(18.206.238.77) 您好!臺灣時間:2021/05/17 18:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:顏瑞良
研究生(外文):Yan, Rui-Liang
論文名稱:剪切增稠奈米漿料應用於液體裝甲之研究
論文名稱(外文):Shear thickening fluids applied to the study of liquid armor
指導教授:葛明德葛明德引用關係張章平
指導教授(外文):Ger, Ming-DerChang, Chang-Pin
口試委員:周進義陳幼良胡文華
口試委員(外文):Zhou, Jin-YiChen, Yu-LiangHu, Wen-Hwa
口試日期:2011-05-12
學位類別:碩士
校院名稱:國防大學中正理工學院
系所名稱:應用化學碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:75
中文關鍵詞:液態裝甲剪切增稠液體流變性質奈米顆粒
外文關鍵詞:Liquid ArmorShear Thickening FluidNanoparticlesRheological Properties
相關次數:
  • 被引用被引用:0
  • 點閱點閱:849
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究係利用奈米漿料研製剪切增稠液體(Shear thickening fluid, STF),這是一種新型的防彈材料,該材料有別於一般傳統防彈材料,具輕巧及撓曲性佳且又有抗彈的特殊功能,在傳統的防彈材料要同時兼具這樣的特殊功能幾乎是不太可能,而研製這樣的新型防彈材料,不僅可以改善目前國軍所使用厚重的防彈衣,對於醫療的防護材料及民生工業的減震材料上,也將會有一般傳統材料所無法達到的物理特性。
本研究以奈米、次微米二氧化矽(SiO2)粒子、多壁奈米碳管(MW-CNT)、聚乙二醇及乙二醇等為原料,選擇聚乙二醇或乙二醇溶劑作為分散介質,經攪拌使二氧化矽粒子或奈米碳管在溶劑中進行分散,並以流變儀測量黏度曲線,另研究表面改質二氧化矽或多壁奈米碳管接枝氫氧官能基(-OH)對黏度之影響。實驗中以流變儀在高剪切速率條件下獲得之黏度曲線,為本研究材料選擇之重要依據,配合不同織物以氣槍及90公厘普通彈彈道測試分析,其測試分析為應用於液體裝甲之關鍵參數。
利用奈米漿料之剪切增稠特性,本研究也研製耐衝擊減震複合材料,雖然STF有極佳的剪切增稠效能,但奈米漿料無法定型之缺點在減震材料應用上形成了很大的問題,而目前耐衝擊的減震材料市售英國d3o產品,以類似橡膠墊片形式販售,但不提供尚未定型的膠體材料,因此在產品設計上有頗多限制。而本研究將製備完成之STF加入不同比例之室溫硬化型矽橡膠(Room temperature vulcanized, RTV),以熱壓模方式製備耐衝擊減震複合材料,當瞬間衝擊產生時,可達到吸收衝擊力之效果,以確保其物理結構完整,功能亦可正常遂行,對於民生工業、老人照護及個人防護裝備等均可運用。

Shear thickening fluid (STF) has found its applications in protective materials recently. Generally, the STF consists of colloidal silica particles, their average size being about 450nm, being dispersed in a liquid solvent. However, the particle size of the particles has tremendous influence on the rheological behavior of the suspension. Therefore, in this study, shear thickening behaviors of nano silica , submicron silica and carbon nanotubes dispersions in ethylene glycerol (EG) and polyethylene glycol (PEG) have been studied with rheometer. The dispersion stabilities, thermal characteristics and rheological behaviors of silica suspensions were studied to elucidate the effects of particle size and solid content. This paper also presents an experimental research regarding the ballistic performance of STF-containing Kevlar fabrics and UHDPE. STF shows its potential in many possible civilian applications, such as protective equipment, motorcycle clothing and damping material.
The study, shear thickening behaviour and dispersions in room temperature vulcanized (RTV) and Shear thickening fluid have been studied with foam. The dispersion stabilities, thermal characteristics and rheological behaviors of silica suspensions were studied to elucidate the effects of particle size and solid content. This paper also presents an experimental research regarding the impact test performance of STF-RTV composite materials. STF-RTV composite materials shows its potential in many possible civilian applications, such as protective equipment, motorcycle clothing and damping material.
誌謝
摘要
ABSTRACT
目錄
表目錄
圖目錄
1. 緒論
1.1 前言
1.2 研究動機與目的
2. 文獻回顧
2.1 奈米漿料剪切增稠形成原理
2.1.1 流變性質
2.1.2 黏度量測概念
2.1.3 分子間作用力
2.1.4 分散技術
2.2 軟式防彈衣防彈機制
2.2.1 防彈纖維之材料結構
2.2.2 防彈纖維材料破壞原理
2.3 衝擊測試原理
2.3.1 彈道測試
2.3.2 落重式衝擊測試
2.4 熱塑性減震材料
2.5 蜂巢結構減震原理
3. 實驗
3.1 實驗步驟與流程
3.1.1 製備剪切增稠奈米漿料
3.1.2 二氧化矽表面接枝氫氧官能基(-OH)製備剪切增稠奈米漿料
3.1.3 以多壁奈米碳管製備剪切增稠奈米漿料
3.1.4 多壁奈米碳管表面接枝氫氧官能基(-OH)製備剪切增稠液體
3.1.5 剪切增稠奈米漿料與不同織物形成防彈織物複合材料
3.1.6 剪切增稠奈米漿料混摻室溫硬化型矽橡膠製備減震複合材料
3.1.7 蜂巢紙添加剪切增稠奈米漿料形成防護複合材料
3.2 實驗藥品
3.3 實驗儀器
3.4 其他特性檢測儀器
4. 結果與討論
4.1 剪切增稠奈米漿料黏度之影響
4.1.1 聚乙二醇不同分子量對剪切增稠液體黏度之影響
4.1.2 二氧化矽粒徑不同對剪切增稠液體黏度之影響
4.1.3 分析二氧化矽表面改質接枝氫氧官能基(-OH)對黏度之影響
4.1.4 分析多壁奈米碳管對剪切增稠液體黏度之影響
4.1.5 多壁奈米碳管表面改質接枝氫氧官能基(-OH)對黏度之影響
4.1.6 小結
4.2剪切增稠奈米漿料之穩定性
4.2.1 分析二氧化矽改質前後之熱穩定性
4.2.2 觀察剪切增稠液體粒子分散狀態
4.2.3 利用穩定度分析儀觀察剪切增稠液體之顆粒穩定性
4.2.4 小結
4.3 彈道測試
4.3.1 利用Kevlar剪切增稠複合材料以不同模式進行彈道測試
4.3.2 利用HDPE剪切增稠複合材料以不同模式進行彈道測試
4.3.4 小結
4.4 衝擊測試
4.4.1剪切增稠液體不同固含量之STF-RTV減震複合材料衝擊測試
4.4.2 不同比例之STF-RTV減震複合材料衝擊測試
4.4.3 小結
4.5 落鎚測試
4.5.1 Kevlar穿刺測試
4.5.2 Kevlar包覆剪切增稠防護材料穿刺測試
4.5.3 小結
5. 結論
參考文獻
[1] Lee, Y. S., Wetzel, E. D., Egres Jr, R. G., and Wagner, N. J., “Advanced Body Armor Utilizing Shear Thickening Fluids,” in Proceedings of the 23rd Army Science Conference, Orlando, FL, December, 2002.
[2] Egres Jr, R. G., Lee, Y. S., Kirkwood, J. E., Kirkwood, K. M., Wetzel, E. D., and Wagner, N. J., “Liquid armor: Protective fabrics utilizing shear thickening fluids,” IFAI , Vol. 4, pp. 26-27, 2004.
[3] Egres Jr, R. G., Decker, M. J., Halbach, C. J., Lee, Y. S., Kirkwood, J. E., Kirkwood, K. M., and Wagner, N. J., “Stab resistance of shear thickening fluid (STF)-kevlar composites for body armor applications,” in Proceedings of the 24rd Army Science Conference, Orlando, FL, 2 December, 2004.
[4] 李曉暉,實用流變學,石油工業出版社,北京,第1-25頁,1998。
[5] Cheeseman, B. A., and Bogetti, T. A., “Ballistic impact into fabric and compliant composite laminates,” Composite Structures, Vol. 61, pp. 161-173, 2003.
[6] Chassenieux, C., Nicolai, T., and Benyahia, L., “Rheology of associative polymer solutions,” Current Opinion in Colloid & Interface Science, Vol. 16, pp. 18-26, 2010.
[7] Ebagninin, K. W., Benchabane, A., and Bekkour, K., “Rheological characterization of poly(ethylene oxide) solutions of different molecular weights,” Journal of Colloid and Interface Science, Vol. 336, pp. 360-367, 2009.
[8] 伍秋美、阮建明、周忠誠、黄伯云,“SiO2/聚乙二醇非牛頓流體流變性能研究”物理化學學報,第二十二卷,第一期,第48-52頁,2006。
[9] Zhang, X. Z., Li, W. H., and Gong, X. L., “The rheology of shear thickening fluid(STF) and the dynamic performance of an STF-filled damper,” IOPscience, Vol. 17, pp. 1-7, 2008.
[10]Xu, H., and Liao, S. J., “Series solutions of unsteady magnetohydrodynamic flows of non-Newtonian fluids caused by an impulsively stretching plate,” J. Non-Newtonian Fluid Mech, Vol. 129, pp. 46-55, 2005.
[11]Choia, H. J., Vinay III, S. J., and Jhon, M. S., “Rheological properties of particle suspensions in a polymeric liquid,” Polymer, Vol. 40, pp. 2869-2872, 1999.
[12]Wetzel, E. D., Lee, Y. S., Egres Jr., R. G., Kirkwood, K. M., Kirkwood, J. E., and Wagner, N. J., “The Effect of Rheological Parameters on the Ballistic Properties of Shear Thickening Fluid (STF)-Kevlar Composites,” in Proceedings of the 8th International Conference on Numerical Methods in Industrial Forming Processes, Columbus, OH, June, pp. 13-17, 2004.
[13]Hassan, T. A., Rangari, V. K., and Shaik J., “Synthesis, processing and characterization of shear thickening fluid (STF) impregnated fabric composites,” Materials Science and Engineering A, Vol. 527, pp. 2892-2899, 2010.
[14]Lee, Y. S., Wetzel, E. D., and Wagner, N. J., “The ballistic impact characteristics of Kevlar woven fabrics impregnated with a colloidal shear thickening fluid,” Journal of Materials Science, Vol. 38, pp. 2825-2833, 2003.
[15]Lee, Y. S., and Wagner, N. J., “Rheological Properties and Small Angle Neutron Scattering of a Shear Thickening, Nanoparticle Dispersion at High Shear Rates,” Ind. Eng. Chem. Res, Vol. 45, pp. 7015-7024, 2006.
[16]Mahfuz, H., Clements, F., Rangari, V., Dhanak, V., and Beamson, G., “Enhanced stab resistance of armor composites with functionalized silica nanoparticles,” Journal of Applied Physics, Vol. 105, pp. 064307, 2009.
[17]Houghton, J. M., Schiffman, B. A., Kalman, D. P., Wetzel, E. D., and Wagner, N. J., “Hypodermic needle puncture of shear thickening fluid (STF)-treated fabrics,” To appear in Proceedings of SAMPE, 2007.
[18]Hassan, T. A., Rangari, V. K., and Jeelani, S., “Sonochemical synthesis and rheological properties of shear thickening silica dispersions,” Ultrasonics Sonochemistry, Vol. 17, pp. 947-952, 2010.
[19]薛敬和,高分子化學,高立圖書有限公司,台北,第31-45頁,1998。
[20]Clements, F. E., and Hassan, M., “Enhancing the stab resistance of flexible body armor using functionalized SiO2 nanoparticles,” International conference on composite materials, 2007.
[21]Tan, V.B.C., Tay, T.E., and Teo, W.K., “Strengthening fabric armour with silica colloidal suspensions,” International Journal of Solids and Structures, Vol. 42, pp. 1561-1576, 2005.
[22]Storhoff, J. J., Elghanian, R., Mucic, R.C., Mirkin, C. A., and Letsinger, R. L., “One-pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes,” Journal of the American Chemical Society, Vol. 120, pp. 1959-1964, 1998.
[23]Xia, X., Hu, Z., and Marquez, M., “Physically bonded nanoparticle networks: a novel drug delivery system,” Journal of Controlled Release, Vol. 103, pp. 21-30, 2005.
[24]Hui, C. L., Li, X. G., and Hsing, I. M., “Well-dispersed surfactant-stabilized Pt/C nanocatalysts for fuel cell application: Dispersion control and surfactant removal,” Electrochimica Acta, Vol. 51, pp. 711-719, 2005.
[25]Gojny, F. H., Wichmann, M. H. G., Kopke, U., Fiedler, B., and Schulte, K., “ Carbon nanotube-reinforced epoxy-composites: enhanced stiffness and fracture toughness at low nanotube content,” Composites Science and Technology, Vol. 64, pp. 2363-2371, 2004.
[26]Lotysz, S. “Mnich wynalazca,” Polonia, Vol. 13, pp. 68-71, and Vol. 14, pp. 64-67, 2007.
[27]http://www.airitilibrary.com/searchdetail.aspx?DocIDs=02539721-200608-27-8-80-84-a華藝線上圖書館。
[28]Zhang, H., Zhang, J., Chen, J., Hao, X., Wang, S., Feng, X., and Guo, Y., “Effects of solar UV irradiation on the tensile properties and structure of PPTA fiber,” Polymer Degradation and Stability, Vol. 91, pp. 2761-2767, 2006.
[29]Yang, F., Bai, Y., Min, B. G., Kumar, S., and Polk, M. B., “Synthesis and properties of star-like wholly aromatic polyester fibers,” Polymer, Vol. 44, pp. 3837-3846, 2003.
[30]Liu, S., Wang, J., Wang, Y., and Wang, Y., “Improving the ballistic performance of ultra high molecular weight polyethylene fiber reinforced composites using conch particles,” Materials and Design, Vol. 31, pp.1711-1715, 2010.
[31]黃英,玻璃鋼/複合材料,第六期,第35-39頁,1998。
[32]Wagner, N., Kirkwood, J. E., and Egres JR, R. G., “Shear thickening fluid containment in polymer composites,” US Patent Application 20060234572.
[33]Ferguson, J. R., “Impact shock absorbing material,” US Patent Application 20080172779.
[34]Tan, X., and Chen, X., “Parameters affecting energy absorption and deformation in textile composite cellular structures” Materials and design, Vol. 26, pp. 424-438, 2005.
[35]李卓勳,“功能性護膝製程技術與其性能評估”,中臺科技大學醫學工程暨材料研究所碩士論文,台中,2008。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top