跳到主要內容

臺灣博碩士論文加值系統

(44.222.64.76) 您好!臺灣時間:2024/06/14 09:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林俊宥
研究生(外文):Chun-Yu Lin
論文名稱:生質柴油製程開發
論文名稱(外文):Process Development for Biodiesel Production
指導教授:張仁瑞
指導教授(外文):Jen-Ray Chang
口試委員:黃定加陳慧英李志甫張仁瑞
口試委員(外文):Ting-Chia HuangHui-Ying ChenJyh-Fu LeeJen-Ray Chang
口試日期:2011-07-02
學位類別:碩士
校院名稱:國立中正大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:100
中文關鍵詞:生質柴油有機金屬催化蒸餾
外文關鍵詞:biodieselorganometalliccatalytic distillation
相關次數:
  • 被引用被引用:3
  • 點閱點閱:462
  • 評分評分:
  • 下載下載:20
  • 收藏至我的研究室書目清單書目收藏:0
傳統生質柴油製程多採用鹼性觸媒,如NaOH與KOH。雖然轉化率極高,但因為容易與游離酸產生皂化反應,不適用於游離酸大於3wt%的油品中。而且反應後必須加入大量的酸中和觸媒,再利用水洗去除鹽類與分離甘油,生成大量廢水而衝擊環境。本研究發現B(OCH3)3與非均勻相之V2O5/SiO2進行轉酯化反應可以改善鹼觸媒的缺陷,經由批次反應結果發現,B(OCH3)3在醇油比為6:1、230℃的條件下,轉化率可達到60%;而V2O5/SiO2在醇油比12:1、150℃條件下,反應二小時之轉化率更可達到95℃,顯示觸媒對於轉酯化反應具有極高的活性。為了瞭解V2O5/SiO2的催化機制,利用粉末X光繞射、X光吸收光譜及紅外線光譜儀分析觸媒反應前後之結構變化,結果發現SiO2擔體上之V2O5在反應過程中會形成釩之有機化合物V(OCH3)。為了應用在商業生產,本製程乃利用催化蒸餾的方式進行轉酯化反應,由於B(OCH3)3沸點與甲醇相近,可於反應同時分離並回收再利用,故優先選擇進行測試。結果顯示,在常壓且甲醇無回流的條件下,轉化率為15%;使甲醇回流後,轉化率可提升至25%,證明甲醇回流有助於反應性的提升。不同於鹼製程,在新製程中,生質柴油可藉由減壓蒸餾分離,免除酸鹼中和、水洗、過濾等繁複步驟,較為簡易。
Biodiesel have been produced commercially by using basic homogeneous catalysts, such as NaOH and KOH. However, the base-catalyzed reactions are very sensitive to the free fatty acid (FFA) contenting in the oil feed. Hence, the basic catalysts are unsuitable to produce esters from unrefined oils which have FFA content higher than approximately 3 wt%. In this study, organ-metallic, B(OCH3)3, and heterogeneous catalysts, V2O5/SiO2, have been found to be useful for remedying the drawbacks of the basic catalysts. By the use B(OCH3)3, up to 60 % of vegetable oil was catalytically converted to bio-diesel within two hours in a batch reactor under a condition of oil to methanol ratio of 1 to 6 at 230 C and 13.6 bar, while more than 95% oil was converted for V2O5/SiO2 catalysts. In order to understand the superior catalytic properties of V2O5/SiO2 catalysts, the structure of the fresh and used catalysts were characterized by synchrotron PXRD, EXAFS, and FT-IR. The results indicated that V2O5 was converted to vanadium organic compounds (vanadium methylate) anchored on silica supports. For commercial application, process with reactive distillation technique was developed. Under atmospheric pressure and catalyzed by B(OCH3)3, the conversion of oil in a reactive column is about 15% without methanol recycle, while about 25% for the same operating conditions with methanol recycle. Different from base catalyst system, biodiesel products could simply be separated and purified from outlet stream vacuum distillation; troublesome acid-base neutralization, water wash, and filtration steps are not necessary for the new process.
目錄
圖目錄 I
表目錄 IV
第一章 緒論 1
1.1. 研究背景 1
1.2. 生質柴油(BIODIESEL)之簡介 2
1.3. 生質柴油製程介紹 6
1.3.1均勻相鹼性觸媒 6
1.3.2均勻相酸性觸媒 7
1.3.3均勻相酸鹼觸媒反應機制 8
1.3.4非均勻相觸媒 10
1.3.5酶 11
1.3.6超臨界製程 12
1.3.7超音波技術 12
1.3. 研究動機 13
第二章 研究方法與步驟 15
2.1. 前言 15
2.2. 觸媒製備 17
2.2.1均勻相觸媒 17
2.2.2非均勻相觸媒 18
2.2.2.1 V2O5/SiO2 18
2.2.2.2  BOx/SiO2-Al2O3 19
2.3. 反應設備 21
2.3.1批次反應系統 21
2.3.2連續式反應系統 22
2.3.3催化蒸餾反應系統 23
2.4. 批次系統反應性能測試 31
2.4.1 B(OCH3)3溫度效應測試 31
2.4.2 B(OCH3)3醇油比效應測試 31
2.4.3 V2O5/SiO2溫度效應測試 31
2.4.4 V2O5/SiO2醇油比效應測試 32
2.4.5 V2O5/SiO2攪拌效應 32
2.4.6 V2O5/SiO2觸媒失活情形 33
2.5. 連續式固定床系統測試 33
2.5.1 溫度效應 33
2.5.2 外部質傳效應測試 34
2.5.3 觸媒穩定性測試 34
2.6. 催化蒸餾可行性測試 35
2.7. 產物分析 35
2.8. 特性分析之實驗方法 39
2.8.1 粉末X光繞射(XRD) 39
2.8.2 X光吸收光譜分析(XAS) 40
2.8.3 傅立葉轉換-紅外線光譜分析(FT-IR) 40
第三章 觸媒開發 44
3.1. 前言 44
3.2. 硼酸三甲酯的發現 44
3.3. 均勻相觸媒-B(OCH3)3測試結果 47
3.3.1 溫度效應 47
3.3.2 醇油比效應 47
3.4. 非均勻相觸媒 – V2O5/SIO2測試結果 48
3.4.1 溫度效應測試 48
3.4.2 醇油比效應測試 48
3.4.3 攪拌速度效應測試 49
3.4.4 觸媒失活測試 49
3.5. 觸媒結構分析 58
第四章 製程開發 64
4.1. 前言 64
4.2. 連續式固定床滴流系統測試結果 64
4.2.1 溫度效應 64
4.2.2 外部質傳效應探討 67
4.2.3 觸媒穩定性測試 69
4.3. 催化蒸餾技術之應用 71
4.3.1 簡介 71
4.3.2 研究動機 71
4.3.3 裝置性能測試 72
4.3.3.1 理論板數計算 73
4.3.3.2 氣液平衡 78
4.3.3.3 蒸餾塔的操作與控制 80
4.3.4 反應性能測試 80
4.3.4.1 確認觸媒可否回收 81
4.3.4.2 單一蒸餾塔甲醇與觸媒無回流系統 82
4.3.4.3 單一蒸餾塔甲醇與觸媒回流系統 84
4.3.4.4 雙蒸餾塔甲醇與觸媒回流系統 86
4.3.5 整廠製程規畫 88
4.3.6本製程具備的優勢 89
第五章 結論與未來展望 91
5.1. 結論 91
5.2. 未來展望 92
參考文獻 93

吳榮宗,工業觸媒概論,第34頁,國興出版社,民國七十八年。
李定粵,觸媒原理與應用,第1頁;第75頁,臺北市,正中書局,民國八十年。
楊世傑,大豆油轉酯化反應研究,碩士論文,國立嘉義大學應用化學研究所,民國九十六年。
周金言,張志成,陳寶東,洪正宗,生質燃料熱化學法製程技術與產業進展,石油季刊,第46卷,第二期,頁37-52 (2010)
Bartholomew, C. H., “Mechanisms of catalyst deactivation.” Applied Catalysis A: General ,212,17 (2001).
Bournay, L., D. Casanave, B. Delfort, G. Hillion, J. A. Chodorge, “ New heterogeneous process for biodiesel production: A way to improve the quality and the value of the crude glycerin produced by biodiesel plants ”Catalysis Today., 106, 190(2005)
Bronkema, J. L.and A. T.Bell, “Mechanistic Studies of Methanol Oxidation to Formaldehyde on Isolated Vanadate Sites Supported on High Surface Area Zirconia.” The journal of physical chemistry. C , 112, 6404 (2008).
Burcham, L. J.,M.Badlani and I. E.Wachs, “The Origin of the Ligand Effect in Metal Oxide Catalysts: Novel Fixed-Bed in Situ Infrared and Kinetic Studies during Methanol Oxidation.” Journal of Catalysis , 203 , 104 (2001).
Demirbas, A., “Progress and recent trends in biodiesel fuels.” Energy Conversion and Management , 50 , 14 (2009).
Di Serio, M., M.Cozzolino,M.Giordano, R. Tesser, P. Patrono and E.Santacesaria, “From Homogeneous to Heterogeneous Catalysts in Biodiesel Production.” Industrial & engineering chemistry research , 46, 6379 (2007).
Ebiura ,T. and T. Echizen,“Selective transterification of triolein with methanol to methyl oleate and glycerol using alumina loaded with alkali metal salt as a solid –base catalyst”, Applied Catalysis A: General,283 111-116 (2005).
Freedman , B, E.H. Pryde, T.L. Mounts,“Variables affecting the yields of fatty esters from transesterified vegetable oils.”, Journal of the American Oil Chemists' Society,61,1638(1984).
Fuls J., C.S. Hawkins and F.J.C. Hugo, “Tractor engine performance on sunflower oil fuel”, Journal of agricultural engineering research, 30,29(1984)
Fukuda, H., A. Kondo and H. Noda, “Biodiesel fuel production by transesterification of oils.” Journal of Bioscience and Bioengineering , 92, 405 (2001).
Furuta S., H. Matsuhashi and K. Arata,“Biodiesel fuel production with solid superacid catalysis in fixed bed reactor under atmospheric pressure”, Catalysis Communications, 5, 721(2004).
Helwani, Z., M. R.Othman,N.Aziz,J.Kim and W. J. N.Fernando, , “Solid heterogeneous catalysts for transesterification of triglycerides with methanol: A review.” Applied Catalysis A: General ,363, 1 (2009).
Jacobson K, R Gopinath., L.C Meher, A.K. Dalai.,“Solid acid catalyzed biodiesel production from waste cooking oil.”Applied Catalysis B: Environmemt, 85, 86(2008).
Ji J. and J. Wang,“Preparation of biodiesel with the help of ultrasonic and hydrodynamic cavitation”, Ultrasonics, 44, e411-e414 (2006).
Joo K.H. and K.B. Seung,“Transesterification of vegetable oil to biodiesel using heterogeneous base catalyst”, Catalysis Today, 93, 315(2004).
Keera, S. T., S. M.El Sabagh and A. R.Taman, “Transesterification of vegetable oil to biodiesel fuel using alkaline catalyst.” Fuel , 90, 42 (2011).
Kouzu M, T. Kasuno, M. Tajika, Y. Sugimoto, S. Yamanaka, J. Hidaka ,“Calcium oxide as a solid base catalyst for transesterification of soybean oil and its application to biodiesel production”, Fuel ,87, 2798(2008).
Kulkarni, M. G. and A. K.Dalai, “Waste Cooking OilsAn Economical Source for Biodiesel: A Review.” Industrial & engineering chemistry research ,45, 2901 (2006).
Lam, M. K., K. T.Lee and A. R.Mohamed, “Homogeneous, heterogeneous and enzymatic catalysis for transesterification of high free fatty acid oil (waste cooking oil) to biodiesel: A review.” Biotechnology Advances , 28, 500 (2010).
Leung, D. Y. C.,X.Wu and M. K. H.Leung, “A review on biodiesel production using catalyzed transesterification.” Applied Energy , 87, 1083 (2010).
Lin, H.M.,S.T. Kao, K.M.Lin, J.R. Chang and S.G.Shyu, “Grafting TiO2 on MCM-41 as a TiO2 support for vanadia for catalytic oxidation of ethanol—EXAFS and XANES analyses of vanadium.” Journal of Catalysis , 224, 156 (2004).
Lo, C-T. F. , K. Karan, and B. R. Davis,“Kinetic Studies of Reaction between Sodium Borohydride and Methanol, Water, and Their Mixtures.”, Industrial & engineering chemistry research,46,5478,(2007)
López, D. E., J. G.Goodwin Jr, D. A.Bruce and S.Furuta, “Esterification and transesterification using modified-zirconia catalysts.” Applied Catalysis A: General ,339, 76 (2008).
Lotero, E. , Y. Liu, D. E. Lopez, K. Suwannakarn, D. A. Bruce, and J. G. Goodwin, Jr.“Synthesis of Biodiesel via Acid Catalysis.”Industrial & engineering chemistry research ,44, 5353 (2005).
Meher, L., V.Dharmagadda and S.Naik, “Optimization of alkali-catalyzed transesterification of Pongamia pinnata oil for production of biodiesel.” Bioresource Technology , 97, 1392 (2006)
O’Brien, R. D., W. E. Farr, P. J. Wan. 2000. Introduction to fats and oils technology. AOCS Press, Champaign, IL, USA.
Park Y. M., D. W. Lee, D. K. Kim, J. S. Lee, K. Y. Lee,“The heterogeneous catalyst system for the continuous conversion of free fatty acids in used vegetable oils for the production of biodiesel”, Catalysis Today, 131,238(2008).
Pimentel , D. and M.Pimentel ,“Global environmental resources versus world population growth”. Ecological Economy , 59,195(2006).
Ryan, T.W., L.G Doge., T.J Callahan.,“The effects of vegetable oil properties on injection and combustion in two different diesel engines.”, JAOCS, 61,1610(1984).
Saka S. and K. Dadan,“Biodiesel fuel from rapeseed oil as prepared in supercritical methanol”, Fuel, 80,225-231(2001).
Sheehan J., Camobreco V., Duffield J., Graboski M. and Shapouri H., “Life cycle inventory of biodiesel and petroleum diesel for use in an urban bus”, NREL/SR-580-24089(1998).
Singh,A. P., J. C. Thompson and B. B. He, “A Continuous-flow Reactive Distillation Reactor forBiodiesel Preparation from Seed Oils”,An ASAE/CSAE Meeting Presentation, Paper Number: 046071(2004)
Suppes G.S., M.A. Dasari and E.J. Doskocil,“Transesterification of soybean oil with zeolite ad metal catalysts”, Applied Catalysis A: General ,257 ,213-223(2004) .
Thanh, L. T., K.Okitsu, Y.Sadanaga, N.Takenaka, Y.Maedand H.Bandow, “Ultrasound-assisted production of biodiesel fuel from vegetable oils in a small scale circulation process.” Bioresource Technology ,101, 639 (2010).
Trent W.R.,“Process of treating fatty glycerides”, US Patent No. 2,383,633 (1945).
Wang Y, S. Ou, P. Liu, F.Xue, S. Tang,“Comparison of two different processes to synthesize biodiesel by waste cooking oil.”Journal of molecular catalysis. A, Chemical ,252,107(2006).
Weiliang C. and H. Hengwen,“Preparation of biodiesel from soybean oil using supercritical methanol and co-solvent”, Fuel, 84,347-351 (2004).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top