跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2025/02/18 21:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林昆鴻
研究生(外文):Lin, Kunhong
論文名稱:噴印技術於ITO基材製備高解析金屬導線之研究
論文名稱(外文):The study of inkjet printing metallic lines applied onto ITO substrate
指導教授:葛明德葛明德引用關係
指導教授(外文):Ger, Mingder
口試委員:張章平林岳輝歐進祿宋鈺
口試委員(外文):Chang, ChangpinLin, YuehuiOu, JinluSung, Yu
口試日期:2011-05-18
學位類別:碩士
校院名稱:國防大學中正理工學院
系所名稱:應用化學碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:84
中文關鍵詞:噴墨列印金屬化太陽能
外文關鍵詞:Inkjet printingMetallizationSolar cell
相關次數:
  • 被引用被引用:0
  • 點閱點閱:514
  • 評分評分:
  • 下載下載:11
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要目的是利用噴印技術於氧化銦錫玻璃基材製備出連續且均勻性金屬導線。研究利用噴印方式,將合成之溫敏性鈀觸媒[poly(St-co-NIPAAm)Pd]噴印於氧化銦錫玻璃(ITO)基材上,藉此製備形成具催化活性圖案,進而以無電電鍍技術將其圖案金屬化。本研究控制噴印液滴間距及噴頭電壓參數調整,以控制線路之解析度。結果發現當液滴間距45微米以及噴頭電壓37V能獲得連續性圖案。此外,基材溫度之控制可以減少噴印時所產生的咖啡杯效應,研究結果發現,溫度控制於50℃可製備出較均勻且連續的圖案,經由無電電鍍方式將具有催化圖案金屬化,其金屬線路最小線寬可達50微米。此研究之製程可於氧化銦錫玻璃基材上製備高解析金屬線路,未來可應用於太陽能電池之金屬線路之製備。
This study was focused on fabrication of higher-resolution metallic line on ITO substrate using inkjet printing. The thermal-responsive Pd catalyst used as printing ink for catalytic line on ITO, which allows to from the and metallic line as performing electrolesss deposition. The parameter of printing contain space of drop and voltage was change in order to formed high-resolution pattern. The result of OM analysis show the continuous pattern formed when printing voltage was about 37 V and space of drop was about 45μm. Besides, the coffee effect was significant improve by controlled temperature of substrate and the uniform and continuous line was formed at 50℃.By this way, the high- -resolution metallic line was formed easily and quickly. It will provide a higher potential for metallic line of solar cell in the future.
致謝 ii
摘要 iii
ABSTRACT iv
目錄 v
表目錄 viii
圖目錄 ix
1. 前言 1
1.1研究動機 4
2. 文獻回顧 5
2.1金屬化製程技術回顧與應用 5
2.1.1乾式鍍膜技術 11
2.1.1.1物理氣相沉積技術 12
2.1.1.2化學氣相沉積技術 16
2.1.2濕式鍍膜技術 17
2.1.2.1 電鍍 18
2.1.1.3無電電鍍 19
2.2噴墨印刷技術回顧與應用 25
2.3奈米金屬墨水發展 32
2.3.1有機-金屬複合墨水 33
2.3.2奈米金屬粒子墨水 35
3. 實驗 37
3.1實驗藥品與設備 37
3.1.1實驗藥品 37
3.1.2實驗儀器設備 38
3.2實驗流程 39
3.2.1噴印金屬化流程 40
3.2.2鈀奈米粒子/高分子複合材之墨水製備 41
3.2.3基材粗化處理 41
3.2.4金屬化程序 42
3.3噴印奈米鈀觸媒墨水以及金屬化程序 42
3.4噴墨圖形金屬化之研究設備 43
3.4.1噴墨列印設備 43
3.4.2化學鍍裝置 44
3.4.3 檢測分析儀器 45
4. 結果與討論 46
4.1奈米觸媒金屬墨水 47
4.2不同粗糙度基材金屬化測試 49
4.3噴墨列印導線參數的建立 54
4.3.1以不同間距為變數做噴墨列印觀察及分析 54
4.3.2 噴墨列印基材溫度的影響 60
4.3.3 化學鍍鎳條件對金屬導線之影響 66
4.3.4 金屬化附著力測試 70
5. 結論 74
6. 文獻 75
自傳 83

[1] Tseng H.Y,, Vicek Subramanian., “All inkjet-printed, fully self-aligned transistors for low-cost circuit applications” Appl. Organic Electronics, Vol. 12, pp. 249-256, 2011.
[2] David P., Magali B., Pierre-Louis T., Patrice S., Norbert F., Fabien M., Véronique Conédéra, Hugo D. “Elaboration of a microstructured inkjet-printed carbon electrochemical capacitor” Appl. Journal of Power Sources, Vol. 195, pp. 1266-1269 , 2010.
[3] Richard M., Martin Ranlöf, Nathaniel R., Robert F. “Inkjet printed electrochemical organic electronics” Appl. Synthetic Metals, Vol. 158, Pages 556-560, 2008.
[4] Hebner, T.R., Wu,C.C., Matcy, D., Lu, M.H., Sturm, J.C., “Ink-jet printing of doped polymer thin organic light emitting devices” , Appl. Phys. Lett. , Vol. 72, pp. 519, 1998.
[5] Antonis O., Anna Vilà, Juan R. M. “Multicomponent oxide thin-film transistors fabricated by a double-layer inkjet printing process” Appl. Thin Solid Films, In Press, Accepted Manuscript, Available online 30 April 2011.
[6] Takeo K., Tatsuya S., Christopher N., Henning S., Richard H. F. “Inkjet printing of polymer thin film transistors” , Appl. Thin Solid Films, Vol. 438-439, pp. 279-287, 2003.
[7] A. Sridhar, D.J. van Dijk, R. Akkerman “Inkjet printing and adhesion characterisation of conductive tracks on a commercial printed circuit board material” , Appl. Thin Solid Films, Vol. 517, pp. 4633-4637, 2009.
[8] Stephan B., Alberto B., Paolo E. “Inkjet printing of palladium catalyst patterns on polyimide film for electroless copper plating”, Appl. Sensors and Actuators B: Chemical, Vol. 123, pp. 840-846, 2007.
[9] Karl C., Aoife M., Aaron H., Eimer O’Malley, Philip G. W., Gordon G. W., Malcolm R. S., Anthony J. K. “Fabrication of an ammonia gas sensor using inkjet-printed polyaniline nanoparticles” Appl. Talanta, Vol. 77 , pp. 710-717 , 2008.
[10] Wen-Ding Chen, Yuh Sung, Chang-Pin Chang, Yann-Cheng Chen, Ming-Der Ger ,“The preparation of thermo-responsive palladium catalyst with high activity for electroless nickel deposition” Appl. Surface and Coatings Technology, Vol.204, pp. 2130-2135 , 2010.
[11] 顏銘瑤 “自主裝薄膜在電鍍銅填充印刷電路板微米盲孔上的研究與應用” 國立雲林科技大學化學工系碩士論文,頁數:4,雲林,93年。
[12] N. Benouattas, A. Mosser, A. Bouabellou, “Surface morphology and reaction at Cu/Si interface—Effect of native silicon suboxide”, Appl. Surface Science, Vol. 252, Pages 7572-7577, 2006.
[13] Y. K. Lee, K. Maung Latt, K. JaeHyung, T. Osipowicz, K. Lee, “Study of diffusion barrier properties of ionized metal plasma (IMP) deposited tantalum (Ta) between Cu and SiO2” , Appl. Materials Science and Engineering B, Vol. 68, Pages 99-103, 1999.
[14] Mukesh K., Rajkumar, Dinesh K., A.K. Paul, “Thermal stability of tantalum nitride diffusion barriers for Cu metallization formed using plasma immersion ion implantation” ,Appl. Microelectronic Engineering, Vol. 82, pp. 53-59, 2005.
[15] Shekhar Bhagat, Hauk Han, T.L. Alford , “Tungsten–titanium diffusion barriers for silver metallization” , Appl. Thin Solid Films, Vol. 515 , pp. 1998-2002, 2006.
[16] H. C. Chen, B. H. Tseng, M. P. Houng, Y. H. Wang , “Titanium nitride diffusion barrier for copper metallization on gallium arsenide”, Appl. Thin Solid Films, Vol. 445, pp. 112-117, 2003.
[17] Ola Nilsen, Ole Bjørn Karlsen, Arne Kjekshus, Helmer Fjellvåg, “Simulation of growth dynamics in atomic layer deposition. Part II. Polycrystalline films from cubic crystallites” , Appl. Thin Solid Films, Vol. 515, pp. 4538-4549, 2007.
[18] Anklam T.M.,Berzins L.V., Braun D.G., Haynam C., Meier T., McClelland M.A., “Evaporation rate and composition monitoring of electron beam physical vapor deposition processes”, Appl. Surface and Coatings Technology, Vol. 76-77, pp. 681-686, 1995.
[19] M.V.Ramana Murty, “Sputtering: the material erosion tool” , Appl. Surface Science, Vol. 500, pp. 523-544, 2002.
[20] E. Bergmann, G. I. van der Kolk, B. Buil, T. Hurkmans, “The next generation of deposition equipment for wear protection coatings” , Appl. Surface and Coatings Technology, Vo. 114, pp.101-107 ,1999.
[21] A. Belkind, Z. Zhao, “Reactive sputtering using a dual-anode magnetron system”, Appl. Energy Industries, Industries, Inc., Fort Collins, CO
[22] Ramana Murty M.V., “Sputtering: the material erosion tool”, Appl. Surface Science ,Vol. 500 pp. 523–544, 2002.
[23] R.E.I. Schropp , “Status of Cat-CVD (Hot-Wire CVD) research in Europe” , Appl. Thin Solid Films ,Vol.395 , pp.17–24,2001.
[24] Szymańska I.B., Piszczek P., Bata W., Bartkiewicz K., Szlyk E., “Ag/Cu layers grown on Si(111) substrates by thermal inducted chemical vapor deposition ” Appl. Surface and Coatings Technology, Vol. 201, pp. 9015-9020, 2007.
[25] Hai-long MA, Ying-yong WANG, Guo-qiang JIN, Xiang-yun GUO “Structural changes in carbon produced by a sulfur-aided catalytic chemical vapor deposition” ,Appl. New Carbon Materials, Vol. 24, pp.s 13-17, 2009.
[26] F. Wiest, V. Capodieci, O. Blank, M. Gutsche, J. Schulze, I. Eisele, J. Matusche, U.I. Schmidt “Conformal aluminum oxide coating of high aspect ratio structures using metalorganic chemical vapor deposition” Appl. Thin Solid Films, Vol. 496, pp. 240-246, 2006.
[27] Seigi Suh, Zuhua Zhang, Wei-Kan Chu, David M. Hoffma “Atmospheric-pressure chemical vapor deposition of fluorine-doped tin oxide thin films” Thin Solid Films, Volume 345, Issue 2, 21 May 1999, Pages 240-243
[28] M. Matsuoka, S. Isotani, W. Sucasaire, L.S. Zambom, K. Ogata “Chemical bonding and composition of silicon nitride films prepared by inductively coupled plasma chemical vapor deposition” Appl. Surface and Coatings Technology, Vol. 204, , pp. 2 923-2927 , 2010.
[29] D. Wittorf, W. Jäger, C. Dieker, A. Flöter, H. Güttler “Electron microscopy of interfaces in chemical vapour deposition diamond films on silicon” Appl. Diamond and Related Materials, Vol. 9, pp. 1696-1702, 2000
[30] http://upload.wikimedia.org/wikipedia/commons/9/98/GenericMOCVD.jpg
[31] C. Wenel, N. Urbansky, W. Klimes, and P. Siemorth, “Gap Filling with PVD process for copper metallized integrated circuited,” Microelectric Engineering, 33, 31(1997).
[32] Li-ping WU, Jing-jing ZHAO, Yong-ping XIE, Zhong-dong YANG, “Progress of electroplating and electroless plating on magnesium alloy”, Appl. Transactions of Nonferrous Metals Society of China, Vol. 20, pp. s630-s637, 2010.
[33] L. Spencer, Metal Finishing,72(10), 35, 1974
[34] L. Spencer, Metal Finishing,72(10), 35, 1974
[35] 李寧,化學鍍實用技術,化學工業出版社(2004)
[36] Pascal Doppelt and Thomas H. Baum, “The chemical vapor deposition of copper and copper alloys, ”Thin Solid Film, 270, 480(1995).
[37] R. Elmqvist, “Measuring Instrument of the Recording Type”, U. S. Patent 2566443, 1951.
[38] W. L. Buehner, J. D. Hill, T. H. Williams, J. W. Woods, “Application of Ink-Jet Technology to A Word Processing Output Printer”, IBM J. Res. Dev., vol.21, pp.2-9, 1977.
[39] S. L. Zoltan, (Clevite Corp), “Pulse Droplet Ejection System”, U. S. Patent 3683212, 1974.
[40] E. L. Kyser, S. B. Sears, (Silonic Inc.), “Method and Apparatus for Recording with Writing Fluids and Drop Projection Means Therefore”, U. S. Patent 3946398, 1976.
[41] J. L. Vaught, F. L. Cloutier, D. K. Donald, J. D. Meyer, C. A. Tacklind, H. H. Taub, (Hewlett-Packard), “Thermal Ink-Jet Printer”, U. S. Patent 4490728, 1979
[42] Hayes, D.J., Boldman, M.T., Shah, G., “ Direct Solder Bumping of Hand to Solder Substrate,” U.S. Patent 6, 015, 083, January 18, 2000.
[43] Koo H.S., Chen M., Pan P.C., Chou L.T., Wu F.M., Chang S.J., Kawai T. “Fabrication and chromatic characteristics of the greenish LCD colour-filter layer with nano-particle ink using inkjet printing technique”, Appl. Displays, Vol. 27, pp. 124-129, 2006.
[44] Veronica Sanchez-Romaguera, Marie-Beatrice Madec, Stephen G. Yeate “Inkjet printing of 3D metal–insulator–metal crossovers” Appl. Reactive and Functional Polymers, Vol. 68, pp. 1052-1058, 2008.
[45] 盧俊安、林鴻欽、葉信賢、鄭雅鐘、徐俊璋、陳烔雄 “可印式導電金屬油墨之材料科技發展” 工業材料 252第89-96頁,民96。
[46] Wenjuan Cui, Wensheng Lu, Yakun Zhang, Guanhua Lin, Tianxin Wei, Long Jiang “Gold nanoparticle ink suitable for electric-conductive pattern fabrication using in ink-jet printing technology” Appl. Physicochemical and Engineering, Vol. 358, pp.35-41, 2010.
[47] Seongcheol Mun, Sungryul Yun, Hyejun Jung, Jaehwan Kim “Sintering condition effect on the characteristics of ink-jet printed silver pattern on flexible cellulose paper” Appl. Physics, In Press, Accepted Manuscript, l 2011
[48] Bong Kyun Park, Dongjo Kim, Sunho Jeong, Jooho Moon, Jang Sub Kim “Direct writing of copper conductive patterns by ink-jet printing” Appl. Thin Solid Films, Vol. 515, pp. 7706-7711 , 2007.
[49] Liu, Y., T., Varaharmyan, K., “All-polymer capacitor fabricated with inkjet printing technique,” Solid-State Electronics, Vol.47, pp. 1543-1548, 2003.
[50] Seung Hun Eom, S. Senthilarasu, Periyayya Uthirakumar, Sung Cheol Yoon, Jongsun Lim, Changjin Lee, Hyun Seok Lim, J. Lee, Soo-Hyoung Lee “Polymer solar cells based on inkjet-printed PEDOT:PSS layer,” Appl. Organic Electronics, Vol. 10, pp. 536-542 , 2009.
[51] Fei Chen, Peng Liu, “Conducting polyaniline nanoparticles encapsulated with polyacrylate via emulsifier-free seeded emulsion polymerization and their electroactive films,” Appl. Chemical Engineering Journal, Vol. 168, pp. 964-971, 2011.
[52] Ki Deok Bae, Seog Soon Baek, Hyung Taek Lim, Keon Kuk, Kwang Choon Ro, “Development of the new thermal inkjet head on SOI wafer,” Appl. Microelectronic Engineering, Vol. 78-79, pp. 158-163, 2005.
[53] L. Berdondini, P. D. van der Wal, N. F. de Rooij, M. Koudelka-He, “Development of an electroless post-processing technique for depositing gold as electrode material on CMOS devices,” Appl. Sensors and Actuators B: Chemical, Vol. 99, pp. 505-510, 2004.
[54] Yinxiang Lu, “Electroless copper plating on 3-mercaptopropyltriethoxysilane modified PET fabric challenged by ultrasonic washing,” Appl. Surface Science, Vol.255, pp. 8430-8434, 2009.
[55] Guo, T.F., Chang, S.C., Pyo, S., Yang, Y., “Vertically integrated electronic circuits via a combination of self-assembled polyelectrolytes, ink-jet printing, and electroless metal plating processes,” Appl. Langmuir, Vol.18 , pp.8142-8147, 2002.
[56] Shah, P., Kevrekidis, Y., Benziger, J., “inkjet printing of catalyst patterns for electroless metal deposition,” Langmuir, Vol.15 , pp.1584-1587, 1999.
[57] R.L. Cohen, K. W. West, Chem. Phys. Lett., 16(1972)128
[58] J. Katainen, M. Paajanen, E. Ahtola, V. Pore, J. Lahtinen, “Adhesion as an interplay between particle size and surface roughness,” Journal of Colloid and Interface Science, Volume 304, Issue 2, 15 December 2006, Pages 524-529
[59] Byung Ju Kang, Je Hoon Oh, “Geometrical characterization of inkjet-printed conductive lines of nanosilver suspensions on a polymer substrate,” Thin Solid Films, Volume 518, Issue 10, 1 March 2010, Pages 2890-2896
[60] B. Derby, “Inkjet printing ceramics: From drops to solid,” Journal of the European Ceramic Society, In Press, Corrected Proof, Available online 16 February 2011
[61] Daniel Huang, Frank Liao, Steven Molesa, David Redinger, Vivek Subramanian ,“Plastic-Compatible Low Resistance Printable Gold Nanoparticle Conductors for Flexible Electronic”, Journal of The Electrochemical Society, 150, 7, pp.412-417, 2003.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top