跳到主要內容

臺灣博碩士論文加值系統

(100.28.2.72) 您好!臺灣時間:2024/06/16 06:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李金陵
研究生(外文):Lee, Chin-Ling
論文名稱:PtCo/ZrO2觸媒應用於乙醇蒸氣重組反應之活性評估
論文名稱(外文):Catalytic Performance of Zirconia-Supported Pt-Co Catalysts on Steam Reforming of Ethanol
指導教授:汪成斌汪成斌引用關係
指導教授(外文):Wang, Chen Bin
口試委員:吳仁彰許峰彰葉早發葉君棣
口試委員(外文):Wu, Ren-JangHsu, Feng-JangYen, Tsao-FaYeh, Chuin-Tih
口試日期:2011-05-16
學位類別:碩士
校院名稱:國防大學中正理工學院
系所名稱:應用化學碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:81
中文關鍵詞:乙醇蒸氣重組Co/ZrO2Pt/ZrO2
外文關鍵詞:Steam reforming of ethanoCo/ZrO2Pt/ZrO2
相關次數:
  • 被引用被引用:0
  • 點閱點閱:160
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文設計一系列適用於乙醇蒸氣重組(Steam reforming of ethanol, SRE)反應之氧化鋯(ZrO2)支撐性鉑(Pt)、鈷(Co)單金屬(Pt1.5/ZrO2及Co12/ZrO2)及雙金屬觸媒(Pt1.5Cox/ZrO2 , x = 0.75, 1.5, 3.0, 12, 24, 48),以溶膠-凝膠法自製ZrO2載體、初濕含浸法製備支撐性觸媒。活性評估條件:100 mg觸媒、水/醇(H2O/EtOH)比為13、空間流速(Gas hour space velocity, GHSV)為22,000 h-1(Ar:H2O:EtOH = 22:13.59:1.05 ml),反應溫度為200 ~ 500 oC。單金屬觸媒進行SRE反應活性評估顯示Pt1.5/ZrO2觸媒在低溫(300 oC)可將乙醇完全轉化,500 oC之氫產率(YH2)為3.73,唯CH4副產物太多;此觸媒在300 oC可維持384 h而無失活現象。Co12/ZrO2觸媒所需溫度稍高(完全轉化溫度為400 oC),425 oC之YH2為3.16,CO及CH4副產物較少,唯易因積碳而使觸媒失活。為結合單金屬觸媒之優點,所設計雙金屬觸媒中以Pt1.5Co12/ZrO2觸媒之活性表現最佳,275 oC可將乙醇完全轉化,其YH2為1.13,CO選擇率(SCO)約為23 %;500 oC之YH2為4.09, SCO < 2 %, SCH4 < 4 %,且僅少量積碳( < 0.5 %)生成;此觸媒在500 oC可維持116 h之穩定性。
High performance of zirconia-supported platinum, cobalt and platinum-cobalt bimetallic catalysts were investigated for the steam reforming of ethanol (SRE) to produce hydrogen. The designed catalysts of Pt1.5/ZrO2, Co12/ZrO2 and Pt1.5Cox/ZrO2 (where the cobalt content, x = 0.75, 1.5, 3.0, 12, 24 and 48 wt%, respectively) were prepared by incipient wet impregnation method. Evaluation of catalytic activities and products distribution toward the SRE reaction were tested in a fixed-bed reactor with 100 mg catalyst under H2O/EtOH molar ratio of 13 and gas hour space velocity (GHSV) 22,000 h-1 (Ar:H2O:EtOH = 22:13.59:1.05 ml) in the range of 200 - 500 oC. For Pt1.5/ZrO2 catalyst, the ethanol can be converted completely at 300 oC, where the yield of hydrogen (YH2) was 3.73 at 500 oC, however, much more CH4 byproduct was obtained. At the same condition, the activity of Pt1.5/ZrO2 catalyst can maintain 384 h. For Co12/ZrO2 catalyst, the ethanol can be converted completely at 400 oC and the YH2 was 3.16 at 425 oC accompaied with less CO and CH4 byproducts. While, the deactivation caused by the deposited carbon was observed. For Pt1.5Cox/ZrO2 catalysts, the lower content of cobalt led to produce more CH4 byproduct, otherwise, the higher content of cobalt would be deactivated by the coke formation. The optimum loading of cobalt was 12 wt%. The ethanol can be converted completely at 275 oC over Pt1.5Co12/ZrO2 catalyst, where the YH2 was 1.13 and the CO production (SCO) approached 23%. As the temperature exceeded 300 oC, accompanied by water gas shift reaction (WGSR) on decreasing the SCO and enhancing the YH2. The YH2 arrived 4.09 and only minor CO ( 2%), CH4 ( 4%) and carbon deposition ( 0.5%) were detected under 500 oC. At the same condition, the activity of PtCo12/ZrO2 catalyst can maintain 116 h.
誌謝 ii
摘要 iii
ABSTRACT iv
目錄 v
表目錄 viii
圖目錄 ix
1. 緒論 1
1.1 前言 1
1.2 氫氣發展史及獲得方式 1
1.3 乙醇製氫 5
1.4 乙醇蒸氣重組產氫文獻回顧 6
1.5 研究動機與方向 8
2. 實驗 11
2.1 實驗藥品 11
2.2 觸媒之製備 11
2.2.1 二氧化鋯支撐物之製備 11
2.2.2 氧化鋯支撐性金屬觸媒之製備 12
2.3 觸媒特性鑑定 16
2.3.1 熱分析(TGA) 16
2.3.2 X光粉末繞射儀(XRD) 16
2.3.3 感應耦合電漿原子放射光譜儀(ICP-AES) 16
2.3.4 氮氣等溫吸附-脫附測試(BET表面積法) 17
2.3.5 穿透式電子顯微鏡(TEM) 18
2.3.6 元素分析儀(EA) 18
2.3.7 程溫還原(TPR)裝置 18
2.4 乙醇蒸氣重組活性測試 21
2.4.1 活性測試裝置 21
2.4.2 活性測試數據分析 23
3. 結果與討論 27
3.1 氧化鋯支撐物之特性鑑定 27
3.2 Pt1.5/ZrO2及Cox/ZrO2單金屬觸媒之特性鑑定及SRE活性評估 29
3.2.1單金屬觸媒之特性鑑定 29
3.2.2單金屬觸媒之活性評估 31
3.2.3單金屬觸媒經SRE反應後之特性鑑定 37
3.3 Pt1.5Cox/ZrO2雙金屬觸媒之特性鑑定及SRE活性評估 41
3.3.1 Pt1.5Cox/ZrO2雙金屬觸媒之特性鑑定 41
3.3.2 Pt1.5Cox/ZrO2雙金屬觸媒之活性評估 43
3.3.3 Pt1.5Cox/ZrO2雙金屬觸媒經SRE反應後之特性鑑定 48
3.4 Pt1.5Co12/ZrO2觸媒於不同條件下SRE活性評估 54
3.4.1前處理溫度之影響 54
3.4.2不同載體之SRE之影響 55
3.4.3水醇比之影響 57
3.4.4 Pt1.5Co12/ZrO2觸媒經SRE反應後之特性鑑定 60
3.5 觸媒穩定性測試 67
3.6 SRE反應機制探討 71
4.結論 75
參考文獻 76
自傳 81


[1]市川勝,圖解氫能源,世茂出版有限公司,2009。
[2]張嘉修,“生質氫能”,科學發展,433期,2009。
[3]http://case.ntu.edu.tw/blog/?p=1087,CASE PRESS。
[4]曲新生,陳發林,呂錫民,產氫與儲氫技術,五南圖書出版股份有限公司,2007。
[5]http://www.tfci.org.tw/Fc/fc1-2.asp,台灣燃料電池資訊網。
[6]Benemann, J. R., “Feasibity analysis of photobiological hydrogen production,” International Journal of Hydrogen Energy, Vol. 22, pp. 979-987, 1997.
[7]Deng, X., Sun, J., Yu, S., Xi, J., Zhu, W., and Qiu, X., “Steam reforming of ethanol for hydrogen production over NiO/ZnO/ZrO2 catalysts,” International Journal of Hydrogen Energy, Vol. 33, pp. 1008-1013, 2008.
[8]Wiese, W., Emonts, B., and Peters, R., “Methanol steam reforming in a fuel cell drive system,” Journal of Power Sources, Vol. 84, pp. 187-193, 1999.
[9]Lee, J. K., Ko, J. B., and Kim, D. H., “Methanol steam reforming over Cu/ZnO/Al2O3 catalyst : kinetics and effectiveness factor,” Applied Catalysis A: General, Vol. 278, pp. 25-35, 2004.
[10]Koga, H., Fukahori, S., Kitaoka, T., Tomoda, A., Suzuki, R., and Wariishi, H., “Autothermal reforming of methanol using paper-like Cu/ZnO catalyst composites prepared by a papermaking technique,” Applied Catalysis A: General, Vol. 309, pp. 263-269, 2006.
[11]Das, D., and Veziroglu, T. N., “Hydrogen production by biological processes: a survey of literature,” International Journal of Hydrogen Energy, Vol. 26, pp. 13-28, 2001.
[12]Benito, M., Sanz, J. L., Isabel, R., Padilla, R., Arjona, R., and Daza, L., “Bio-ethanol steam reforming : Insights on the mechanism for hydrogen production,” Journal of Power Sources, Vol. 151, pp. 11-17, 2005.
[13]Llorca, J., Homs, N., Sales, J., and Ramíez de la Piscina, P., “Efficient production of hydrogen over supported cobalt catalysts from ethanol steam reforming,” Journal of Catalysis, Vol. 209, pp. 306-317, 2002.
[14]Wang, H., Liua, Y., Wanga, L., and Qin, Y. N., “Study on the carbon deposition in steam reforming of ethanol over Co/CeO2 catalyst,” Chemical Engineering Journal, Vol. 145, pp. 25-31, 2008.
[15]Biswas, P., and Kunzru, D., “Oxidative steam reforming of ethanol over Ni/CeO2-ZrO2 catalyst,” Chemical Engineering Journal, Vol. 136, pp. 41-49, 2008.
[16]Vaidya, P. D., and Rodrigues, A. E., “Insight into steam reforming of ethanol to produce hydrogen for fuel cells,” Chemical Engineering Journal, Vol. 117, pp. 39-49, 2006.
[17]Li, J., Chen, J., Song, W., Liu, J., and Shen, W., “Influence of zirconia crystal phase on the catalytic performance of Au/ZrO2 catalysts for low-temperature water gas shift reaction,” Applied Catalysis A:General, Vol. 334, pp. 321-329, 2008.
[18]Jung, K. T., and Bell, A. T., “The effects of synthesis and pretreatment conditions on the bulk structure and surface properties of zirconia,” Journal of Molecular Catalysis A: Chemical, Vol. 163, pp. 27-42, 2000.
[19]Profeti, L. P. R., Ticianelli, E. A., and Assaf, E. M., “Production of hydrogen by ethanol steam reforming on Co/Al2O3 catalysts: Effect of addition of small quantities of noble metals,” Journal of Power Sources, Vol. 175 , pp. 482-489, 2008.
[20]Azzam, K. G., Babich, I. V., Seshan, K., and Lefferts, L., “Bifunctional catalysts for single-stage water–gas shift reaction in fuel cell applications,” Journal of Catalysis, Vol. 251, pp. 153-162, 2007.
[21]Batista, M. S., Santos, R. K. S., Assaf, E. M., Assaf, J. M., and Ticianelli, E. A., “Characterization of the activity and stability of supported cobalt catalysts for the steam reforming of ethanol,” Journal of Power Sources, Vol. 124, pp. 99–103, 2003.
[22]de la Peña O’Shea, V. A., Nafria, R., Ramírez de la Piscina, P., and Homs, N., “Development of robust Co-based catalysts for the selective H2-production by ethanol steam-reforming. The Fe-promoter effect,” International Journal of Hydrogen Energy, Vol. 33, pp. 3601-3606, 2008.
[23]Cavallaro, S., Chiodo, V., Freni, S., Mondello, N., and Frusteri, F., “Performance of Rh/Al2O3 catalyst in the steam reformingof ethanol: H2 production for MCFC,” Applied Catalysis A: General, Vol. 249, pp. 119–128, 2003.
[24]Ciambelli, P., Palma, V., and Ruggiero, A., “Low temperature catalytic steam reforming of ethanol. 2. Preliminary kinetic investigation of Pt/CeO2 catalysts,” Applied Catalysis B: Environmental, Vol. 96, pp. 190-197, 2010.
[25]Liguras, D. K., Kondarides, D. I., and Verykios, X. E., “Production of hydrogen for fuel cells by steam reforming of ethanol over supported noble metal catalysts,” Applied Catalysis B: Environmental, Vol. 43, pp. 345-354, 2003.
[26]Llorca, J., Dalmon, J. A., Ramírez de la Piscina, P., and Homs, N., “In situ magnetic characterisation of supported cobalt catalysts under steam-reforming of ethanol,” Applied Catalysis A: General, Vol. 243, pp. 261-269, 2003.
[27]Sahoo, D. R., Vajpai, S., Patel, S., and Pant, K. K., “Kinetic modeling of steam reforming of ethanol for the production of hydrogen over Co/Al2O3 catalyst,” Chemical Engineering Journal, Vol. 125, pp. 139-147, 2007.
[28]Zhang, B., Tang, X., Li, Y., Cai, W., Xu, Y., and Shen, W., “Steam reforming of bio-ethanol for the production of hydrogen over ceria-supported Co, Ir and Ni catalysts,” Catalysis Communications, Vol. 7, pp. 367-372, 2006.
[29]Batista, M. S., Assaf, E. M., Assaf, J. M., and Ticianelli, E. A., “Double bed reactor for the simultaneous steam reforming of ethanol andwater gas shift reactions,” International Journal of Hydrogen Energy, Vol. 31, pp. 1204-1209, 2006.
[30]Youn, M. H., Seo, J. G., Park, S., Jung, J. C., Park, D. R., and Song, I .K., “Hydrogen production by auto-thermal reforming of ethanol over Ni catalysts supported on ZrO2: Effect of preparation method of ZrO2 support,” International Journal of Hydrogen Energy, Vol. 33, pp. 7457-7463, 2008.
[31]Profeti, L. P. R., Ticianelli, E. A., and Assaf, E. M., “Ethanol steam reforming for production of hydrogen on magnesium aluminate-supported cobalt catalysts promoted by noble metals,” Applied Catalysis A: General, Vol. 360, pp. 17-25, 2009.
[32]Lima, S. M., Silva, A. M., Cruz, I. O., Jacobs, G., Davis, B. H., Mattos, L. V., and Noronha, F. B., “H2 production through steam reforming of ethanol over Pt/ZrO2, Pt/CeO2 and Pt/CeZrO2 catalysts,” Catalysis Today, Vol. 138, pp. 162-168, 2008.
[33]畢家麟,“支撐性鉑-釕觸媒在乙醇製氫上之研究”,博士論文,國防大學中正理工學院國防科學研究所,大溪,2007。
[34]王文峰,“以鹼金屬修飾鉑觸媒應用於乙醇自供熱反應之研究”,碩士論文,國防大學中正理工學院國防科學研究所,大溪,2009。
[35]Wang, C. B., and Yeh, C. T., “Effects of particle size on the progressive oxidationof nanometer platinum by dioxygen,” Journal of Catalysis, Vol. 178, pp. 450-456, 1998.
[36]Hwang, C. P., and Yeh, C. T., “Platinum-oxide species formed on progressive oxidation of platinum crystallites supported on silica and silica–alumina,” Journal of Catalysis, Vol. 182, pp. 48-55, 1999.
[37]Lin, S. S. Y., Daimon, H., and Ha, S. Y., “Co/CeO2-ZrO2 catalysts prepared by impregnation and coprecipitation for ethanol steam reforming,” Applied Catalysis A: General, Vol. 366, pp. 252-261, 2009.
[38]de la Peña O’Shea, V. A., Homs, N., Pereira, E. B., Nafria, R., and Ramíez de la Piscina, P., “X-ray diffraction study of Co3O4 activation under ethanol steam-reforming,” Catalysis Today, Vol. 126, pp. 148–152, 2007.
[39]Haryanto, A., Fernando, S., Murali, N., and Adhikari, S., “Current Status of Hydrogen Production Techniques by Steam Reforming of Ethanol: A Review,” Energy Fuels, Vol. 19, pp. 2098-2106, 2005.
[40]Wang, H., Ye, J. L., Liu, Y., Li, Y. D., and Qin, Y. N., “Steam reforming of ethanol over Co3O4/CeO2 catalysts prepared by different methods,” Catalysis Today, Vol. 129, pp. 305-312, 2007.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top