(35.175.212.130) 您好!臺灣時間:2021/05/18 03:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:施惠萍
研究生(外文):Shih, hui-ping
論文名稱:鉑/沸石吸附劑再生之結構研究
論文名稱(外文):Structure investigation of Pt/Zeolite regeneration
指導教授:張仁瑞
指導教授(外文):Chang, jen-ruei
口試委員:李茂田謝祝欽許火順張仁瑞
口試委員(外文):Li, mao-tienHsieh, chu-chinHsu, huo-shunChang, jen-ruei
口試日期:2011-06-30
學位類別:碩士
校院名稱:國立中正大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:137
中文關鍵詞:沸石吸附劑鉑/沸石吸附劑再生揮發性有機化合物
外文關鍵詞:zeolite adsorbentPt / Zeolite adsorbentregenerationvolatile organic compounds
相關次數:
  • 被引用被引用:1
  • 點閱點閱:217
  • 評分評分:
  • 下載下載:20
  • 收藏至我的研究室書目清單書目收藏:0
本研究係利用固定床 (fixed-bed) 反應器進行沸石吸附劑 (NaY、V/NaY 及PtO2/NaY) 應用於去除揮發性有機氣體 (乙醇) 之吸附性能及再生之結構研究。並藉由同步輻射之粉末X光繞射及X光吸收光譜分析吸附劑結構。由貫流曲線 (Breakthrough curve) 估算吸附容量 (adsorption capacity) 結果顯示PtO2/NaY>NaY>V2O5/NaY。造成此結果之因素可由吸附劑結構研究得以瞭解。由EXAFS結果顯示氧化釩在沸石中呈現孤立結構,因佔據沸石之吸附活性位,導致吸附能力降低。相反地,由FT-IR結果顯示PtO2在沸石上提供了額外之吸附活性位置得以吸附更多之乙醇。由於PXRD結果顯示沸石超過550℃以上會造成沸石結構破壞,所以應盡可能降低再生溫度如此才能延長吸附劑之壽命。而吸附飽和之吸附劑經由空氣300℃再生,結果顯示對於NaY而言,乙醇沒辦法完全地被移除,因此導致再生後吸附能力略微下降;而使用鉑金屬則可以催化氧化吸附之乙醇,且從PXRD及EXAFS證據顯示催化氧化過程產生之CO將使PtO2還原成Pt,而Pt對乙醇吸附能力較PtO2為佳,因此空氣再生後些微地增加吸附能力。此結果驅使我們在吸附測試前對PtO2/NaY進行氫氣前處理。結果顯示氫氣還原確實增加了乙醇吸附能力,然而再生後此效應消失,因為再生及還原過程使得鉑金屬顆粒聚集,此結果可由EXAFS得到印證。
The performance of NaY, PtO2-NaY, and V2O5-NaY in removing ethanol from air stream was investigated by a fixed bed adsorber. The structure of catalytic adsorbents was characterized by synchrotron PXRD and EXAFS. The adsorption capacity of these three adsorbents depends on the metal oxide deposited and decreases in the order: Pt-NaY > NaY > V2O5-NaY. EXAFS results suggest that isolated vanadia block adsorption sites on zeolite, leading to a decrease in the adsorption capacity. In contrast, PtO2 clusters on NaY provide additional sites for ethanol adsorption. Since PXRD results indicate the destruction of zeolite structure at 550 C, to extend the adsorbents life cycle, regeneration temperature should be kept as low as possible. Upon air regeneration of the ethanol-saturated adsorbents at 300 C, NaY adsorption capacity decreases slightly, due to the residual ethanol. In the presence of PtO2, ethanol can be completely oxidized catalytically. In addition, evidenced by PXRD and EXAFS, more adsorption sites were induced by CO reduction of PtO2 to Pt clusters after air regeneration. The results motivated us to pre-treat the PtO2-NaY with flowing hydrogen before performance tests. The hydrogen reduction enhances ethanol adsorption capacity whereas after several regeneration cycles the enhancement were depleted by the aggregation of Pt clusters during the air-regeneration and hydrogen reduction cycles, suggested by EXAFS.
目錄
圖目錄 I
表目錄 V
第一章 緒論 1
1.1研究背景 1
1.1.1室內空氣品質與污染簡介 2
1.1.2環保法規之規範 4
1.1.3 文獻回顧 8
1.2吸附劑簡介 12
1.2.1前言 12
1.2.2沸石吸附劑 12
1.2.3吸附之種類 15
1.2.4吸附原理 (Principle of Adsorption) 17
1.3研究動機 21
1.4研究目的 22
第二章 實驗設計與特性分析方法 23
2.1研究方法 23
2.2實驗規劃 25
2.2.1實驗流程 25
2.2.2實驗所用之藥品與氣體 26
2.3吸附劑製備 27
2.3.1觸媒擔體材料 27
2.3.2觸媒製備 28
2.3.3吸附劑之製備 31
2.4吸附劑性能測試實驗 34
2.4.1反應設備 34
2.4.2吸附性能測試 35
2.5特性分析方法 39
2.5.1氣相色層分析(Gas Chromatography;GC) 39
2.5.2傅立葉轉換-紅外線光譜分析 (Fourier Transform Infrared;FT-IR) 40
2.5.3 X光吸收光譜分析 (Analysis of X-ray Absorption Spectrum;XAS) 41
2.5.3a簡介 41
2.5.3b X光吸收近邊緣結構 (XANES) 46
2.5.3c延伸X光吸收精細結構 (EXAFS) 47
2.5.3d量測方法 51
2.5.4粉末X光繞射 (Powder X-ray Diffraction;XRD) 52
第三章 結果與討論 55
3.1 吸附劑吸附性能測試 55
3.1.1 新鮮吸附劑之吸附性能測試結果 55
3.1.2 吸附劑之再生後吸附性能測試結果 55
3.2 吸附劑之特性分析結果 57
3.2.1 釩沸石吸附劑特性分析結果與吸附性能關連性 57
3.2.2 沸石吸附劑特性分析結果與吸附性能關連性 58
3.2.3 鉑沸石吸附劑特性分析結果與吸附性能關連性 58
3.2.4 鉑沸石吸附劑之EXAFS fitting結果 61
3.3 吸附劑再生途徑探討 64
3.4 鉑沸石吸附劑前處理條件不同對吸附性能之影響 67
3.5不同前處理條件之鉑沸石吸附劑特性分析結果 68
3.5.1氫氣前處理之鉑沸石吸附劑特性分析結果與吸附性能關連性 68
3.5.2 前處理條件不同之鉑沸石吸附劑再生後結構比較 69
3.5.3 氫氣前處理鉑沸石吸附劑之EXAFS fitting結果 70
3.6 不同前處理條件之鉑沸石吸附劑再生途徑探討 73
第四章 總結與未來展望 130
4.1總結 130
4.2未來展望 131
參考文獻 132


參考文獻
(a)中文文獻
NSRRC簡介PDF,第6、11、18頁,國家同步輻射中心,2009
吳榮宗,「工業觸媒概論」 ,第239頁,國興出版社,民國八十七年十一月一版四刷。
李志甫譯,「X-射線法」,第65~138頁,高立圖書有限公司, 2001
李琪華,「沸石吸附劑之製備、性能測試與特性分析」,碩士論文,第66~68頁,2003
汪建民,「材料分析」,第11~72頁,新竹市,民全書局,民國九十四年
洪婉甄,「室內空氣品質提昇之關鍵技術開發」,碩士論文,2010
美國環保署整合性危害資訊系統 ( Integrated Risk Information System,IRIS )。
蘇慧貞,江哲銘,李俊璋,「高雄市辦公大樓之室內空氣品質調查與健康危害之評估」,高雄市政府環境保護局。

(b)英文文獻
(b-1) Journals
Beauchet, R., P., Magnoux and J., Mijoin, “Catalytic oxidation of volatile organic compounds (VOCs) mixture (isopropanol/o-xylene) on zeolite catalysts,” Catalysis Today, 124, 118 (2007)
Blocki, S. W. “Hydrophobic zeolite adsorption: A proven advancement in solvent separation technology,” Environmental Progress, 12, 226 (1993)
Brosillon, S., M. H. Manero and J. N. Foussard, “Mass transfer in VOC adsorption on zeolite: Experimental and theoretical breakthrough curves,” Environmental Science & Technology, 35, 17, 3571 (2001)
Health Canada, “Exposure Guidelines for Residential Indoor Air Quality,” Ottawa, Ontario, Health Canada (1995)
Hong Kong, “Guidance Notes for the Management of Indoor Air Quality in Office and Public Places (Draft),” Hong Kong (1999)
IARC, “Formaldehyde: IARC Monographs on the Evaluation of Carcinogenic Risks to Human, Wood dust and formaldehyde,” International Agency for Research on Cancer, Lyon , France , 62, 217 (1995)
Khan, F. I. and A. K. Ghoshal, “Removal of volatile organic compounds from polluted air,” Journal of Loss Prevention in the Process Industries, 13, 527 (2000)
Liotta, L. F.,”Catalytic oxidation of volatile organic compounds on supported noble metals,” Applied Catalysis B: Environmental, 100, 403 (2010)
McCabe, W. L., J. C. Smith and P. Harriott, “Unit Operations of Chemical Engineering,” McGraw-Hill, 814 (1993)
Parus, W.J. and W. Paterkowski, “Catalytic oxidation of organic pollutants,” Polish Journal of Chemical Technology, 4, 30 (2009)
Ribeiro, F., J. M., Silva, E., Silva, M. F., Vaz and F. A. C., Oliveira, “Catalytic combustion of toluene on Pt zeolite coated cordierite foams,” Catalysis Today (2011)
Seife, C., “Headache in orbit,” New Scientist, (1999)
Spengler, J.D. and K. Sexton, “Indoor air pollution: A public health perspective,” Science. 221(4605):9-17 (1983),
Standards Australia, “The Use of Mechanical Ventilation and Air-conditioning in Buildings, Part 2 Mechanical Ventilation for Acceptable Indoor Air Quality,” Sydney, Standards Australia. (1991)
Tahir, S. F. and C. A. Koh, “Catalytic destruction of volatile organic compound emissions by platinum based catalyst,” Chemosphere, 38, 2109 (1999)
Takeuchi, Y., N., Hayato, S. A., Miyata and A.,Harada, “Adsorption of 1-butanol and p-xylene vapour and their mixtures with high silica zeolites,” Separation Technology, 5, 23 (1995)
Tsai, W. T., C. Y., Chang and H. C., Lee, “Adsorption of N,N-Dimethylformamide vapour on activated carbon and hydrophobic zeolite,” Proceedings of AWMA. (1996)
Tsou, J., L., Pinard, P., Magnoux, J. L., Figueiredo and M., Guisnet, “Catalytic oxidation of volatile organic compounds (VOCs) Oxidation of o-xylene over Pt/HBEA catalysts,” Applied Catalysis B: Environmental, 46, 371 (2003)
Tsou, J., P., Magnoux, M., Guisnet, J. J. M., Orfao and J. L., Figueiredo, “Catalytic oxidation of volatile organic compounds Oxidation of methyl-isobutyl-ketone over Pt/zeolite catalysts,” Applied Catalysis B: Environmental, 57, 117 (2005)
Tsou, J., P., Magnoux, M., Guisnet, J. J. M., Orfao and J. L., Figueiredo, “Catalytic oxidation of methyl-isobutyl-ketone over basic zeolites,” Applied Catalysis B: Environmental, 51, 129 (2004)
WHO, “Air Quality Guidelines for Europe,” Geneva, World Health Organization. (1999)
Wolkoff, P. and G. D. Nielsen, “Organic compounds in inddor air - their relevance for perceived indoor air quality?,” Atomospheric Environment, 35, 4407 (2001)
Wu, P.-C., Y.-Y. Li, C.-C. Lee, C.-M. Chiang and H.-J. J.Su, “Risk assessment of formaldehyde in typical office building in Taiwan,” Indoor Air, 13, 4, 359 (2003)

(b-2) Books
Baker, R. T., C. H. Bartholomew and D. B. adyburjor, “Stability of Supported Catalysts: Sintering and Redispersion,” Catalytica Studies Division, California, 84 (1991)

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top