跳到主要內容

臺灣博碩士論文加值系統

(98.80.143.34) 您好!臺灣時間:2024/10/10 15:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王雅稜
研究生(外文):Wang,Ya-Leng
論文名稱:無氰鍍鋅三價鉻化成膜老化之研究
論文名稱(外文):Influence of Aging Cr(III) Bath on the Corrosion Resistance of Cr(III) Conversion Coatings
指導教授:葛明德葛明德引用關係
指導教授(外文):Ger,Ming-Der
口試委員:林招松白清源陳彥政林秋進
口試委員(外文):Lin, Chao-SungBai, Ching-YuanChen, Yann-ChengLin, Chio-Jin
口試日期:2011-05-20
學位類別:碩士
校院名稱:國防大學中正理工學院
系所名稱:應用化學碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:87
中文關鍵詞:三價鉻化成膜耐蝕性老化pH值
外文關鍵詞:trivalent chromium coatingscorrosion resistanceagingpH
相關次數:
  • 被引用被引用:2
  • 點閱點閱:302
  • 評分評分:
  • 下載下載:26
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要探討無氰鍍鋅三價鉻化成膜老化,釐清三價鉻鍍液老化的關鍵因素,提供線上吊鍍與滾鍍系統三價鉻鍍液管理之參考。藉由管理化成液中銅、鋅離子含量與pH值範圍,可以有效增加三價鉻鍍液使用壽命,降低生產成本。
本實驗以化成膜巨觀形貌觀察其顏色變化,線性極化掃描檢測化成膜抗蝕性,電化學交流阻抗分析化成膜結構與皮膜阻抗,化成膜長時間耐蝕性以鹽霧測試觀察,由電子顯微鏡觀察微結構並使用X光電子能譜儀分析化成膜厚度及組成成份。
添加鋅與銅離子之研究結果顯示,鋅與銅離子容忍度分別低於12500 ppm與30 ppm。當雜金屬濃度超過容忍度時,化成膜外觀顏色變淡且有斑駁;線性極化掃描顯示化成膜腐蝕電流都有增加的趨勢;電化學交流阻抗分析中皮膜阻抗大幅降低,膜層結構複雜,鹽霧測試無法通過24小時;微觀結構表面形貌顯示化成膜披覆性不佳,造成基材裸露;由X光電子能譜儀分析發現化成膜厚度較薄且組成成份中鉻的氧化物比例下降,顯示當雜金屬濃度過高會導致化成膜組成與結構改變導致耐蝕性能下降。
化成液pH值對化成膜影響之研究,結果顯示pH值對化成膜外觀顏色影響最大;電化學交流阻抗檢測顯示高pH值化成膜相對結構鬆散;鹽霧腐蝕測試平均耐鹽霧時間縮短但仍維持120小時以上水準;由開環電位發現pH值升高成膜驅動力會變小,使得最佳成膜參數改變造成化成膜耐蝕性降低。
放大實驗觀察雜金屬影響的效應,結果顯示主要金屬離子消耗與鋅、銅金屬生成的速率極為緩慢,因此本系統之配方使用壽命很長,但是需要搭配pH值的調控,容忍度在pH 2.0到pH 2.3之間,都可以保持生產線上要求的耐鹽霧時間48小時以上。

This study was to explore non-cyanide zinc trivalent chromate film aging and clarify the trivalent chromium bath a key factor in aging. Provide a reference for the trivalent chromium solution management system which was using hanging plating and barrel plating. By managing copper, zinc ion content in the solution and the range of solution pH, can effectively increase the trivalent chromium solution life, reduce production costs.
In this experiment, using linear-polarized scanning to detect the corrosion resistance of film, electrochemical impedance to analysis structure and resistance. Observed the corrosion resistance of the film for a long time in salt spray test. Using electron microscope to observe the micro-structure, X-ray photoelectron spectroscopy to analysis the thickness and composition of the film.
Zinc-ions and copper-ions were added to the study showed that tolerance of zinc-ions and copper-ions were less than 12500 ppm and 30 ppm. When the concentration of mixed metal exceed the tolerance, the appearance of the film the color fades and there is mottled. Linear-polarization scanning showed that the corrosion of the film was increased. Electrochemical impedance analysis showed that the impedance of coating has greatly reduced, and the structure of the film was complex. Salt spray test was less than 24 hours. Microstructure morphology test showed that of the film has poor display of the coated, resulting in the substrate exposed. By the X-ray photoelectron spectroscopy analysis, when the thickness of film was thin, the composition ratio of chromium oxide were decreased. It indicated that when the complex of metal concentration is too high, it will lead to change in film composition and structure of the corrosion performance.
The study of pH value on the impact of film showed that the pH value has the greatest impact of the film color appearance. Electrochemical impedance analysis showed that the structure of film was loose when pH value was high. The average time of salt spray test was decreased, but still maintain the 120 hours or more hours. By the OCP test showed that when pH value increased, the driving force will become smaller. It makes the best parameters change, resulting in reduced corrosion resistance of the film.
Amplification Experimental observe the effect of the complex metal showed that consumption rate of primary metal ions and the production rate of zinc-ions and copper-ions were very slow. Therefore, formulation of this system has a long service life, but it is need to control the pH value between 2.0 to 2.3. The salt spray time is more than 48 hours. It can meet the requirements of the production line.

誌謝 ii
摘要 iii
ABSTRACT iv
目錄 vi
表目錄 viii
圖目錄 ix
1.緒論 1
1.1 前言 1
1.2 研究動機與目的 2
2.文獻回顧 3
2.1 電鍍鋅之發展 3
2.2 鉻酸鹽化成膜之發展 3
2.3 三價鉻成膜機制 4
2.4 化成液中雜金屬離子之影響 5
3.原理介紹 6
3.1 化成處理之原理 6
3.2 線性極化掃描法 6
3.3 電化學交流阻抗頻譜法 7
3.4 X光光電子能譜儀 10
3.5 序列式感應偶合電漿原子發散光譜儀 10
4.實驗方法 13
4.1 實驗藥品 13
4.2 實驗儀器 13
4.3 三價鉻試片製作的流程 14
4.3.1 線性極化檢測 16
4.3.2 電化學交流阻抗檢測 17
4.3.3微結構分析 17
4.3.4縱深成份分析 17
4.3.5 鹽霧腐蝕測試 17
4.3.6 序列式感應耦合電漿原子發散光譜儀檢測 18
5.結果與討論 19
5.1 化成液中鋅離子對皮膜的影響 19
5.2 鍍液中銅離子對皮膜的影響 44
表5. 4添加不同濃度銅離子之化 46
5.3化成液pH值對皮膜的影響 62
5.4 三價鉻鍍液先導生產之研究 75
6.結論與未來展望 81
6.1結論 81
6.2未來展望 82
參考文獻 83
自傳 87


[1]周淑金、王正全,“綠色表面處理-六價鉻替代技術的發展”,IECQ報導,第五十期,2006年9月。
[2]森河 務,“亜鉛めっきのクロメート処理の現状と将来(6価クロメート皮膜と代替クロメート皮膜)”,大阪府立産業技術総合研究所。
[3]島倉俊明,“アルミニウムの化成処理技術の変遷と動向”,化成処理の基礎と応用,第61期,pp223-231, 2010。
[4]軽部健志,“Zr 系を中心としたクロムフリー化成処理”,小特集アルミニウム化成処理の環境對應,pp710-714,2004。
[5]小林靖之,山下紀子,藤原裕,山下正通,“亜鉛めっき皮膜上へのセリウム含有化成処理皮膜の作製と耐食性評価”,表面技術,pp276-280,2004。
[6]Pareja, R., Ibáñez, R., Martín, F., Ramos-Barrado, J. R.,and Leinen D., “Corrosion behaviour of zirconia barrier coatings on galvanized steel,” Surface & Coatings Technology, Vol. 200, pp6606-6610, 2006.
[7]Buchheit, R. G., Guan, H., Mahajanam, S.,and Wong F., “Active corrosion protection and corrosion sensing in chromate-free organic coatings,” Progress in Organic Coatings, Vol. 47, pp174-182, 2003.
[8]Magalhaes, A. A. O., Margarit I. C. P.,and Mattos O.R., “Molybdate conversion coatings on zinc surfaces,” Journal of Electroanalytical Chemistry, Vol.572, pp433-440, 2004.
[9]Arenas, M. A., Casado, C., Nobel-Pujol, V.,and Damborenea, J. “Influence of the conversion coating on the corrosion of galvanized reinforcing steel,” Cement & Concrete Composites, Vol.28, pp 267-275, 2006.
[10]Ferreira, M. G. S., Duarte, R. G., Montemor, M. F.,and Simões, A. M. P., “Silanes and rare earth salts as chromate replacers for pre-treatments on galvanised steel,” Electrochimica Acta, Vol.49, pp2927-2935, 2004.
[11]Hosseini, M., Ashassi-Sorkhabi, H.,and Heshmat, A. Y., “Comsion Pmtection of Electm-Galvanized Steel by Gmen Conversion Coatings,”Journal of Rare Earths, Vol.25, pp537-543, 2007.
[12]戴瑞均,“過渡金屬對鍍鋅三價鉻鈍化皮膜耐蝕性質之研究”,碩士論文,國立國防大學理工學院,桃園,2008
[13]張玉岑,“三價鉻化成皮膜綠色製程之研究”,博士論文,國立台北科技大學,台北,2009。
[14]仲海峰、陳冬妹,鋅的腐蝕與電化學,冶金工業出版社,北京,2008。
[15]柯賢文,表面與薄膜處理技術(修訂版),台北,2008。
[16]Almeida, E., Diamantino, T. C., Figueiredo, M. O.,and Sa,C., “Oxidising alternative species to chromium VI in zinc galvanised steel surface treatment. Part 1-A morphological and chemical study,”Surface and Coatings Technolog,Vol.106, pp.8-17,1998
[17]Shigeyoshi, M., “Surface chemistry of galvanized steel sheets relevant to adhesion performance,” Progress in Organic Coatings, Vol.28, pp.227-238,1996.
[18]Zhanga, X., Bosa, C., Sloofa, W., Hovestadb, A., Terrync, H.,and Wita, J.H.W., “Comparison of the morphology and corrosionperformance of Cr(VI) and Cr(III) based conversion coatings on zinc,” Surface and Coatings Technology, Vol.199, pp.92-104, 2005.
[19]文念慈,“無氰鍍鋅三價鉻化成膜成膜機制探討”,博士論文,國立國防大學理工學院,桃園,第11-12頁,2009。
[20]渡邊和夫,"装飾3価クロムめっき技術",表面技術,第五十六卷,第六期,第320-324頁,2005。
[21]三井 由香里,三神 武文,"三価クロメート処理溶液の長寿命化に関する研究",山梨県工業技術センター研究報告,第二十期,第44-47頁,2006。
[22]藤原裕,小林靖之,"亜鉛めっき用3価クロム化成処理",表面技術,第五十七卷,第十二期,第855-859頁,2006。
[23]胡啟章,電化學原理與方法,五南圖書出版,台北,2007。
[24]Cho, K. W., Rao, V. S.,and Kwon, H., “Microstructure and electrochemical characterization of trivalent chromium based conversion coating on zinc,” Electrochimica Acta, Vol.55, pp4449-4456, 2007.
[25]Tomachuk, C. R., Elsner, C. I., Sarli, A. R.,and Ferraz, O. B., “Morphology and corrosion resistance of Cr(III)-based conversion treatments for electrogalvanized steel” Coat. Technol. Res.,Vol. 7, pp.493-502, 2010.
[26]Ramezanzadeh, B., Attar, M. M.,and Farzam, M. “Corrosion performance of a hot-dip galvanized steel treated by different kinds of conversion coatings,” Surface & Coatings Technology, Vol.205, pp.874-884, 2010.
[27]Vanessa, F. C. L., Geraldo, F. A. R., Carlos, R. A.,and Tulio, M.,“Electrochemical impedance spectroscopy and linear polarization applied to evaluation of porosity of phosphate conversion coatings on electrogalvanized steels,”Applied Surface Science, Vol.253, pp.2875-2884,2006.
[28]Bastos, A. C., Ferreira, M. G.,and Simoes, A. M.,“Corrosion inhibition by chromate and phosphate extracts for iron substrates studied by EIS and SVET,” Corrosion Science, Vol.48, pp.1500–1512,2006.
[29]邵元華,朱果逸,董獻堆,張柏林 譯,電化學方法原理和應用第二版,化學工業出版社,北京,2005。
[30]黃振昌,儀器總覽 表面分析儀器,行政院國家科學委員會精密儀器發展中心出版,台北,2000。
[31]吳慧眼、陳陵援,儀器分析,三民書局,台北,1997。
[32]Chidambaram, D., Halada, G. P.,and Clayton, C. R.,“Development of a technique to prevent radiation damge of a chromate conversion coating during X-ray photoelectron spectroscopic analysis,”Applied Surface Science, Vol.181, pp283-295,2001.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top