感測薄膜製備 31
3.4 氣體感測實驗條件 32
3.5 氣體感測之數據分析 34
4. 結果與討論 35
4.1 奈米碳管/高分子複合材料氣體感測器元件特性分析 35
4.1.1 AFM表面膨潤分析 35
4.1.2 多壁式奈米碳管/高分子複合材料感測薄膜FE-SEM圖 42
4.1.3 TGA熱重分析 44
4.2 感測吸、脫附氣體流量探討 46
4.2.1 靈敏度 53
4.2.2 鑑別度討論 55
4.2.3 不同濃度之感測研究 58
5. 結論 61
參考文獻 62
自傳 69


參考文獻

[1] 莊啟磊、趙文成,“彈藥儲存安全管理與應變對策之研究”,碩士論文,國立交通大學,第1-3頁,2007。
[2] Kannan, G. K. and Kappor, J. C., “Adsorption studies of carbowax and poly dimethyl siloxane to use as chemical array for nitro aromatic vapour sensing,” Sensors and Actuators B, Vol. 110, pp. 312-320, 2005.
[3] 張章平、葉早發、袁俊龍,“火炸藥和炸藥殘跡性質檢測之研究”,黃埔學報,第五十二期,第71-90頁,2007。
[4] 李元堯,“21世紀的尖端材料-奈米碳管”,化工技術,第11卷,第2期,第140-159頁,2003。
[5] 洪昭南、徐逸明、王宏達,“奈米碳管結構及特性簡介”,化工,第49卷,第1期,第23-30頁,2002。
[6] Iijima S., “Helical Microtubules of Graphitic Carbon,” Nature, Vol. 354, pp.56,1991.
[7] 王裕祥,“利用高分子材料及電弧放電法製造奈米碳管”,碩士論文,中正大學化學工程研究所,第3-12頁,嘉義,2002。
[8] 化工產業技術知識網: http://www.chemtech.com.tw
[9] 麥富德,“碳奈米管專利地圖及分析Carbon Nanotube Eng 麥富德等作”,行政院國科會科資中心,台北,2002。
[10] 黃建良、黃淑娟,“奈米碳纖與奈米碳管合成技術簡介”,化工,第50卷,第2期,第18-25頁,2003。
[11] Jing, K. N. F., Zhou, C., Michael G. C, Shu, P., Cho, K., and Dai, H., “Nanotube Molecular Wires as Chemical Sensors,” Science, Vol. 287, pp.622-625, 2000.
[12] Tans, S. J., Alwin, R. M. V., and Cees D., “Room-Temperature Transistor Based on a Single Carbon Nanotube,” Nature, Vol. 393, pp.49-51, 1998.
[13] Snow, E. S., Perkins F. K., Houser E. J., Badescu S. C., and Reinecke T. L., “Chemical Detection with a Single-Walled Carbon Nanotube Capacitor,” Science, Vol. 307, pp.1942-1945,2005.
[14] Colomer, J. F., Benoit, J. M., Stephan, C., Lefrant, S., Tendeloo, G. Van., and Nagy, J. B., “Characterization of Single-Wall Carbon Nanotubes Produced by CCVD Method,” Chemical Physics Letters, Vol. 345, pp.11-17, 2001.
[15] 奈米科學網: http://nano.nchc.org.tw/
[16] 工業污染防治技術手冊-有機溶劑污染控制,1995。
[17] 吳錦昆,“氧化鋁吸附地下水中砷之研究”,碩士論文,成功大學環境工程學系,台南,1999。
[18] 邱誌忠,“半導體產業高濃度含砷廢水之處理-化學沈降法與活性碳吸附法之評估”,碩士論文,中興大學環境工程學系,台中,2004。
[19] Brunauer, S., L. S. Deming, W. S. Deming, and E. Teller, J. Am. Chem.Soc.,Vol. 62, pp.1723,1940.
[20] 劉明翰,“粉狀活性碳吸附氯化汞之研究:操作參數之影響及恆溫吸附模式之建立”, 碩士論文,國立中山大學環境工程研究所,高雄,2001。
[21] 林哲仁,活性碳之評估與選擇”,環境工程會刊,第六卷,第一期,第23-24頁,1995。
[22] 劉曾旭,“活性碳製造技術及應用”,產業調查與技術 第一二七期,第84-88頁,1999。
[23] Paul, C. J. and Wu, S., “Acid/Base-Treated Activated Carbons: Characterization of Functional Groups and Metal Adsorptive Properties,” Langmuir, Vol. 20, pp.2233-2242, 2004.
[24] Julien F., Baudu M., and Mazet M., “Relationship Between Chemical and Physical Surface Properties of Activated Carbon,” Water Research, Vol. 32, pp.3414-3424, 1998.
[25] Franz, M., Arafat, H. A., and Pinto, N. G., “Effect of Chemical Surface Heterogeneity on the Adsorption Mechanism of Dissolved Aromatics on Activated Carbon,” Carbon, Vol. 38, pp.1807-1819, 2000.
[26] Figueiredo, J. L., Pereira, M. F. R., Freitas M. M. A., and Orfao J. J. M., “Modification of the Surface Chemistry of Activated Carbon,” Carbon, Vol. 37, pp.1379-1389, 1999.
[27] Li, L., Quinlivan, P. A., and Knppe, D. R. U., “Effect of Activated Carbon Surface Chemistry and Pore Structure on the Adsorption of Organic Contaminants from Aqueous Solution,” Carbon, Vol. 40, pp.2085-2100, 2002.
[28] 林哲仁,“淺談活性碳吸附現象之影響因素”,環境工程會刊,第六卷,第二期,第14頁,1995。
[29] Long, R. Q. and Yang, R. T., “Carbon Nanotube as Superior Sorbent for Dioxin Removal,” Journal of the American Chemical Society, Vol. 123, pp.2058-2059, 2001.
[30] Li, Y. H., Shuguang, C. A., Zhao, D. Z., Xianfeng, X. C., Luan, Z. R. D., Liang J, Wu, D., and Wei B., “Adsorption of Fluoride from Water by Amorphous Alumina Supported on Carbon Nanotubes, ” Chemical Physics Letters, Vol. 350, pp.412-416, 2001.
[31] Akihiko, F., Kenji, I., Hiroyoshi, S., Hiromichi, K., Yutaka, M., Shinzou, S., and Yohji, A., “Gas Adsorption in the Inside and Outside of Single-Walled Carbon Nanotubes,” Chemical Physics Letters, Vol. 336, pp.205-211, 2001.
[32] Li, Y. H., Wang, S., Luan, Z., Ding, J., and Xu, C., “Adsorption of Cadmium(Ⅱ) from Aqueous Solution by Surface Oxidized Carbon Nanotubes,” Carbon, Vol. 41, pp.1057-1062, 2003.
[33] Li, Y. H., Wang, S., Wei, J., Zhang, X., Xu, C., Luan, Z., Wu, D., and Bingqing, W., “Lead Adsorption on Carbon Nanotubes,” Chemical Physics Letters, Vol. 357, pp.263-266, 2002.
[34] Peng, X., Li, Y., Luan, Z., Di, Z., Wang, H., Tian, B., and Jia, Z., “Adsorption of 1,2-Dichlorobenzene from Water to Carbon Nanotubes,” Chemical Physics Letters, Vol. 376, pp.154-158, 2003.
[35] Li, Y. H, Ding, J., Luan, Z, Di, Z., Zhu, Y., Xu, C., Wu, D., and Wei, B., “Competitive Adsorption of Pb2+, Cu2+and Cd2+ Ions from Aqueous Solutions by Multiwalled Carbon Nanotubes,” Carbon, Vol. 41, pp.2787-2792, 2003.
[36] Lu, C., Chung, Y. L., and Chang, K. F.o, “Adsorption of Trihalomethanes from Water with Carbon Nanotubes,” Water Research, Vol. 39, pp.1183-1189, 2005.
[37] 吳仁彰,“電子鼻技術簡介”,科儀新知,第21卷,第5期,第86頁,2003。
[38] 陶德和,“電流式氣體感測器簡介”科儀新知,第15卷,第2,第64頁,1993。
[39] Noboru, Y., “Toward innovations of gas sensor technology,” Sensors and Actuators B, Vol. 108, pp.2-14, 2005.
[40] Hakansson, K., Coorey, R. V., Zubarev, R. A., Talrose, V. L., and Hakansson, P., “Low-Mass Ions Observed in Plasma Desorption Mass Spectrometry of High Explosives, ” Journal of Mass Spectrometry , Vol 35, pp.337-346,2000.
[41] Sylvia, J. M., Janni, J. A., Klein, J. D., and Spencer, K. M., “Surface-Enhanced Raman Detection of 2,4-Dinitrotoluene Impurity Vapor as a Marker To Locate Landmines, ” Analytical Chemistry, Vol. 72, pp. 5834-5840, 2000.
[42] Anferov, V. P., Mozjoukhine, G. V., and Fisher, R., Review of Scientific Instruments, Vol. 1656, pp.71-82, 2000.
[43] Luggar, R. D., Farquharson, M. J., Horrocks, J. A., and Lacey, R. J., “Multivariate analysis of statistically poor EDXRD spectra for the detection of concealed explosives,” X-Ray Spectrometry, Vol. 27, pp.87, 1998.
[44] Krausa, M. and Schorb, K., “Trace detection of 2,4,6-trinitrotoluene in the gaseous phase by cyclic voltammetry,” Journal of Electroanalytical Chemistry., Vol. 461, pp. 10, 1999.
[45] Wallis, E., Griffin, T. M., Popkie, N., Eagan, M. A., McAtee, R. F., Vrazel, D., and McKinly, J., Proc. SPIE-Int. Soc. Opt. Eng. , Vol. 54 ,pp.5795-5801 , 2005.
[46] Burroughes, J. H., Bradley, D. D. C., Brown, A. R., Marks, R. N., Mackay, K., Friend, R. H., Burn, P. L., Holmes, A. B., “Light-emitting diodes based on conjugated polymers,” Nature, Vol. 347, pp.539-542, 1990.
[47] Timmer, B., Olthuis, W., and Berg, D. V. A., “Ammonia Sensors and their Applications a Review,” Sensors and Actuators. B, Chemical, Vol. 107, pp.666-677, 2005.
[48] Li, J., Lu, Y., Ye, Q., Cinke, M., Han, J., and Meyyappan, M., “ Carbon Nanotube Sensors for Gas and Organic Vapor Detection,” NANO LETTERS, Vol. 3, pp.929-933, 2003.
[49] Bai H. and Shi G., “Gas Sensors Based on Conducting Polymers,” Sensors, Vol.7, pp.267-307, 2007.
[50] Nicolas-Debarnot D. and Ponchin-Epaillard F., “Polyaniline as a New Sensitive Layer for Gas Sensors,” Analytica Chimica Acta, Vol. 475, pp.1-15, 2003.
[51] Kong, J., Franklin, N. R., Zhou, C., Chapline, M. G., Peng, S., Cho, K., and Dai1, H., “Nanotube Molecular Wires as Chemical Sensors,” Science, Vol. 287, pp.622-625, 2000.
[52] Sinha, N., Ma, J., and Yeow, J., “Carbon Nanotube-Based Sensors,” Journal of Nanoscience and Nanotechnology, Vol.6, pp.573-590, 2006.
[53] Kong, J., Franklin, N. R., Zhou, C., Chapline, M. G., Peng, S., Cho, K., and Dai1 H., “Nanotube Molecular Wires as Chemical Sensors,” Science, Vol.287, pp.622-625, 2000.
[54] Varghese, O. K, Kichambre, P. D., Gong, D., Ong, K. G., Dickey, E. C., and Grimes, C.A., “Gas Sensing Characteristics of Multi-Wall Carbon Nanotubes, ” Sensors and Actuators. B, Chemical, Vol. 81, pp.32-41, 2001.
[55] Wanga, S. G., Zhanga, Q., Yanga, D. J., Sellinb, P. J., and Zhongc, G. F., “Multi-Walled Carbon Nanotube-Based Gas Sensors for NH3 Detection,” Diamond and Related Materials, Vol.13, pp.1327-1332, 2004.
[56] Bekyarova, E., Davis, M., Burch, T., Itkis, M. E., Zhao, B., Sunshine, S., and Haddon, R. C., “Chemically Functionalized Single-Walled Carbon Nanotubes as a Ammonia Sensors,” The Journal of Physical Chemistry. B, Vol.108, pp.19717-19720, 2004.
[57] Zhang, T., Nix, M. B., Yoo, B. Y., Deshusses, M. A., and Myung, N. V., “Electrochemically Functionalized Single-Walled Carbon Nanotube Gas Sensor,” Electroanalysis, Vol.18, pp.1153-1158, 2006.
[58] Sayago, I., Santos, H., Horrillo, M.C., Aleixandre, M., Fernández, M.J., Terrado, E., Maser, W. K., Benito , A. M., Martinez, M. T., Gutiérrez, J., and Muñoz, E., “Multi-Walled Carbon Nanotube Networks as Gas Sensors for NO2 Detection,” IEEE Acoustics, Speech, and Signal Processing Newsletter, Vol.10, pp.1035-1038, 2007.
[59] Jang, Y. T., Moon, S., Ahn, J. Ho., Lee, Y. Hi., and Ju, B. Kwon., “A Simple Approach in Fabricating Chemical Sensor Using Laterally Grown Multi-Walled Carbon Nanotubes ,” Sensors and Actuators B: Chemical, Vol. 99, pp.118-122, 2004.
[60] Sayago, I., Terrado, E., Lafuente, E., Horrillo, M. C., Maser, W. K., Benito, A. M., Navarro, R., Urriolabeitia, E. P., Martinez, M. T., and Gutierrez, J., “Hydrogen Sensors Based on Carbon Nanotubes Thin Films,” Synthetic Metals, Vol.148, pp.15-19, 2005.
[61] 楊宗燁、林鴻明、章俊龍、季松平,“半導體氣體感測器與特性自動化測試系統”,電機月刊,第十二卷,第六期,第232-240頁,2002。
[62] Li, B. and Santhanam, S., “Inkjet Printed Chemical Sensor Array Based on Polythiophene Cconductive Polymers,” Sensors and Actuators. B, Chemical, Vol. 123, pp651-660, 2007.
[63] Coleman, J. N., Curran, S., Dalton, A. B., Davey, A. P., McCarthy, B., Blau, W., and Barklie, R. C., “Percolation-Dominated Conductivity in a Conjugated-Polymer-Carbonnanotube Composites,” PHYSICAL REVIEW B, Vol. 58,pp.7492-7495, 1998.
[64] Bavastrello, V., Ram, M. K., and Nicolini, C., “Synthesis of Multiwalled Carbon Nanotubes and Poly(o-Anisidine) Nanocomposites Material: Fabrication and Characterization of its Langmuir-Schaefer Films,” Langmuir, Vol. 18, pp1535-1541, 2002.
[65] Lonergan, M. C., Severin, E. J., Doleman, B. J., and Beaber, S. A., “Array-Base Vapor Sensing Using Chemically Sensitive, Carbon Black-Polymer Resistors,” Chem.Mate, Vol. 8,pp.2298-2312, 1996.
[66] 游狄憬,“氣體感測晶片材料之研究”,碩士論文,國防大學理工學院,桃園,第51-84頁,2008。
[67] Kim, T, J., Kim, S. D., Min, N. Ki., James, J. P., Lee, C. Jin., and Kim, S. Won., “NH3 Sensitive Chemiresistor Sensors Using Plasma Functionalized Multiwall Carbon Nanotubes/Conducting Polymer Composites ,” IEEE, Vol. 8, pp.208-211, 2008.
[68] 高振育,“半導體元件概論講義-黃光微影技術與應用(一),(二)電漿技術在光電產業之應用”,2007年教育部影像顯示科技人才培育計畫,黎明技術學院電機系,台北縣,第3頁,2007。
[69] 明鑫科技公司,http://www.anp.com.tw/main02-a2.htm
[70] 盧慧卿,“微型電阻式感測元件偵測揮發性有機物之研究” 碩士論文,國防大學理工學院應用化學研究所,第41,48-94頁,桃園,2009。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top