(34.201.11.222) 您好!臺灣時間:2021/02/25 13:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:溫澤民
研究生(外文):Tse-Min Wen
論文名稱:軍事載具燃料電池金屬雙極板之研究
論文名稱(外文):The Study of Metallic Bipolar Plates for Fuel Cell in Military Vehicle
指導教授:侯光煦侯光煦引用關係
指導教授(外文):Kung-Hsu Hou
口試委員:蔡文達何主亮林育立歐耿良薛康琳
口試日期:99.12.1
學位類別:博士
校院名稱:國防大學中正理工學院
系所名稱:國防科學研究所
學門:軍警國防安全學門
學類:軍事學類
論文種類:學術論文
論文出版年:2010
畢業學年度:99
語文別:中文
論文頁數:182
中文關鍵詞:金屬雙極板中碳鋼輥軋放電加工
相關次數:
  • 被引用被引用:6
  • 點閱點閱:242
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本實驗以AISI 1045中碳鋼及SS 420不鏽鋼作為燃料電池金屬雙極板之基材,利用輥軋或放電加工前處理結合粉浴法熱反應沉積法,於表面形成富鉻的鉻化鍍層,藉由鉻化鍍層提昇基材的抗蝕性、導電性及疏水性,期能達到燃料電池金屬雙極板所需之性質。
改質後之鉻化鍍層於燃料電池模擬環境中分別進行電化學性質、接觸阻抗及接觸角測試,並探討鍍層結構與表面形貌、成份組成及表面粗糙度對量測結果之影響。此外,以性能最佳之鉻化製程製作金屬雙極板並組成單電池進行短時間及長時間性能測試,以評估不同基材及製程對單電池性能之影響,期獲得最適合質子交換膜燃料電池之金屬雙極板。
實驗結果顯示選用輥軋及放電加工表面活化技術,藉高缺陷結構活化表層,加快鉻元素沉積與擴散的速率,可於700°C低溫得到較厚或較緻密且結構主要組成相為(Cr,Fe)7C3及(Cr,Fe)23C6等碳化物之鉻化鍍層,而單純鉻化試片只可形成厚度較薄之鍍層。1045中碳鋼及SS 420不鏽鋼以輥軋或放電加工活化後低溫滲鉻之鍍層均較單純鉻化之抗蝕性為佳,而放電加工產生之表面裂痕無法藉由低溫鉻化癒合,抗蝕性雖較單純鉻化試片提昇,但性能卻無法達到輥軋滲鉻之效果。藉由活化處理後鉻化之試片,接觸阻抗皆大幅降低且接觸角亦較單純鉻化試片為大。
單電池短時間效率測試以1045-R-Cr(700-2)具有與石墨板相近之性能,輸出功率可達0.51W-cm-2。420-R-Cr(700-2)輸出功率相對較差,僅達0.47 W-cm-2,而以SS 316不鏽鋼為基材實施低溫鉻化之性能表現最差。單電池長效測試以1045-R-Cr(700-2)及420-R-Cr(700-2)兩種雙極板組成電池實施測試,測試結果兩者性能皆十分穩定,其中1045-R-Cr(700-2)單電池輸出功率介於0.55至0.50 W-cm-2之間,而420-R-Cr(700-2)則為0.44至0.41 W-cm-2之間,以1045-R-Cr(700-2)為雙極板之電池性能較以420-R-Cr(700-2)為雙極板之電池性能優異,且由生成水及膜電極組之金屬離子檢測可知金屬雙極板並未產生明顯腐蝕溶出之現象。

In this experiment, AISI 1045 carbon steel and SS 420 stainless steel were used as the substrates. The rolling technique or electrical discharge machining combining low temperature pack chromization was employed to produce rich-chromium coatings in order to promote the corrosion resistance, conductivity, and hydrophobicity of substrate and further meet the standard in the proton exchange membrane fuel cell.
The reforming chromized coatings were tested by electrochemical measurement, interfacial contact resistance, and contact angles in the simulated PEMFC’s environments, respectively. The effect on the coating structure, surface profile, composition, and roughness will be investigated. In addition, the bipolar plates with flow-field pattern conducted by the best chromized process were used to assemble a single fuel cell to evaluate the performance of short and long term tests in order to attain the most suitable bipolar plates in the PEMFCs.
The experimental results show that the pretreatment of rolling and EDM can hasten the diffusion and deposition rate of chromium by activating surface with many defects. Therefore, the coatings, which were mainly composed of (Cr,Fe)7C3 and (Cr,Fe)23C6 phases, with pretreatment and low temperature pack chromization are thicker and denser than those of simple chromized specimens. The corrosion resistance of either rolled chromized or EDM chromized specimens is better than those of simple chromized specimens. However, many cracks were produced on the surface of the specimen pretreated with EDM (4A) process, and unable to seal after low-temperature chromization. Therefore, the corrosion resistance of the specimen is inferior. Furthermore, the interfacial contact resistance and hydrophobicity of specimens carried out pretreatment and low temperature pack chromization can be decreased and improved, respectively.
The 1045-R-Cr(700-2) bipolar plates exhibit the comparable performance of single cell, 0.51W-cm-2, as graphite in the short-term performance test. The 420-R-Cr(700-2) only show inferior performance of single cell, 0.47 W-cm-2, in the same test condition. The SS 316 stainless steel with simple chromized process displays the worst power density among the testing specimens. During the operation of 100 h, the power density of the cell with 1045-R-Cr(700-2) and 420-R-Cr(700-2) bipolar plates were maintained in the range of 0.55-0.50 W-cm-2 and 0.44-0.41 W-cm-2, respectively, indicating that the cell is operating without performance degradation. Additionally, the concentrations of Cr, Fe, and Ni in the water produced by the cell with 1045-R-Cr(700-2) and 420-R-Cr(700-2) bipolar plates are both lower than 1 ppm. The binding energy profiles of Cr2P3/2, Fe2P3/2, and Ni2P3/2 apparently show that the concentrations of Cr2P3/2, Fe2P3/2, and Ni2P3/2 on the surface of membrane electrode assembly (MEA) are too small to be detected. The specimens pretreated by the processes of rolling and low temperature pack chromization exhibited the best chromization effect among all chromized coatings. It indicates that the 1045-R-Cr(700-2) and 420-R-Cr(700-2) bipolar plates did not dissolve during long-tern test of single cell. Hence, the process of rolling and low temperature pack chromization has the most potential for the application of bipolar plates in the future.

目錄

誌謝... ii
摘要... iv
Abstract vi
目錄... viii
表目錄 xii
圖目錄 xiv
1. 緒論 1
1.1 研究背景 1
1.2 研究目的 2
2. 文獻回顧及理論 4
2.1 燃料電池原理 4
2.2 燃料電池種類及組成元件 7
2.2.1 燃料電池種類 7
2.2.2 質子交換膜燃料電池組成元件 9
2.3 腐蝕機構原理 11
2.3.1 水溶液電化學反應 11
2.3.2 極化曲線 12
2.3.3 金屬活化與鈍化 14
2.4電池極化現象 15
2.5 金屬雙極板性能需求 17
2.5.1 優異抗蝕性 18
2.5.2 低接觸阻抗 20
2.5.3優異疏水性 22
2.6 表面改質技術 24
2.6.1 表面碳化製程 25
2.6.2 高溫氮化製程 26
2.6.3 低溫氮化製程 27
2.6.4 物理氣相沉積法(PVD) 28
2.7 粉浴鉻化製程 29
2.7.1 粉浴擴散反應機構 29
2.7.2 低溫滲鉻原理 31
2.8 表面活化製程 34
2.8.1 放電加工 34
2.8.2 輥軋加工 36
2.9 碳化鉻的鍍層特性 38
2.10 金屬雙極板發展近況 38
2.11 小結 42
3. 實驗方法 43
3.1 試片前處理 45
3.2 放電加工製程 45
3.3 輥軋加工製程 46
3.4 粉浴鉻化製程 46
3.5 單電池組裝 46
3.6 分析與檢測 50
3.6.1 鍍層結構、組成與成份分析 50
3.6.2 腐蝕性質測試 50
3.6.3 表面粗糙度量測 51
3.6.4 接觸阻抗量測 51
3.6.5 接觸角量測 55
3.6.6 單電池測試 55
4. 結果與討論 58
4.1 鍍層表面形貌與結構分析 58
4.1.1 AISI 1045中碳鋼各種鉻化之鍍層特性分析 58
4.1.2 SS 420不鏽鋼各種鉻化之鍍層特性分析 66
4.2 鍍層成份組成分析 73
4.2.1 AISI中碳鋼各種鉻化製程之鍍層成份組成 73
4.2.2 SS 420不鏽鋼各種鉻化製程之鍍層成份組成 85
4.3 鍍層抗蝕性分析 93
4.3.1 動電位測試結果分析 93
4.3.2 靜電位測試結果分析 100
4.3.3 粉浴時間及溫度對抗蝕性之影響 105
4.4 接觸阻抗分析 116
4.5 疏水性分析 121
4.6 AISI 1045中碳鋼粉浴鉻化單電池組裝測試 126
4.7 SS 316、SS 420及 SS 430不鏽鋼粉浴鉻化單電池組裝測試 128
4.8 單電池100小時長效測試 134
5. 結論 141
6. 未來展望 144
參考文獻 146
論文發表 158
自傳… 161

























表目錄

表2.1 各種燃料電池比較表 8
表3.1 AISI 1045中碳鋼標準成份 43
表3.2 SS 420不鏽鋼標準成份 43
表3.3 粉浴鉻化試片簡化命名對照表 45
表4.1 AISI 1045中碳鋼及其各種鉻化試片於25°C,0.5 M 硫酸溶液中極化測試之腐蝕特性 98
表4.2 AISI 1045中碳鋼各種鉻化試片鍍層表面630 nm之XPS元素定量分析表 98
表4.3 SS 420不鏽鋼及其各種鉻化試片於25°C,0.5 M硫酸溶液中極化測試之腐蝕特性 99
表4.4 SS 420不鏽鋼各種鉻化試片鍍層表面300 nm之XPS元素定量分析表 100
表4.5 低溫鉻化4小時試片鍍層厚度及於25°C,0.5 M 硫酸溶液中極化測試之腐蝕特性值 108
表4.6 AISI 1045中碳鋼及各種鉻化試片於140 N-cm-2作用力下之接觸阻抗 117
表4.7 SS 420不鏽鋼及各種鉻化試片於140 N-cm-2作用力下之接觸阻抗 120
表4.8 1045中碳鋼及各種鉻化試片之接觸角值 123
表4.9 420原材及各種鉻化試片之接觸角值 125
表4.10 Poco Graphite、1045中碳鋼及420不鏽鋼單純鉻化及輥軋鉻化金屬雙極板單電池最高功率密度比較表電(溫度60°C,陽極:H2-1.5λ;陰極:Air-2λ-流量300cm3-min-1,加濕70°C) 133
表4.11 1045-R-Cr(700-2)及420-R-Cr(700-2)單電池100h測試後陰極生成水Cr、Fe、Ni金屬離子檢測 137
表4.12 以Poco Graphite、1045-R-Cr(700-2)及420-R-Cr(700-2)雙極板組裝單電池100小時長效測試前、後最高輸出功率比較表(W-cm-2) 140























圖目錄

圖2.1 William Grove原始燃料電池模型示意圖 4
圖2.2 氫氣-氧氣燃料電池反應圖 6
圖2.3 PEMFC 電池堆組合示意圖 7
圖2.4 典型的質子交換膜燃料電池組 9
圖2.5 典型的極化曲線圖 13
圖2.6 鈍態金屬之陽極極化曲線 15
圖2.7 燃料電池極化曲線圖 17
圖2.8 鉻Pourbaix Diagram圖 19
圖2.9 靜態接觸角示意圖 22
圖2.10 楊氏(Yang’s Equation)模型 23
圖2.11 溫佐理論模型 24
圖2.12 粉浴爐構造圖 31
圖2.13 形成奈米晶粒層以活化基材、降低粉浴製程溫度的方法 32
圖2.14 不同溫度下低碳鋼滲鉻厚度與擴散機制關係圖 33
圖2.15 放電加工示意圖 35
圖2.16 輥軋加工前後晶格變化示意圖 37
圖2.17 30噸輥軋機 37
圖3.1 實驗流程圖 44
圖3.2 金屬雙極板流道刻劃圖 48
圖3.3 燃料電池組裝各元件成品圖 (a)端板、(b)集電板及導熱片、(c)金屬雙極板、(d)襯墊、(e) 膜電極組、(f)單電池 49
圖3.4 接觸阻抗量測相關儀器(a) HP 3478A微歐姆計、(b)油壓機 52
圖3.5 量測接觸阻抗二階段圖 54
圖3.6 FACE CA-5 150 型接觸角量測計 55
圖3.7 850 C燃料電池測試平台 57
圖4.1 各種試片之SEM表面型態圖 (a)1045原材、(b)1045-Cr(700-2)、(c)1045- EDM-Cr、(700-2)、(d)1045-R-Cr(700-2) 59
圖4.2 1045-Cr(700-2)試片之SEM橫截面型態圖 61
圖4.3 1045-Cr(700-2)試片之橫截面元素線掃描圖 61
圖4.4 1045-EDM-Cr(700-2) 試片之SEM橫截面型態圖 62
圖4.5 1045-EDM-Cr(700-2)試片之橫截面元素線掃描圖 62
圖4.6 1045中碳鋼不同活化製程後低溫粉浴之X光繞射圖 63
圖4.7 1045-R-Cr(700-2)試片之SEM橫截面型態圖 65
圖4.8 1045-R-Cr(700-2)試片之橫截面元素線掃描圖 65
圖4. 9 (a) SS 420、(b) 420-EDM-Cr (700-2)、(c) 420-R-Cr(700-2)等二種試片表面形貌圖 68
圖4.10 SS420不鏽鋼不同活化製程後低溫粉浴之X光繞射圖 69
圖4.11 420-Cr(700-2)之試片SEM橫截面型態圖 70
圖4.12 420-Cr(700-2)試片之橫截面元素線掃描圖 70
圖4.13 420-EDM-Cr(700-2) 之試片SEM橫截面型態圖 71
圖4.14 420-EDM-Cr(700-2)試片之橫截面元素線掃描圖 71
圖4.15 420-R-Cr(700-2)之試片SEM橫截面型態圖 72
圖4.16 420-R-Cr(700-2)試片之橫截面元素線掃描圖 72
圖4.17 1045-Cr(700-2)試片XPS全能譜圖 77
圖4.18 1045-Cr(700-2)試片XPS元素縱深分佈圖 77
圖4.19 1045-Cr(700-2)試片主要元素之XPS能譜圖 78
圖4.20 1045-EDM-Cr(700-2)試片XPS全能譜圖 79
圖4.21 1045-EDM-Cr(700-2)試片XPS元素縱深分佈圖 79
圖4.22 1045-EDM-Cr(700-2)試片主要元素之XPS能譜圖 80
圖4.23 1045-R-Cr(700-2)試片XPS全能譜圖 82
圖4.24 1045-R-Cr(700-2)試片XPS元素縱深分佈圖 83
圖4.25 1045-R-Cr(700-2)試片主要元素之XPS能譜圖 84
圖4.26 420-Cr(700-2)試片XPS全能譜圖 85
圖4.27 420-EDM-Cr(700-2)試片XPS全能譜圖 86
圖4.28 420-R-Cr(700-2)試片XPS全能譜圖 86
圖4.29 420-Cr(700-2)試片主要元素之XPS能譜圖 87
圖4.30 420-EDM-Cr(700-2)試片主要元素之XPS能譜圖 89
圖4.31 420-R-Cr(700-2)試片主要元素之XPS能譜圖 90
圖4.32 420-Cr(700-2)試片XPS元素縱深分佈圖 91
圖4.33 420-EDM-Cr(700-2)試片XPS元素縱深分佈圖 92
圖4.34 420-R-Cr(700-2)試片XPS元素縱深分佈圖 92
圖4.35 (a) 1045-R-Cr(700-2)、(b)1045-EDM-Cr(700-2)、(c)1045-Cr(700-2)、(d)1045原材等四種試片於25°C,0.5 M 硫酸溶液中進行動電位極化測試圖 97
圖4.36 (a) 420-R-Cr(700-2)、(b)420-EDM-Cr(700-2)、(c)420-Cr(700-2)與(d)420 原材等四種試片於25°C,0.5 M 硫酸溶液中進行動電位極化測試圖 99
圖4.37 (a) 1045-R-Cr(700-2)、(b)1045-EDM-Cr(700-2)、(c)1045-Cr(700-2)、 (d)1045原材與(e)SS 410等五種試片於80°C通氧,0.5 M硫酸溶液中進行靜電位極化測試圖 102
圖4.38 (a) 1045-R-Cr(700-2)、(b)1045-EDM-Cr(700-2)、(c)1045-Cr(700-2)、 (d)1045原材等四種試片於80°C通氫,0.5 M 硫酸溶液中進行靜電位極化測試圖 103
圖4.39 (a) 420-R-Cr(700-2)、(b)420-EDM-Cr(700-2)、(c)420-Cr(700-2) 與(d) 420原材等四種試片於80°C通氧,0.5 M 硫酸溶液中進行靜電位極化測試圖…….. 104
圖4. 40 各種試片粉浴4小時之SEM橫截面型態圖 (a) 1045-Cr (700-4)、(b)1045- EDM-Cr(700-4)、(c) 1045-R-Cr(700-4) 107
圖4.41 (a) 1045-R-Cr(700-4)、(b)1045-EDM-Cr(700-4)、(c)1045-Cr(700-4)與(d)1045原材等四種試片於25°C,0.5 M 硫酸溶液中進行動電位極化測試圖….. 108
圖4.42 (a) 1045-Cr(700-4) (b) 1045-EDM-Cr(700-4)試片700°C粉浴4小時之SEM橫截面背向散射電子(BSE)型態圖 110
圖4.43 1045-EDM-Cr(700-4)試片之SEM表面型態圖 111
圖4.44 (a) 420-3A-Cr(600-2)、(b) 420-3A-Cr(600-4)、(c) 420-3A-Cr(600-8)等三種試片於25°C,0.5 M 硫酸溶液中進行動電位極化測試圖 112
圖4. 45 各種試片之SEM橫截面型態圖 (a) 420-EDM-Cr(600-2)、(b) 420- EDM- Cr(600-4)、(c) 420-EDM-Cr(600-8) 114
圖4. 46 420-R-Cr(700-2)及420-R-Cr(700-4)試片於25°C,0.5 M 硫酸溶液中進行動電位極化測試圖 114
圖4. 47 420-R-Cr(700-4)之試片SEM橫截面型態圖 115
圖4. 48 AISI 1045中碳鋼各種鉻化製程之試片接觸阻抗隨壓力變化圖 117
圖4.49 SS 420不鏽鋼各種鉻化製程之試片接觸阻抗隨壓力變化圖 120
圖4.50 (a) 1045中碳鋼、(b) 1045-Cr(700-2)、(c) 1045-EDM-Cr(700-2)、(d) 1045- R-Cr(700-2)等四種試片之接觸角變化圖 123
圖4.51 (a) 420原材、(b) 420-Cr(700-2)、(c) 420-EDM-Cr(700-2)、(d) 420-R- Cr (700-2)等四種試片之接觸角測試圖。 125
圖4.52 AISI 1045中碳鋼及SS 420不鏽鋼各種鉻化試片接觸角及腐蝕電流關係圖…….. 126
圖4.53 Poco Graphite、1045-Cr(700-2)及1045-R-Cr(700-2)金屬雙極板之單電池I-V曲線圖(電池溫度60°C,陽極:H2-1.5 λ;陰極:Air-2λ-流量300cm3-s-1,加濕70°C) 127
圖4.54 Poco Graphite、1045-Cr(700-2)及1045-R-Cr(700-2)金屬雙極板之單電池I-P曲線圖(電池溫度60°C,陽極:H2-1.5 λ;陰極:Air-2λ-流量300cm3-min-1,加濕70°C) 128
圖4.55 (a) 316-R-Cr(700-2)、(b) 316-Cr(700-2)、(c) 420-R-Cr(700-2)、(d)420- Cr (700-2)、(e) 430-R-Cr(700-2)、(f) 430-Cr(700-2)與三種原材等九種金屬雙極板於25°C,0.5 M 硫酸溶液中進行動電位極化測試圖 130
圖4. 56 (a) 316-R-Cr(700-2)、(b) 316-Cr(700-2)、(c) 420-R-Cr(700-2)、(d) 420-Cr (700-2)、(e) 430-R-Cr(700-2)、(f) 430-Cr(700-2)與三種不鏽鋼原材等九種金屬雙極板之接觸阻抗測試圖 131
圖4. 57 Poco Graphite及各種不鏽鋼單純鉻化及輥軋鉻化後金屬雙極板之單電池I-V曲線圖(電池溫度60°C,陽極:H2-1.5 λ;陰極:Air-2λ-流量300cm3-min-1,加濕70°C) 132
圖4.58 Poco Graphite及各種不鏽鋼單純鉻化及輥軋鉻化後金屬雙極板之單電池I-P曲線圖(電池溫度60°C,陽極:H2-1.5 λ;陰極:Air-2λ-流量300cm3-min-1,加濕70°C) 133
圖4.59 1045-R-Cr(700-2)金屬雙極板單電池100h長效測試性能圖(電池溫度60°C,陽極:H2-1.5 λ;陰極:Air-2λ-流量300cm3-min-1,加濕70°C)...….136
圖4.60 420-R-Cr(700-2)金屬雙極板單電池100h長效測試性能圖(電池溫度60°C,陽極:H2-1.5 λ;陰極:Air-2λ-流量300cm3-min-1,加濕70°C)……137
圖4.61 1045-R-Cr(700-2) 雙極板於100小時單電池測試後,MEA表面Cr, Fe, Ni元素之XPS能譜圖 (a) Cr2P3/2 (b) Fe2P3/2 (c) Ni2P3/2 138
圖4.62 420-R-Cr(700-2) 雙極板於100小時單電池測試後,MEA表面Cr, Fe, Ni元素之XPS能譜圖 (a) Cr2P3/2 (b) Fe2P3/2 (c) Ni2P3/2 139
圖4.63 Poco Graphite、1045-R-Cr(700-2)及420-R-Cr(700-2)雙極板組裝之單電池於100小時長效測試後之單電池I-P曲線圖(電池溫度60°C,陽極:H2-1.5 λ;陰極:Air-2λ-流量300cm3-min-1,加濕70°C) 140






參考文獻

[1]Patil, A. S., Dubois T. G., Sifer, N., Bostic, E., Gardner, K., Quah, M., and Bolton, C., “Portable Fuel Cell Systems for America's Army: Technology Transition to the Field,” Journal of Power Sources, Vol. 136, pp. 220-225, 2004.
[2]Makkus, R. C. and Janssen, H. H., “Stainless Steel for Cost-Competitive Bipolar Plates in PEMFCs,” Fuel Cells Bulletin, Vol. 3, pp. 5-9, 2000.
[3]Reddy, R. G., Nikam, V. V., Collins, S. R., Williams, P. C., Schiroky, G. H., and Henrich, G. W., “Corrosion Resistant Low Temperature Carburized SS 316 as Bipolar Plate Material for PEMFC Application,” Electrochimica Acta, Vol. 53, pp. 2743-2750, 2008.
[4]Chaudhuri, T., Hermann, A., and Spagnol, P., “Bipolar Plates for PEMFC: A Review,” International Journal of Hydrogen Energy, Vol. 30, pp. 1297-1302, 2005.
[5]Tawfik, H., Hung, Y., and Mahajan, D., “Metal Bipolar Plates for PEMFC-A Review,” Journal of Power Sources, Vol. 163, pp. 755-767, 2007.
[6]Li, M. C., Zeng, C. L., Luo, S. Z., Shen, J. N., Lin, H. C., and Cao, C. N.,” Electrochemical Corrosion Characteristics of Type 316 Stainless Steel in Simulated Anode Environment for PEMFC,” Electrochimica Acta, Vol. 48, pp. 1735-1741, 2003.
[7]Wang, H., Sweikart, M. A., and Turner, J. A., “Stainless Steel as Bipolar Plate Material for Polymer Electrolyte Membrane Fuel Cells,” Journal of Power Sources , Vol. 115, pp. 243-251, 2003.
[8]Wang, S. H., Peng, J. C., and Lui, W. B., “Surface Modification and Development of Titanium Bipolar Plates for PEM Fuel Cells ,” Journal of Power Sources , Vol. 160, pp. 485-489, 2006.
[9]Matsumoto, T., Niikura, J., Ohara, H., Uchida, M., Gyoten, H., Hatoh, K., and Kanbara, E., European Patent, EP 1094535, 2001.
[10]Nikam, V. V. and Reddy, R. G., “Copper Alloy Bipolar Plates for Polymer Electrolyte Membrane Fuel Cell”, Electrochimica Acta, Vol. 51, pp. 6338-6345, 2006.
[11]Nikam, V. V. and Reddy, R. G., “Corrosion Studies of A Copper-Beryllium Alloy in a Simulated Polymer Electrolyte Membrane Fuel Cell Environment,” Journal of Power Sources, Vol. 152, pp. 146-155, 2005.
[12]江元仁,“汽車用燃料電池-開發現狀及普及化的課題”,電子月刊,第十二卷,九期,第8頁,2006。
[13]趙鉅隆,“以鎳基合金鍍層進行鋁合金雙極板表面改質之研究”,碩士論文,國防大學理工學院應用化學研究所,桃園,第8頁,2007。
[14]Lee, S. J. , Hsu, C. D., and Huang, C. H., “Analyses of the Fuel Cell Stack Assembly Pressure,” Journal of Power Sources, Vol. 145, pp. 353-361, 2005.
[15]曲新生,“質子交換膜燃料電池技術探討”,化工技術,第12卷,第112頁,2004。
[16]Lee, S. J., Huang, C. H., and Chen, Y. P., “Investigation of PVD Coating on Corrosion Resistance of Metallic Bipolar Plates in PEMFC,” Journal of Materials Processing Technology, Vol. 140, pp. 688-693, 2003.
[17]Wang, Y. and Northwood, D. O., “An Investigation of the Electrochemical Properties of PVD TiN-Coated SS 410 in Simulated PEM Fuel Cell Environments,” International Journal of Hydrogen Energy, Vol. 42, pp. 895-902, 2007.
[18]網站:http://corrosion.kaist.ac.kr/download/2007/chap05.pdf.

[19]Wang, Y. and Northwood, D. O., “Effects of O2 and H2 on the Corrosion of SS316L Metallic Bipolar Plate Materials in Simulated Anode and Cathode Environments of PEM Fuel Cells,” Electrochimica Acta, Vol. 52, pp. 6793-6798, 2007.
[20]Jiang, R. and Chu, D., “Stack Design and Performance of Polymer Electrolyte Membrane Fuel Cells,” Journal of Power Sources, Vol. 93, pp. 25-31, 2001.
[21]Pozio, A., Silva, R. F., Francesco, M. D., and Giorgi, L., “Nafion Degradation in PEMFCs from End Plate Iron Contamination,” Electrochimica Acta, Vol. 48, pp. 1543-1549, 2003.
[22]Hornung, R. and Kappelt, G., “Bipolar Plate Materials Development Using Fe-Based Alloys for Solid Polymer Fuel Cells,” Journal of Power Sources, Vol. 72, pp. 20-21, 1998.
[23]Davies, D. P., Adcock, P. L., Turpin, M., and Rowen, S. J. “Stainless Steel as a Bipolar Plate Material for Solid Polymer Fuel Cells,” Journal of Power Sources, Vol. 86, pp. 237-242, 2000.
[24]Weil, K. S., Kim, J. Y., Xia, G., Coleman, J., and Yang, G., “Boronization of Nickel and Nickel Clad Materials for Potential Use in Polymer Electrolyte Membrane Fuel Cells,” Surface & Coatings Technology, Vol. 201, pp. 4436-4441, 2006.
[25]Ho, W. Y., Pan, H. J., Chang, C. L., Wang, D. Y., and Hwang, J. J., “Corrosion And Electrical Properties of Multi-Layered Coatings on Stainless Steel for PEMFC Bipolar Plate Applications,” Surface and Coatings Technology, Vol. 204, pp. 1297-1301, 2007.
[26]Kim, K. Y. and Kim, K. Y., “A New Alloy Design Concept for Austenitic Stainless Steel with Tungsten Modification for Bipolar Plate Application in PEMFC,” Journal of Power Sources, Vol. 173, pp. 917-924, 2007.
[27]網站:http://upload.wikimedia.org/wikipedia/en/c/c3/Chromium_in_water_ pourbiax_diagram.png.
[28]Cunningham, N., Lefevre, M., Lebrun, G., and Dodelet, J. P., “Measuring the Through-Plane Electrical Resistivity of Bipolar Plates,” Journal of Power Sources, Vol. 143, pp. 93-102, 2005.
[29]Escribano, S., Franc, J., and Blachot, O., “Characterization of PEMFCs Gas Diffusion Layers Properties,” Journal of Power Sources, Vol. 156, pp. 8-13, 2006.
[30]Zhang, L., Liu, Y., and Song, H., “Estimation of Contact Resistance in Proton Exchange Membrane Fuel Cells,” Journal of Power Sources, Vol. 162, pp. 1165-1171, 2006.
[31]Hwang, J. J., Weng, F. B., and Chan, S. H., “Effect of Clamping Pressure on the Performance of a PEMFC,” Journal of Power Sources, Vol. 166, pp. 149-154, 2007.
[32]Lin, G., Shih, A. J., and Hu, S. J., “A Micro-Scale Model for Predicting Contact Resistance between Bipolar Plate and Gas Diffusion Layer in PEMFEs,” Journal of Power Sources, Vol. 163, pp. 777-783, 2007.
[33]Kraytsberg, A., Auinat, M., and Ein-Eli, Y., “Reduced Contact Resistance of PEM Fuel Cell’s Bipolar Plates via Surface Texturing,” Journal of Power Sources, Vol. 164, pp. 697-703, 2007.
[34]Silva, R. F., Franchi, D., Leone, A., Pilloni, L., Masci, A., and Pozio, A., “Surface Conductivity and Stability of Metallic Bipolar Plate Materials for Polymer Electrolyte Fuel Cells,” Electrochimica Acta, Vol. 51, pp. 3592-3598, 2006.
[35]Davies, D. P., Adcock, P. L., Turpin, M., and Rowen, S. J., “Bipolar Plate Materials for Solid Polymer Fuel Cells,” Journal of Applied Electrochemistry, Vol. 30, pp. 101-105, 2000.
[36]楊瑋鈞,“具高疏水性高分子薄膜之開發與研究-多孔性表面矽橡膠系統”,碩士論文,國立清華大學化學工程研究所,新竹,第4頁,2005。
[37]Wenzel, R.N., “Resistance of Solid Surface to Wetting by Water,” Industrial and Engineering Chemistry, Vol. 40, pp. 988-994, 1936.
[38]Wenzel, R. N., “Surface Roughness and Contact Angle,"Journal of Physical and Chemistry, Vol. 53, pp. 1466-1467, 1949.
[39]ScottWeil, K., Xia, G., Yang, Z. G., and Kim, J. Y., “Development of a Niobium Clad PEM Fuel Cell Bipolar Plate Material,” International Journal of Hydrogen Energy, Vol. 32, pp. 3724-3733, 2007.
[40]Weil, K. S., Kim, J. Y., Xia, G., Coleman, J., and Yang, G., “Boronization of Nickel and Nickel Clad Materials for Potential Use in Polymer Electrolyte Membrane Fuel Cells,” Surface and Coatings Technology, Vol. 201, pp. 4436-4441, 2006.
[41]Ren, Y. J. and Zeng, C. L., “Corrosion Protection of 304 Stainless Steel Bipolar Plates Using TiC Films Produced By High-Energy Micro-Arc Alloying Process,” Journal of Power Sources, Vol. 171, pp. 778-782, 2007.
[42]Chung, C. Y., Chen, S. K., and Chiu, P. J., “Carbon Film-Coated 304 Stainless Steel as PEMFC Bipolar Plate,” Journal of Power Sources, Vol. 176, pp. 276-281, 2008.
[43]Fukutsuka, T., Yamaguchi, T., and Miyano, S. I., “Carbon-Coated Stainless Steel as PEMFC Bipolar Plate Material,” Journal of Power Sources, Vol. 174, pp. 199-205, 2007.
[44]Wang, H., Brady, M. P., Teeter, G., and Turner, J. A., “Thermally Nitrided Stainless Steels for Polymer Electrolyte Membrane Fuel Cell Bipolar Plates Part 1: Model Ni-50Cr and Austenitic 349TM Alloys,” Journal of Power Sources, Vol. 138, pp. 86-93, 2004.
[45]Wang, H., Brady, M. P., Teeter, G., and Turner, J. A., “Thermally Nitrided Stainless Steels for Polymer Electrolyte Membrane Fuel Cell Bipolar Plates Part 2: Beneficial Modification of Passive Layer on AISI 446,” Journal of Power Sources, Vol. 138, pp. 79-85, 2004.
[46]Brady, M. P., Wang, H., Yang, B., and Turner, J. A., “Growth of Cr-Nitrides on Commercial Ni-Cr and Fe-Cr Base Alloys to Protect PEMFC Bipolar Plates,” International Journal of Hydrogen Energy, Vol. 32, pp. 3778- 3788, 2007.
[47]Yang, B., Brady, M. P. , Wang, H., and Turner, J. A., “Protective Nitride Formation on Stainless Steel Alloys for Proton Exchange Membrane Fuel Cell Bipolar Plates,” Journal of Power Sources, Vol. 174, pp. 228-236, 2007.
[48]Han, D. H., Hong, W. H., Choi, H. S., and Lee, J. J., “Inductively Coupled Plasma Nitriding of Chromium Electroplated AISI 316L Stainless Steel for PEMFC Bipolar Plate,” International Journal of Hydrogen Energy, Vol. 34, pp. 1-9, 2009.
[49]Tian, R. J., Sun, J. C., and Wang, L., “Effect of Plasma Nitriding on Behavior of Austenitic Stainless Steel 304L Bipolar Plate in Proton Exchange Membrane Fuel Cell,” Journal of Power Sources, Vol. 163, pp. 719-724, 2007.
[50]Fu, Y., Linb, G., and Hou, M., “Optimized Cr-Nitride Film on 316L Stainless Steel as Proton Exchange Membrane Fuel Cell Bipolar Plate,” International Journal of Hydrogen Energy, Vol. 34, pp. 453-458, 2009.
[51]Liu, J., Chen, F., and Chen, Y., “Plasma Nitrided Titanium as a Bipolar Plate for Proton Exchange Membrane Fuel Cell,” Journal of Power Sources, Vol. 187, pp. 500-504, 2009.
[52]Choi, H. S., Han, D. H., Hong, W. H., and Lee, J. J., “(Titanium, Chromium) Nitride Coatings for Bipolar Plate of Polymer Electrolyte Membrane Fuel Cell,” Journal of Power Sources, Vol. 189, pp. 966-971, 2009.
[53]Northwood, D. O., “An Investigation into TiN-Coated 316L Stainless Steel as a Bipolar Plate Material for PEM Fuel Cells,” Journal of Power Sources, Vol. 164, pp. 293-298, 2007.
[54]Yoon, W., Huang, X., and Fazzino, P., “Evaluation of Coated Metallic Bipolar Plates for Polymer Electrolyte Membrane Fuel Cell,” Journal of Power Sources, Vol. 179, pp. 265-273, 2008.
[55]Ho, W. Y., Pan, H. J., Chang, C. L., Wang, D. Y., and Hwang, J. J., “Corrosion and Electrical Properties of Multi-Layered Coatings on Stainless Steel for PEMFC Bipolar Plate Applications,” Surface and Coatings Technology ,Vol. 202, pp. 1297-1301, 2007.
[56]Ozdemir, O., Sen, S., and Sen, U., “Formation of Chromium Nitride Layers on AISI 1010 Steel by Nitro-Chromizing Treatment,” Vacuum, Vol. 81, pp. 567-570, 2007.
[57]Wei, C. Y. and Chen, F. S., “Thermoreactive Deposition/Diffusion Coating of Chromium Carbide by Contact-Free Method,” Materials Chemistry and Physics, Vol. 91, pp. 192-199, 2005.
[58]Perez, F. J., Pedraza, F., Hierro, M. P., Carpintero, M. C., and Mez, C. G., “Chromising of Stainless Steels by the Use of the CVD-FBR Technology,” Surface and Coatings Technology, Vol. 184, pp. 47-54, 2004.
[59]Bianco, R., Harper, M. A., and Rapp, R. A., “Codepositing Elements by Halide-Activated Pack Cementation.” Journal of Minerals, Metals, and Materials Society, Vol. 43, pp. 68-73, 1991.
[60]Lu, K. and Lu, J., “Nanostructured Surface Layer on Metallic Materials Induced by Surface Mechanical Attrition Treatment,” Materials Science and Engineering A, Vol. 375-377, pp. 38-45, 2004.
[61]Wang, Z. B., Lu, J., and Lu, K., “Chromizing Behaviors of a Low Carbon Steel Processed by Means of Surface Mechanical Attrition Treatment,” Acta Materialia, Vol. 53, pp. 2081-2089, 2005.
[62]Wang, Z. B., Lu, J., and Lu, K., “Wear and Corrosion Properties of a Low Carbon Steel Processed by Means of SMAT Followed by Lower Temperature Chromizing Treatment,” Surface and Coatings Technology, Vol. 201, pp. 2796-2801, 2006.
[63]Cao, H., Luo, C. P., Liu, J., and Zou, G., “Phase Transformations in Low-Temperature Chromized 0.45 wt.% C plain Carbon Steel,” Surface and Coatings Technology, Vol. 201, pp. 7970-7977, 2007.
[64]Wang, Z. B., Tao, N. R., Tong, W. P., Lu, J., and Lu, K., “Diffusion of Chromium in Nanocrystalline Iron Produced by Means of Surface Mechanical Attrition Treatment,” Acta Materialia, Vol. 51, pp. 4319-4329, 2003.
[65]Lee S. J., Lai, J. J., and Huang, C. H., “Stainless Steel Bipolar Plates,” Journal of Power Sources, Vol. 145, pp. 362-368, 2005.
[66]戴國政,“壓延條件對AZ31鎂合金機械性質之影響”,碩士論文,逢甲大學機械工程研究所,台中,第30頁,2003。
[67]Pierson, H. O., Handbook of Refractory Carbides and Nitrides, Char. 6, pp. 102-106, 1996.
[68]Detroye, M., Reniers, F., Buess-Herman, C., and Vereecken, J., “Synthesis and Characterization of Chromium Carbides,” Applied Surface Science, Vol. 120, pp. 85-93, 1997.
[69]Knyazheva, V. M., Babich, S. G., Kolotyrkin, V. I., and Kozhevnikov, V. B., “Electrochemical-Corrosion Properties and Electronic Structure of Chromium Carbides, Nitride, and Carbonitride,” Protection of Metals, Vol. 26, pp. 568-573, 1991.
[70]Detroye, M., Reniers, F., Buess-Herman, C., and Vereecken, J., “Synthesis and Characterization of Chromium Carbides,” Applied Surface Science, Vol. 120, pp. 85-93, 1997.
[71]Hentall, P. L., Lakeman, J. B., Mepsted, G. O., Adcock, P. L., and Moore, J. M., “New Materials for Polymer Electrolyte Membrane Fuel Cell Current Collectors,” Journal of Power Sources, Vol. 80, pp. 235-2419, 1999.
[72]Lee, S. J., and Lai, J. J., “The Effects of Electropolishing (EP) Process Parameters on Corrosion Resistance of 316L Stainless Steel,” Journal of Materials Processing Technology, Vol. 140, pp. 206-210, 2003.
[73]Lee, S. J., Huang, C. H., Lai J. J., and Chen, Y. P., “Corrosion-Resistant Component for PEM Fuel Cells,”Journal of Power Sources, Vol. 131, pp. 162-168, 2004.
[74]Wang, H. and Turner, J. A., “Ferritic Stainless Steels as Bipolar Plate Material for Polymer Electrolyte Membrane Fuel Cells,” Journal of Power Sources, Vol 128, pp. 193-200, 2004.
[75]Fleury, E., Jayaraj, J., Kim,Y. C., Seok, H. K., Kim, K. Y., and Kim, K. B., “ Fe-Based Amorphous Alloys as Bipolar Plates for PEM Fuel Cell,” Journal of Power Sources, Vol. 159, pp. 34-37, 2006.
[76]Wang, J., Sun, J, Tian, R., and Jing, X., “Plain Carbon Steel Bipolar Plates for PEMFC,” Rare Metals, Vol. 25, pp. 235-239, 2006.
[77]Nam, D. G. and Lee, H. C., “Thermal Nitridation of Chromium Electroplated AISI316L Stainless Steel for Polymer Electrolyte Membrane Fuel Cell Bipolar Plate,” Journal of Power Sources, Vol. 170, pp. 268-274, 2007.
[78]Xia, G., Yang, Z. G., and Kim, J. Y., “Development of a Niobium Clad PEM Fuel Cell Bipolar Plate Material,” International Journal of Hydrogen Energy, Vol. 32, pp. 3724-3733, 2007.
[79]Wang, Heli, Turner, J. A., and Li, X., “SnO2:F Coated Austenite Stainless Steels for PEM Fuel Cell Bipolar Plates,” Journal of Power Sources, Vol. 171, pp. 567-574, 2007.
[80]Fu, Y., Hou, M., and Lin, G., “Coated 316L Stainless Steel With CrxN Film as Bipolar Plate for PEMFC Prepared by Pulsed Bias Arc Ion Plating,” Journal of Power Sources, Vol. 176, pp. 282-286, 2008.
[81]Feng, K., Shen, Y., and Mai, J., “An Investigation Into Nickel Implanted 316L Stainless Steel as a Bipolar Plate for PEM Fuel Cell,” Journal of Power Sources, Vol. 182, pp. 145-152, 2008.
[82]Cho, K. H., Lee, W. G., Lee, S. B., and Jang, H., “Corrosion Resistance of Chromized 316L Stainless Steel for PEMFC Bipolar Plates,” Journal of Power Sources, Vol. 178, pp. 671-676, 2008.
[83]Wei, C. Y. and Chen, F. S., “Thermoreactive Deposition/Diffusion Coating of Chromium Carbide by Contact-Free Method,” Materials Chemistry and Physics, Vol. 91, pp. 192-199, 2005.
[84]Hwang, J. J., Weng, F. B., and Chan, S. H., “Effect of Clamping Pressure on the Performance of a PEM Fuel Cell,” Journal of Power Sources, Vol. 166, pp. 149-154, 2007.
[85]Lin, J. H. , Chen, W. H., Su, Y. J., and Ko, T. H., “Effect of Gas Diffusion Layer Compression on the Performance in a Proton Exchange Membrane Fuel Cell,” Fuel, Vol. 87, pp. 2420-2424, 2008.
[86]Kruth, J. P., Stevens, L., Froyen, L., and Lauwers, B., “Study of the White Layer of a Surface Machined by Die-Sinking Electro-Discharge Machining,” CIRP Annals - Manufacturing Technology, Vol. 44, pp. 169-172, 1995.
[87]Guu, Y. H., Hocheng, H., Chou, C. Y., and Deng, C. S., “Effect of Electrical Discharge Machining on Surface Characteristics and Machining Damage of AISI D2 Tool Steel,” Materials Science and Engineering A, Vol. 358, pp. 37-43, 2003.
[88]Tabet, N., Allam, I., and Yin, R. C., “X-Ray Photoelectron Spectroscopy Investigation of the Carburization of 310 Stainless Steel,” Applied Surface Science, Vol. 220, pp. 259-272, 2003.
[89]Detroye, M., Reniers, F., Buess-Herman, C., and Vereecken, J., “AES-XPS Study of Chromium Carbides and Chromium Iron Carbides,” Applied Surface Science, Vol. 144-145, pp. 78-82, 1999.
[90]網站:http://www.lasurface.com/database/elementxps.php.

[91]Grimal, J. M. and Marcus, P., “The Anodic Dissolution and Passivation of Ni-Cr-Fe Alloys Studied by ESCA,” Corrosion Science, Vol. 33, pp. 805-814, 1992.
[92]Bussel, M. E. and Marcus, P., “XPS Study of the Passive Films Formed on Nitrogen-Implanted Austenitic Stainless Steels,” Applied Surface Science, Vol. 59, pp. 7-21, 1992.
[93]Wang, D., “Corrosion Behaviour of Chromized and/or Aluminized Cr-1Mo Steel in Medium-BTU Coal Gasifier Environments,” Surf. Coat. Technol., Vol. 36, pp. 49-60, 1988.
[94]Lee, J. W., Duh, J. G., and Tsai, S. Y., “Corrosion Resistance and Microstructural Evaluation of the Chromized Coating Process in a Dual Phase Fe-Mn-Al-Cr Alloy,” Surf. Coat. Technol., Vol. 153, pp. 59-66, 2002.
[95]Sedriks, A. J., “Effects of Alloy Composition and Microstructure on the Passivity of Stainless Steels,” Corrosion, Vol. 42, pp. 376-389, 1986.
[96]Bojinov, M., Fabricius, G., and Kinnunen, P., “The Mechanism of Transpassive Dissolution of Ni-Cr Alloys in Sulphate Solution,” Electrochimica Acta, Vol. 45, pp. 2791-2802, 2000.
[97]Feng, K., Shen, Y., Liu, D., and Cai, X., “Ni-Cr Co-Implanted 316L Stainless Steel as Bipolar Plate in Polymer Electrolyte Membrane Fuel Cells,” Internatioal Journal of Hydrogen Energy, Vol. 35, pp. 690-700, 2010.
[98]Sato, N., Kudo, K., and Noda, T., “Single Layer of the Passive Film on Fe,” Corrosion Science, Vol. 10, pp. 785-794, 1970.
[99]Xiang, Z. D., and Datta, P. K., “Formation of Hf- and W-Modified Aluminide Coatings on Nickel-Base Superalloys by the Pack Cementation Process,” Materials Science and Engineering A, Vol. 363, pp. 185-192, 2003.
[100]Lin, G., Shih, A. J., and Hu, S. J., “A Micro-Scale Model for Predicting Contact Resistance between Bipolar Plate and Gas Diffusion Layer in PEM Fuel Cells,” Journal of Power Sources, Vol. 163, pp. 777-783, 2007.

[101]Hsu, C. H., Chen, C. F., and Lo, H. C., “Field Emission Characteristics of Chromium Carbide Capped Carbon Nanotips,” Thin Solid Films, Vol. 515, pp. 1025-1027, 2006.
[102]Bharat, A. and Pradeep, H., “Effect of Surface Roughness of Composite Bipolar Plates on the Contact Resistance of a Proton Exchange Membrane Fuel Cell,” Journal of Power Sources, Vol. 188, pp. 225-229, 2009.
[103]Cho, E. A., Jeon, U. S., and Hong, S. A., “Performance of a 1kW-Class PEMFC Stack Using TiN-Coated 316 Stainless Steel Bipolar Plates,” Journal of Power Sources, Vol. 142, pp. 177-183, 2005.
[104]Zhang, S. Y., Ding, Y. F., Li, S. J., Luo, X. W., and Zhou, W. F., “Effect of Polymeric Structure on the Corrosion Protection of Epoxy Coatings,” Corrosion Science, Vol. 44, pp. 861-869, 2002.
[105]He, T., Wang, Y., Zhang, Y., lva, Q., Xu, T., and Liu, T., “Super- Hydrophobic Surface Treatment as Corrosion Protection for Aluminum in Seawater,” Corrosion Science, Vol. 51, pp. 1757-1761, 2009.
[106]Zhang, S. Y., Li, S. J., Luo, X. W., and Zhou, W. F., “Mechanism of the Significant Improvement in Corrosion Protection by Lowering Water Sorption of the Coating,” Corrosion Science, Vol. 42, pp. 2037-2041, 2000.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔