(3.236.214.19) 您好!臺灣時間:2021/05/07 12:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:楊世一
研究生(外文):Yang, Shih-Yi
論文名稱:CoOx-Mg-SBA-15觸媒應用於乙醇蒸氣重組產氫之研究
論文名稱(外文):Catalysic Performance of CoOx-Mg-SBA-15 Catalysts on Steam Reforming of Ethanol
指導教授:汪成斌汪成斌引用關係
指導教授(外文):Wang, Chen-Bin
口試委員:吳仁彰許峰彰葉早發葉君棣
口試委員(外文):Wu, Ren-JangHus, Feng-ChangYeh, Tsao-FaYeh, Chuin-Tih
口試日期:2011-05-16
學位類別:碩士
校院名稱:國防大學中正理工學院
系所名稱:應用化學碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:101
中文關鍵詞:物理混合乙醇蒸氣重組氧化鈷
外文關鍵詞:Phisically mixedSteam reforming of ethanolCobalt oxides
相關次數:
  • 被引用被引用:0
  • 點閱點閱:147
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本實驗主要分成四個部分,第一部分以沈澱氧化法(Precipitation-oxidatin)製備高價的氧化鈷(CoOx)。以空間流速(Gas hour space velocity,GHSV)為22000 h-1,H2O / EtOH = 13的條件下進行乙醇蒸汽重組(Steam reforming of ethanol, SRE)活性測試得知CoOx於375 ℃時具有最佳氫產率(YH2 = 5.7)及較低一氧化碳的選擇率(SCO = 1.6 %)。
第二部分以水熱法(hydrothermal) 製備支撐物SBA-15,再以初濕含浸法(incipient wetness impregnation, IWI)將Co加入SBA-15及商購SiO2結構上,在相同條件下進行SRE活性評估,結果顯示Co20/SBA-15觸媒具較佳活性、低CO產物(TR = 475 ℃之YH2為5.7,TR = 425 ℃時SCO為0.43%)。
第三部分以以初濕含浸法(IWI)製備之CoxMgy/SBA-15系列觸媒,在不同還原溫度下進行SRE活性評估,顯示當還原溫度< 422 ℃會產生εCo結構,而> 422 ℃會產生αCo結構;在SRE反應中εCo易進行乙醇脫水反應,而αCo易進行乙醇脫氫反應。
第四部分為以物理混合方式將CoOx觸媒混摻Mg20/SBA-15進行SRE反應,當TR = 300 ℃時乙醇轉化率達100 %,TR = 425 ℃YH2達5.98,顯示本組觸媒具較佳活性及抗積碳能力。

This experiment mainly consists four parts. The first part introduces “Precipitation-oxidation” to make available expensive CoOx . With GHSV equals 22000 h-1 ,and H2O/EtOH ratio equals 13, we executed steam reforming of ethanol (SRE) activity test and acknowledged that at 375 ℃ the CoOx could reach the highest hydrogen production rate as high as 5.7(YH2 = 5.7) and a lower carbon monoxide selectance rate as low as 1.6 (SCO = 1.6 %)。
In the second part, we applied hydrothermal process to produce SBA-15 as supportive material, then exercised “Incipient Wetness Impregnation(IWI)” to put “Co" on SBA-15 and purchased SiO2 structure. Under the same condition, after exercising SRE activity test, it shows up that the catalyzer Co20/SBA-15 possessed higher activity and lower CO outcome(TR = 475 ℃, YH2 = 5.7,TR = 425 ℃, SCO = 0.43%)。
In the third part we also made use of CoxMgy/SBA-15 series catalyzer produced under IWI to exercise SRE activity tests at different reduction temperatures. It reveals that when the reduction temperature is less than 422 ℃ the εCo structure will come into existence, while the reduction temperature is higher than 422 ℃ αCo structure will come into existence. In SRE reaction εCo tends to proceed ethanol dehydration, while αCo tends to proceed ethanol dehydrogenation.
In the fourth part we phisically mixed CoOx catalyzer with Mg20/SBA-15 to carry SRE reaction. It was found that when TR equals 300 ℃ , XEtOH = 100 %,while TR = 425 ℃, the yield of hydrogen(YH2 = 5.98) was competed with the theoretical value. It was acknowledged that this blended catalyzer can provide higher activity and better anti carbon-accumulation capability.

誌謝 ii
摘要 iii
ABSTRACT iv
目錄 v
表目錄 viii
圖目錄 ix
1. 緒論 13
1.1 前言 13
1.2 製氫技術 14
1.3 乙醇製氫 17
1.4 中孔徑分子篩SBA-15之介紹 18
1.5 乙醇蒸汽重組文獻回顧 19
1.6 研究動機 20
2. 實驗 22
2.1 實驗藥品 22
2.2 觸媒製備 22
2.2.1 SBA-15支撐物之製備 23
2.2.2 CoOx觸媒製備 23
2.2.3 Cox/SBA-15觸媒製備 23
2.2.4 CoxMgx/SBA-15觸媒製備 23
2.3 觸媒之特性鑑定 24
2.3.1 熱分析(TGA) 24
2.3.2 X光粉末繞射(X-Ray Powder Diffraction, XRD) 28
2.3.3 程溫還原反應(Temperature Programmed Reduction, TPR) 28
2.3.4 穿透式電子顯微鏡(Transmission Electron Microscope, TEM) 28
2.3.5 表面積及孔徑量測(Brunauer, Emmett, Teller, BET) 29
2.3.6 感應耦合電漿原子放射光譜儀(ICP-AES) 30
2.3.7 元素分析儀(Elemental analyzer, EA) 30
2.4 觸媒的活性測試 32
2.4.1 活性測試裝置 32
2.4.2 活性測試數據計算 33
3. 結果與討論 37
3.1 SBA-15特性分析 37
3.1.1 表面型態與微結構之鑑定 37
3.1.2 孔洞性質之分析 37
3.2 CoOx觸媒的特性鑑定及SRE活性評估 41
3.2.1 CoOx觸媒特性鑑定 41
3.2.2 CoOx 觸媒SRE活性測試 41
3.2.3 經SRE反應後CoOx觸媒特性鑑定 45
3.2.4 CoOx觸媒SRE反應機制 48
3.3 Cox/SBA-15系列觸媒特性鑑定及SRE活性評估 49
3.3.1 Cox/SBA-15系列觸媒特性鑑定 49
3.3.2 Cox/SBA-15系列觸媒SRE活性測試 53
3.3.3 SRE反應後Cox/SBA-15系列觸媒特性鑑定 61
3.3.5 Cox/SBA-15系列觸媒SRE反應機制 66
3.4 CoxMgy/SBA-15系列觸媒特性鑑定及SRE活性評估 68
3.4.1 CoxMgy/SBA-15系列觸媒特性鑑定 68
3.4.2 CoxMgy/SBA-15系列觸媒SRE活性測試 72
3.4.3 經SRE反應後CoxMgy/SBA-15系列觸媒特性鑑定 83
3.4.4 CoxMgy/SBA-15系列觸媒SRE反應機制 88
3.5 CoOx + Mg20/SBA-15(P) 觸媒SRE活性評估 90
3.5.1 CoOx + Mg20/SBA-15(P)觸媒SRE活性測試 90
3.5.2 經SRE反應後CoOx + Mg20/SBA-15(P)觸媒特性鑑定 92
3.5.3 CoOx + Mg20/SBA-15(P)觸媒穩定性測試 95
4. 結論 97
參考文獻 98
自傳 101


[1]Dicer, I., “Technical, environmental and exergetic aspects of hydrogen energy systems,” International Journal of Hydrogen Energy, Vol. 27, pp. 265-285, 2002.
[2]Das, D. and Veziroglu, T. N., “Hydrogen production by biological processes: a survey of literature,” International Journal of Hydrogen Energy, Vol. 26, pp. 13-28, 2001.
[3]劉琳、錢建華,新能源,東北大學出版社,中國瀋陽,2009。
[4]Wiese W., Enonts B., and Peters R., “Methanol steam reforming in a fuel cell drive system,” Journal of Power Sources, Vol. 84, pp. 187-193, 1999.
[5]http://www.tfci.org.tw/Fc/fc1.asp , 臺灣燃料電池資訊網。
[6]曲新生、陳發林,氫能技術,五南圖輸出版股份有限公司,臺灣台北,第36-50頁,2006。
[7]孫豔、蘇偉、周理,氫燃料,化學工業出版社,中國北京,第63-97頁,2005。
[8]Calles J. A., Carrero A., and Vizcaino A. J., “Ce and La modification of mesoporous Cu – Ni/SBA-15 catalysts for hydrogen production though ethanol steam reforming,” Microporous and Mesoporous Materials, Vol. 119,pp.200 – 207, 2009.
[9]洪鈴雅,“奈米二氧化鈦粒子砍入中孔氧化矽材之合成與分析及性質之探討”,國立成功大學碩士論文,台南,第6-8頁,2007。
[10]楊淑雯,“中孔洞分子篩 SBA-15 之表面修飾”,國立中央大學碩士論文,桃園,第1-3頁,2004。
[11]Marcelo S. Batista, Rudye K.S. Santos, Elisabete M. Assaf, José M. Assaf, and Edson A. Ticianelli , “Characterization of the activity and stability of supported cobalt catalysts for the steam reforming of ethanol,” Journal of Power Sources, Vol. 124 pp. 99–103, 2003.
[12]Marcelo S. Batista, Rudye K.S. Santos, Elisabete M. Assaf, José M. Assaf, and Edson A. Ticianelli , “High efficiency steam reforming of ethanol by cobalt-based catalysts ,” Journal of Power Sources, Vol. 134, pp. 27–32, 2004.
[13]Cavallaro S., Chiodo V., Freni S., Mondello N., and Frusteri F., “Performance of Rh/Al2O3 catalyst in the steam reforming of ethanol : H2 production for MCFC,” Applied Catalysis A: General, Vol.249, pp. 119–128, 2003.
[14]Llorca Jordi, Piscina Pilar Ramı´rez de la, Dalmon Jean-Alain, and Homs Narcı´s, “Transformation of Co3O4 during Ethanol Steam-Re-forming. Activation Process for Hydrogen Production,” Chemistry of materials, Vol. 16, pp. 3573-3578, 2004.
[15]Llorca Jordi, Homs Narcís, Sales Joaquim, Fierro José-Luis G., and Piscina Pilar Ramírez de la, “Effect of sodium addition on the performance of Co–ZnO-based catalysts for hydrogen production from bioethanol,” Journal of Catalysis, Vol. 222, pp. 470-480, 2004.
[16]Vizcaino A.J., Carrero A., and Calles J.A., “Hydrogen production by ethanol steam reforming over Cu–Ni supported catalysts,” International Journal of Hydrogen Energy, Vol. 32,pp. 1450 – 1461, 2007.
[17]Vizcaino A.J., Carrero A., and Calles J.A., “Ethanol steam reforming on Mg- and Ca-modified Cu–Ni/SBA-15 catalysts,” Catalsis Today, Vol. 146,pp. 63 – 70, 2009.
[18]Llorca, J., Narc´ıs, H., Joaquim, S., and Pilar Ram´ırez, de la Piscina., “Efficient Production of Hydrogen over Supported Cobalt Catalysts from Ethanol Steam Reforming,” Journal of Catalysis, Vol. 209, pp. 306-317, 2002.
[19]Cavallaro, S. and Freni, S., “Steam Reforming in a Molten Carbonate Fuel Cell. A Preliminary Kinetic Investigation,” International Journal of Hydrogen Energy, Vol. 21, pp. 465-469, 1996.
[20]Llorca, J., Homs, N., and Piscina, Pilar, R. de la,“ In situ DRIFT-mass spectrometry study of the ethanol steam-reforming reaction over carbonyl-derived Co/ZnO catalysts,” Journal of Catalysis, Vol. 227, pp. 556–560, 2004.
[21]Llorca, J., Homs, N., Sales, J., Fierro, José-Luis, G., and Piscina, Pilar, R. de la, “Effect of sodium addition on the performance of Co–ZnO-based catalysts for hydrogen production from bioethanol,” Journal of Catalysis, Vol. 222, pp. 470-480, 2004.
[22]李嘉展,“氧化鈷觸媒應用於乙醇蒸氣重組反應之研究”,國防大學理工學院碩士論文,大溪,2005。
[23]Prakash D. V. and Alirio E. R.,“Review Insight into steam reforming of ethanol to produce hydrogen for fuel cells, ”Chemical Engineering Journal, Vol. 117, pp. 39-49, 2006.
[24]H. Wang, J.L. Ye, Y. Liu , Y.D. Li, and Y.N. Qin, “Steam reforming of ethanol over Co3O4/CeO2 catalysts prepared by different methods,” Catalysis Today, Vol 129, pp. 305–312, 2007.
[25]E. M. Kirkpatrick, Diandra L. Leslie-Pelecky, S.-H. Kim and R. D. Rieke, “Magnetic and strucral properties of Mg-Co nanostructures fabricated by chemical synthesis ” , Jounal of applied physics, Vol 85, 1994.
[26]http://www.cnnmol.com/Search/ResultView.aspx?conID=NmWR7hkvRiQ%3d, Mg – Co二元合金相圖。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔