(3.80.6.131) 您好!臺灣時間:2021/05/15 01:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:王崇安
研究生(外文):Wang, Chung-An
論文名稱:奈米石墨碳材之製備研究與應用
論文名稱(外文):Study on The Fabrication and Applications of Graphene
指導教授:葛明德葛明德引用關係
指導教授(外文):Ger, Ming-Der
口試委員:黃炳照林招松歐耿良林岳輝劉豫川葛明德蒲念文陸開泰
口試日期:2011-05-18
學位類別:博士
校院名稱:國防大學理工學院
系所名稱:國防科學研究所
學門:軍警國防安全學門
學類:軍事學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:107
中文關鍵詞:石墨烯分散透明導電膜觸媒超臨界流體
相關次數:
  • 被引用被引用:0
  • 點閱點閱:465
  • 評分評分:
  • 下載下載:20
  • 收藏至我的研究室書目清單書目收藏:1
本研究利用化學熱處理方法與超臨界流體法兩種不同製程方式製備石墨烯(Graphene),並比較這兩種不同方式製備之石墨烯之間的異同。研究結果以穿透式電子顯微鏡(TEM) 觀察兩種石墨烯表面形貌,發現化學熱處理法所製備之石墨烯表面較多皺摺,且利用拉曼檢測,也發現石墨烯表面有更多的缺陷,D-Band與G-Band比值接近1;XPS的分析發現石墨烯表面還有氧化物的殘留。而以超臨界流體製備的石墨烯,以TEM中觀察其表面形貌可得到表面平整不皺折之石墨烯。利用AFM對超臨界流體二氧化碳製備出之石墨烯,操作壓力接近臨界點時可得到厚度約0.84 nm之2層石墨烯。
藉由不同界面活性劑,陰離子型、陽離子型、高分子型與非離子型等(SDS 、CTAB、H14N及CO890)透過超音波震盪,讓原本疏水的石墨烯藉由界面活性劑吸附在石墨烯表面,使得石墨烯均勻分散於水溶液中。穿透式電子顯微鏡(TEM)檢測分散後石墨烯表面形態,表面電位與粒徑分析儀量測石墨粒徑及表面電位,奈米液體沉降穩定分析儀分析石墨烯在水溶液中的分散效果。結果發現利用非離子型CO890 200 ppm分散石墨烯具有較佳的分散性,所得粒徑約~750 nm。
利用化學熱處理方法所製備之石墨烯分散液與商品石墨分散液塗佈於FR4板上,在基板上固含量,只要商品奈米石墨分散液固含量的三分之ㄧ,即可達到相同的電阻率。將分散好的石墨烯噴塗於透明之PET片上形成透明導電膜,並利用UV-Vis檢測透明導電膜的透光率,藉由四點探針的量測得到透明導電膜的電阻值。以噴塗0.1 wt%石墨烯對透明PET片噴塗10次,可達到穿透率65 %以上及電阻值130 kΩ/sq。將石墨烯成膜的透明導電薄膜浸泡於溶劑中,可將多餘的界面活性劑去除,並對石墨烯進行表面改質,可讓電阻值15 kΩ/sq與光穿透率65 %
石墨烯透過表面改質,使石墨烯表面經過官能基修飾,並分散於含金屬離子鍍液中,再添加還原劑,促使金屬離子還原於石墨烯表面,形成奈米金屬微粒,讓石墨烯表面還原貴金屬後,可得到粒徑約40 nm之金屬微粒,形成具有觸媒能力的碳材料。或者石墨烯透過表面改質,使石墨烯表面經過官能基修飾,再利用表面所形成的官能基催化金屬離子還原於石墨烯表面,在不須添加任何還原劑下即可讓金屬奈米微粒粒徑均一約3~ 5 nm,且均勻分布於石墨烯表面。

In this dissertation, were using the two approaches, chemical oxidation/ thermal reduction and supercritical fluid exfoliation, to fabricate graphene and compared the difference of these two results. The observation with a transmission electron microscope (TEM) showed that many wrinkles were discovered on the surface of graphene by the chemical route. In addition, Raman spectra also showed that the D/G peak ratio was about 1, and indicated that residual oxygen functional groups were still remained on the surface of graphene. In another way, the graphene produced by supercritical fluid exfoliation has smoother surface topography which revealed by TEM. Atomic force microscopy (AFM) also told that the graphene exfoliated by supercritical CO2 at the critical pressure the thickness was as thin as 0.84 nm, or two atomic layers.
The hydrophobic graphene was uniformly dispersed in aqueous solutions using various types of surfactants: a cation type surfactant, tetradecyltrimethylammonium bromide (CTAB); a non-ion type, polyoxyethylene (40) nonylphenylether (CO890); an anion type, sodium dodecyl sulfate (SDS); and a polymer type, polycarboxylate (H14N). The performance of these surfactants was detected by TEM, zeta potential analysis, particle size analysis, and dispersion stability analysis. The results showed that the non-ion type surfactant, CO890, at a concentration of 200 ppm performed the best dispersibility. The measured particle size was about 750 nm.
The graphene prepared via chemical route was drop-coated or spray-coated onto FR4 substrates to form a conducting film. Compared to a commercial nanographite conducting colloid, the graphene film that we made would be able to achieve the same conductance at one third of the spray. In addition, transparent conductive films were also prepared by spray-coating graphene on PET substrates. A sheet resistance of 130 kΩ/sq at an optical transmission of 65% was achieved by spraying 10 times the 0.1 wt% graphene solution. The sheet resistance was further reduced to 15 kΩ/sq (at 65% transmission) by removing the surfactant with solvent in combination with an acid treatment to the graphene reforming.
Metal nanoparticle decorated graphene was prepared by first functionalizing the graphene and then dispersing the graphene in the solution of ion metal and ethylene glycol (a reducing agent). Catalytic metal nanoparticles with a size of ~ 40 nm were deposited on graphene. Moreover, metal nanoparticles can be reduced by the functional groups on modified graphene without adding any reducing agent. The metal particles in this way were more uniformed, better dispersed, and only sized 3-5 nm.

致謝
摘要
ABSTRACT
目錄
表目錄
圖目錄
1. 文獻回顧
1.1 碳材料
1.1.1 石墨、富勒烯與奈米碳管
1.1.2 新型碳材-石墨烯
1.1.2.1 貼布法
1.1.2.2 奈米機械研磨法
1.1.2.3 化學熱處理
1.1.2.4 氧化還原法
1.1.2.5 奈米碳管打開法
1.2 碳材料之應用
1.2.1 透明導電薄膜
1.2.2 碳材料表面金屬化修飾
2. 研究動機
3. 實驗方法
3.1 化學熱處理法製備石墨烯
3.1.1 儀器檢測
3.2 超臨界流體二氧化碳製備石墨烯
3.2.1 儀器檢測
3.3 石墨烯之分散
3.3.1 儀器檢測
3.4 導電薄膜之製備
3.4.1 儀器檢測
3.5 石墨烯表面金屬化研究
3.5.1 儀器檢測
4. 結果與討論
4.1 化學熱處理與超臨界流體法製備石墨烯之比較
4.1.1 化學熱處理製備石墨烯
4.1.2 超臨界流體製備石墨烯
4.2 石墨烯分散
4.3 石墨烯導電性之研究
4.3.1 石墨烯導電性與商品石墨之比較
4.3.2 透明導電薄膜之製備研究
4.4 石墨烯表面金屬化之研究
4.4.1 化學鍍法石墨烯表面金屬化
4.4.1.1 石墨烯表面化學鍍鎳
4.4.1.2 石墨烯表面化學鍍鈀
4.4.2 自身還原法(Self-Regulated Reduction Method)於石墨烯表面金屬化
5. 結論
6. 未來展望
參考文獻
論文發表
自傳

[1]沈曾民,新型碳材料,化學工業出版社,7月,第1頁,2007。
[2]沈曾民,新型碳材料,化學工業出版社,7月,第53頁,2007。
[3]馬榮俊,邱電雲,礦冶工程,20(4):第4- 5頁,2000。
[4]林明憲,“以化學氣相沉積法成長奈米碳線圈及奈米碳管之研究”,碩士學位論文,國防大學中正理工學院兵器系統工程研究所,桃園,第6– 7頁,2008。
[5]沈曾民,新型碳材料,化學工業出版社,7月,第225- 236頁,2007。
[6]馮榮豐、陳錫添,奈米工程概論,全華科技圖書股份有限公司,台北,第1.2- 1.10頁,2006。
[7]Iijima, S., “Helical Microtubules of Graphitic Carbon,” Nature, Vol. 354, pp. 56- 58, 1991.
[8]Cui, S., Scharff, P., Siegmund, C., Schneider, D., Risch, K., Klotzer, S., Spiess, L., Romanus, H., and Schawohl, J., “Investigation on Preparation of Multiwalled Carbon Nanotubes by DC Arc Discharge Under N2 Atmosphere,” Carbon, Vol. 42, pp. 931-939, 2004.
[9]Noriaki, S., “Formation of Multi-Shelled Carbon Nanoparticles by Arc Discharge in Liquid Benzene,” Materials Chemistry and Physics, Vol. 88, pp. 235- 238, 2004.
[10]Kim, H.H. and Kim, H.J., “The Preparation of Carbon Nanotubes by DC Arc Discharge Using a Carbon Cathode Coated With Catalyst,” Materials Science and Engineering B, Vol. 130, pp. 73-80, 2006.
[11]Kim, H.H. and Kim, H.J., “Preparation of Carbon Nanotubes by DC Arc Discharge Process Under Reduced Pressure in an Air Atmosphere,” Materials Science and Engineering B, Vol. 133, pp. 241- 244, 2006.
[12]Zhu, S., Su, C.H., Cochrane, J.C., Lehoczky, S., Muntele, I., and Ila, D., “Growth of Carbon Nanostructure Materials Using Laser Vaporization,” Diamond and Related Materials, Vol. 10, pp. 1190- 1194, 2001.
[13]Wang, W.H., Chao, K.M., and Kuo, C.T., “Process and Characteristics of The Large Area Well-Aligned CNTs With Open Ends by Electron Cyclotron Resonance Chemical Vapor Deposition,” Diamond and Related Materials, Vol. 14, pp. 753- 757, 2005.
[14]Deck, C.P. and Vecchio, K., “Growth Mechanism of Vapor Phase CVD-Grown Multi-Walled Carbon Nanotubes,” Carbon, Vol. 43, pp. 2608- 2617, 2005.
[15]Jung, M., Eun, K.Y., Lee, J.K., Baik, Y.J., Lee, K.R., and Park, J.W., “Growth of Carbon Nanotubes by Chemical Vapor Deposition,” Diamond and Related Materials, Vol. 10, pp. 1235- 1240, 2001.
[16]Yakobson, B.I., Brabec, C.J., and Bernholc, J., “Nanomechanics of Carbon Tubes: Instabilities beyond Linear Response,” Physical Review Letters, Vol. 76, No. 14, pp. 2511- 2514, 1996.
[17]Horiuchi, S., Gotou, T., and Fujiwara, M., “Single Graphene Sheet Detected in a Carbon Nanofilm,” Appl. Phys. Lett., Vol. 84, No. 13, pp. 2403- 2405, 2004.
[18]Stankovich, S., Dikin, D.A., Dommett, G.H.B., Kohlhaas, K.M., Zimney, E.J., Stach, E.A., Piner, R.D., Nguyen, S.T., and Ruoff, R.S., “Graphene-Based Composite Materials,” Nature, Vol. 442, pp. 282- 286, 2006.
[19]Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., and Firsov, A.A., “Electric Field Effect in Atomically Thin Carbon Films,” Science, 306(5696), pp. 666- 669, 2004.
[20]Novoselov, K.S. , Jiang, D. , Schedin, F., Booth, T.J., Khotkevich, V.V., Morozov, S.V., and Geim, A.K., “Two-Dimensional Atomic Crystals,” Proc. Natl. Acad. Sci. USA, 102, pp. 10451- 10453, 2005.
[21]林永昌、鄭碩方、邱博文,“石墨烯之電子特性與電子元件之應用潛力”,工業材料雜誌,291,3月,第116-122頁,2011。
[22]Novoselov, K.S., Geim, A.K., Morozov, S.V., Jing, D., Katsnelson, M.I., Grigorieva, I.V., Dubonos S.V., and Firsov A.A., “Two-Dimensional Gas of Massless Dirac Fermions in Graphene,” Nature, 438, pp. 197- 200, 2005.
[23]Zhang, Y.B., Tan, Y.W., Stormer, H.L., and Kim, P.H., “Experimental Observation of The Quantum Hall Effect and Berry’s Phase in Graphene,” Nature; 438, pp. 201- 204, 2005.
[24]Geim, A.K. and Novoselov, K.S., “The Rise of Graphene,” Nature Materials, 6, pp. 183- 191, 2007.
[25]Novoselov, K.S., Jiang, Z., Zhang, Y., Morozov, S.V., Stormer, H.L., Zeitler, U., Maan, J.C., Boebinger, G.S., Kim, P., and Geim, A.K., “Room-Temperature Quantum Hall Effect in Graphene,” Science, 315 (5817), p. 1379, 2007.
[26]Wilson, M., “Electrons in Atomically Thin Carbon Sheets Behave Like Massless Particals,” Phys. Today, 59, p. 21, 2006.
[27]Novoselov, K.S., McCann, E., Morozov, S.V., Fal’ko, V.I., Katsnelson, M.I., and Zeitler, U., “Unconventional Quantum Hall Effect and Berry’s Phase of 2π in Bilayer Graphene,” Nature Phys., 2(3), pp. 177- 180, 2006.
[28]Ohta, T., Bostwick, A., Seyller, T., Horn, K. and Rotenberg, E., “Controlling The Electronic Structure of Bilayer Graphene,” Science, 313, 5789, pp. 951- 954, 2006.
[29]Forbeaux, I., Themlon, J.M., and Debever, J.M., “Heteroepitaxial Graphite on 6H-SiC(0001): Interface Formation Through Conduction-Band Electronic Structure,” Phys. Rev. B; 58, 24, pp. 16396- 16406, 1998.
[30]Schniepp, H.C., Li, J.L., McAllister, M.J., Sai, H., Herrera-Alonso, M., Adamson, D.H., Prud’homme, R.K., Car, R., Saville, D.A., and Aksay, I.A., “Functionalized Single Graphite nanoplatelets Sheets Derived from Splitting Graphite Oxide,” J. Phys. Chem. B, Vol. 110, No. 17, pp. 8535- 8539, 2006.
[31]Stankovich, S., Dikin, D.A., Piner, R.D. and Kohlhaas, K.A., Kleinhammes, A., Jia, Y., Wu, Y., Nguyen, S.T., and Ruoff, R.S., “Synthesis of Grapheme-Based Nanosheets Via Chemical Reduction of Exfoliated Graphite Oxide,” Carbon 45, pp. 1558- 1565, 2007.
[32]Gao, J., Liu, F., Liu, Y., Ma, N., Wang, Z., and Zhang, X., “Environment-Friendly Method To Produce Graphene That Employs Vitamin C and Amino Acid,” Chem. Mater., 22, pp.2213-2218, 2010.
[33]Jang, B.Z., Yang, L., Wong, S.C., and Bai, Y., “Process For Producing Nano-Scaled Graphene Plates,” UA20050271574A1.
[34]Obraztsov, A.N., Obraztsova, E.A., Tyurnina, A.V., and Zolotukhin, A.A., “Chemical Vapor Deposition of Thin Graphite Films of Nanometer Thickness,” Carbon, 45, pp. 2017- 2021, 2007.
[35]Bae, S., Kim, H., Lee, Y., Xu, X., Park, J.S., Zheng, Y., Balakrishnan, J., Lei, T., Kim, H.R., Song, Y.Il., Kim, Y.J., Kim, K.S., Ozyilmaz, B., Ahn, J.H., Hong, B.H., and Iijima, S., “Roll-to-Roll Production of 30-Inch Graphene Films for Transparent Electrodes,” Nature Nanotechnology, pp1-5, 2010.
[36]He, H., Riedl, T., Lerf, A., and Klinowski, J., “Solid-State NMR Studies of The Structure of Graphite Oxide,” J. Phys. Chem., 100(51), pp. 19954- 19958, 1996.
[37]Lerf, A., He, H., Riedl, T., Forster, M., and Klinowski, J., “13C and 1H MAS NMR Studies of Graphite Oxide and Its Chemically Modified Derivatives,” Solid State Ionics, 101-103(Pt. 2), 857- 862, 1997.
[38]Lerf, A., He, H., Forster, M., and Klinowski, J., “Structure of Graphite Oxide Revisited,” J. Phys. Chem. B, 102(23), pp. 4477- 4482, 1998.
[39]謝振剛,“氧化鋅鋁透明導電膜光、電特性之研究”, 碩 士 論 文,國 立 中 央 大 學 光 電 科 學 研 究 所 ,桃園,第1頁,2005。
[40]Chopra, K.L., Major, S., and Pandya, D.K., “Transparent Conductors-A Status Review,” Thin Solid Film, 102, pp. 1-46, 1983.
[41]吳坤陽,“溶凝膠法製備含銀之AZO透明導電膜的研究”,碩 士 論 文,國 立 成 功 大 學化 學 工 程 學 系,第20-22頁,2005。
[42]蔡裕榮,“以溶膠凝膠法制備透明導電氧化物薄膜的探討”,碩士論文,國立中正大學化學研究所,2002。
[43]Young, M.T. and Keun, S.D., “Effects of Rapid Thermal Annealing on The Morphology and Electrical Properties of ZnOyIn Films,” Thin Solid Films, Vol. 410, pp. 8-13, 2002.
[44]Kaempgen, M., Duesberg, G.S., and Roth, S., “Transparent Carbon Nanotube Coatings,” Applied Surface Science 252, pp. 425- 429, 2005.
[45]Mason, T.O., Chang, R.P.H., Mark, T.J., and Poeppelmeier, K.R., “Improved Transparent Conducting Oxides for Photovoltaics,” Final Research Report, Northwestern University, Evanston, Illinois, 2002.
[46]Che, G., Lakshmi, B.B., Martin, C.R., and Fisher, E.R., “Metal-Nanocluster-Filled Carbon Nanotubes: Catalytic Properties and Possible Applications in Electrochemical Energy Storage and Production,” Langmuir 15, p. 75, 1999.
[47]Coq, B., Planeix, J.M., and Brotons, V., “Fullerene-Based Materials as New Support Media in Heterogeneous Catalysis by Metals,” Appl. Catal., A Gen. 173, pp. 175-183, 1998.
[48]Tang, C.C., Fan, S.S., Dang, H.Y., Zhao, J.H., Li, C.P., and Gu, Q., “Growth of SiC Nanorods Prepared by Carbon Nanotubes-Confined Reaction,” J. Cryst. Gowth, 210, p. 595, 2000.
[49]Han, W.Q., Bando, Y., Kurashima, K., and Sato, T., “Synthesis of Boron Nitride Nanotubes from Carbon Nanotubes by a Substitution Reaction,” Appl. Phys. Lett., 73, p. 3085, 1998.
[50]Ang, L.M., Hor, T.S.A., Xu, G.Q., Tung, C.H., Zhao, S.P., and Wang, J.L.S., “Decoration of Activated Carbon Nanotubes With Copper and Nickel,” Carbon 38, pp. 363-372, 2000.
[51]Zhang, Y., Zhang, Q., Li, Y., Wang, N., and Zhu, J., “Coating of Carbon Nanotubes With Tungsten by Physical Vapor Deposition,” Solid State Commun., 115, pp.51- 55, 2000.
[52]Chen, X., Xia, J., Peng, J., Li, W., and Xie, S., “Carbon-Nanotube Metal-Matrix Composites Prepared by Electroless Plating,” Composites Science and Technology, pp.301- 306, 2000.
[53]Kong, F.Z., Zhang, X.B., Xiong, W.Q., Liu, F., Huang, W.Z., Sun, Y.L., Tu, J.P., and Chen, X.W., “Continuous Ni-Layer on Multiwall Carbon Nanotubes by an Electroless Plating Method,” Surface and Coatings Technology, 155, pp. 33- 36, 2002.
[54]Park, S.J., Jang, Y.S., and Rhee, K.Y., “Interlaminar and Ductile Characteristics of Carbon Fibers-Reinforced Plastics Produced by Nanoscaled Electroless Nickel Plating on Carbon Fiber Surfaces,” Journal of Colloid and Interface Science, 245, pp. 383- 390, 2002.
[55]Liu Z.J., Xu, Z., Yuan, Z.Y., Chen, W., Zhou, W., and Peng, L.M., “A Simple Method for Coating Carbon Nanotubes With Co-B Amorphous Alloy,” Materials Letters, pp.1339- 1344, 2003.
[56]Dillon, A.C., Jones, K.M., Bekkedahl, T.A., Klang, C.H., Bethune, D.S., and Heben, M.J., “Storage of Hydrogen in Single-Walled Carbon Nanotubes,” Nature, 386, pp 377- 379, 1997.
[57]Ye, Y., Ahn, C.C., Witham, C., Fultz, B., Liu, J., Rinzler, A.G., Colbert, D., Smith, K.A., and Smalley, R.E., “Hydrogen Adsorption and Cohesive Energy of Single-Walled Carbon Nanotubes,” Appl Phys Lett., 74(16): pp. 2307- 2309, 1999.
[58]Chen, P., Wu, X., Lin, J., and Tan, K.L., “High H2 Uptake by Alkali-Doped Carbon Nanotubes Under Ambient Pressure and Moderate Temperature,” Science, 285(2), pp.91- 93, 1999.
[59]Liu, C., Fan, Y.Y., Liu, M., Cong, H.T., Cheng, H.M., and Dresselhaus, M.S., “Hydrogen Storage in Single-Walled Carbon Nanotubes at Room Temperature,” Science, 286(5): pp.1127- 1129, 1999.
[60]Braga, S.F., Coluci, V.R., Baughman, R.H., and Galvao, D.S., “Hydrogen Storage in Carbon Nanoscrolls: An Atomistic Molecular Dynamics Study,” Chemical Physics Letters 441, pp.78- 82, 2007.
[61]Mu, S.C., Tang, H.L., Qian, S.H., Pan, M., and Yuan, R.Z., “Hydrogen Storage in Carbon Nanotubes Modified by Microwave Plasma Etching and Pd Decoration,” Carbon, 44 , p762- 767, 2006.
[62]Mielewaki, D.F., Lee, E.C., Manke, C.W., and Gulari, E., “System and Method of Preparing a Reinforced Polymer Supercritical Fluid Treatment,” US200220082331A1.
[63]Serhatkulu, G..K., Dilek, C., and Gulari, E., “Supercritical CO2 Intercalation of Layered Silicates,” J. of Supercritical Fluids, 39, pp. 264- 270, 2006.
[64]Manke, C.W., Gulari, E., Mielewaki, D.F., and Lee, E.C., “System and Method of Delaminating a Layered Silicate Material by Supercritical Fluid Treatment,” US006469073B1.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top