(18.204.227.34) 您好!臺灣時間:2021/05/17 05:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:林建瑋
研究生(外文):Chien-Wei Lin
論文名稱:製備複合型二氧化鈦中孔洞結構於染料敏化太陽能電池之應用
論文名稱(外文):Preparation of Novel Mesoporous TiO2 Structure for Dye-Sensitized Solar Cell
指導教授:李元堯李元堯引用關係
指導教授(外文):Yuan-Yao Li
口試委員:陳建忠李元堯李岱洲王崇人
口試委員(外文):Chien-Chong ChenYuan-Yao LiTai-Chou LeeChurng-Ren Wang
口試日期:2011-07-06
學位類別:碩士
校院名稱:國立中正大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:203
中文關鍵詞:二氧化鈦染料敏化太陽能電池中孔洞
外文關鍵詞:Titanium oxideDSSCmeso-porous
相關次數:
  • 被引用被引用:2
  • 點閱點閱:198
  • 評分評分:
  • 下載下載:20
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要目的為使用規則中孔洞二氧化鈦薄膜與二氧化鈦逆蛋白石結構於染料敏化太陽能電池效能之研究。規則中孔洞二氧化鈦薄膜具熱穩定性佳、緻密性高、附著力高及比表面積高等優點,規則中孔洞二氧化鈦薄膜主要利用溶膠-凝膠法及揮發誘導自組裝機制經由高溫鍛燒製備出規則中孔洞二氧化鈦薄膜,實驗主要探討前驅物中各項成分的比例改變對於成膜形態的影響,尤其以溶劑中的水與甲醇的比例對於成膜形態有較大的影響,由SEM可觀察到在當水與甲醇在固定比例下混合時,鍛燒後的薄膜內部有規則排列的中孔洞存在,並以熱重分析儀可得知當溶劑中水的比例增加時,其熱重損失較慢,有助於規則性中孔洞的形成。
堆疊聚苯乙烯模版的方式為電泳沉積法,此方法可在短時間內得到一排列緻密且低缺陷之蛋白石結構,實驗中探討電泳沉積時之基材、沉積電壓、電流及沉積時間對於蛋白石結構的完整性的影響,並找出最適合的電泳沉積參數為電壓值為20V、電流值為1~2mA、沉積時間為15分鐘可沉積出最規則排列的蛋白石結構。二氧化鈦逆蛋白石結構則由聚苯乙烯奈米粒子當作模版,經由含浸拉膜法將二氧化鈦的前驅物附著於模版上,最後經由熱處理將模板移除。由SEM、TEM可觀察出逆蛋白石結構完整。
在染料敏化太陽能電池的應用上,工作電極為結合規則中孔洞二氧化鈦薄膜及二氧化鈦逆蛋白石結構並以中孔洞二氧化鈦填充之結構,其附著力佳,孔隙度大,厚度也比規則中孔洞二氧化鈦薄膜厚了六倍,整體穿透度較高。實驗結果發現電流由0.0545mA提升至2.071mA,效率由0.136%提升至3.94%,薄膜厚度由原本的377nm提升至6μm,最佳光電轉換效率值為3.94%。

This study is to fabricate ordered meso-porous TiO2 thin film and inverse opal TiO2 structure for the application of dye-sensitized solar cell. The ordered meso-porous TiO2 thin film has highly thermal stability, high adhesion to substrate and high specific surface area. Ordered meso porous TiO2 thin film was synthesized by sol-gel method via the evaporation- induced self-assembly mechanism. In this fabrication of the highly ordered meso-porous TiO2 thin film, the components of solution was found to effect TiO2 thin film morphology, especially the ratio of methanol and water. FESEM observed the TiO2 thin film surface morphology. Highly ordered meso-porous structure in the TiO2 thin film can be fabricated by an adequate ratio of methanol and water by TGA analysis reveal that water increased in the solution results the weight loss slowly, which is conduced to form highly ordered meso-porous TiO2 thin film.
Fabrication of opal structure was conducted by electrophoresis method. The method is capable fabricating a highly ordered opal structure template in short time. In the experiments, the factor such as substrate, electrophoresis voltage, electrophoresis current and electrophoresis time effected the ordered of opal structure. The best electrophoresis parameters, using FTO glass coated meso-porous TiO2 thin film as substrate, setting electrophoresis voltage were 20V, 1~2mA current volume and 15 minutes electrophoresis time. TiO2 inverse opal structure was fabricated using polystyrene nano-spheres template. By dip-coating method, TiO2 precursor penetrated the template and then the sample was heated to remove the template. SEM and TEM can observation confirmed highly ordered TiO2 inverse opal structure.
In the study of dye-sensitized solar cell, the work electrode is a combination of highly ordered meso porous TiO2 thin film and TiO2 inverse opal structure filled TiO2 meso porous material. The advantages of such as electrode has high adhesion, high porosity and high surface area, and it is thicker than single layer meso porous TiO2 thin film. In contrast, photocurrent of single layer meso-porous TiO2 thin film is 0.0545mA while the double layer structure is 2.071mA. As a result, the photovolatic conversion efficiency was improved from 0.136% to 3.96%. The thickness of the film was increased from 377nm to 6μm. The best efficiency of 3.96% can be achieved.

中文摘要
Abstract
表目錄
圖目錄
第一章 緒論
1-1前言
1-2太陽能電池簡介
1-2-1 太陽能電池歷史與發展
1-2-2 各類太陽能電池構造及原理
1-2-2-1矽基太陽能電池簡介
1-2-2-2化合物半導體太陽能電池簡介
1-2-2-3有機太陽能電池簡介
1-3太陽能光電轉換效率量測介紹
1-3-1 入射角與太陽光光譜
1-3-2 太陽能電池特徵曲線與參數
1-3-3光子-電子轉換效率
1-4二氧化鈦介紹
1-4-1 二氧化鈦的基本性質介紹
第二章 文獻回顧
2-1中孔洞二氧化鈦薄膜
2-1-1中孔洞材料介紹
2-1-2 中孔洞成長機制
2-1-4 中孔洞二氧化鈦薄膜文獻回顧
2-2 大孔洞二氧化鈦逆蛋白石結構
2-2-1 模版法介紹
2-2-2 聚苯乙烯有序結構模板
2-2-3 大孔洞逆蛋白石結構
2-2-4 大孔洞逆蛋白石結構文獻回顧
2-3染料敏化太陽能電池
2-3-1 染料敏化太陽能電池的工作原理
2-3-2 透明導電玻璃
2-3-3 工作電極
2-3-4 相對電極
2-3-4 光染料敏化劑
2-3-5 電解液
2-3-6 染料敏化太陽能電池的文獻回顧
2-4 研究動機與目的
第三章 實驗步驟與方法
3-1 研究架構
3-2 使用設備簡介
3-3 實驗材料
3-4 實驗步驟、流程圖及實驗條件
3-4-1 以揮發誘導自組裝合成中孔洞二氧化鈦薄膜
3-4-1-1 實驗步驟
3-4-1-2 實驗流程
3-4-1-3 實驗流程之細部說明
3-4-2 合成聚苯乙烯奈米粒子
3-4-2-1 實驗流程
3-4-2-2 實驗流程
3-4-2-3 實驗流程之細部說明
3-4-3 利用電泳法製作聚苯乙烯蛋白石結構並搭配sol-gel法製作二氧化鈦大孔洞逆蛋白石結構
3-4-3-1 實驗流程
3-4-3-2實驗流程圖
3-4-3-1 實驗流程詳細說明
3-4-6 利用二氧化鈦奈米顆粒填充二氧化鈦大孔洞逆蛋白石結構
3-4-4-1 實驗步驟
3-4-4-2 實驗流程
3-4-4-3 實驗流程之細部說明
3-4-6 染料敏化太陽能電池之組裝
3-4-6-1 實驗步驟
3-4-6-2 實驗流程
3-4-6-3實驗流程之細部說明
3-5 檢測儀器
3-5-1 場發射掃描式電子顯微鏡(Field Emission Scanning Electron Microscopy, SEM)
3-5-2穿透式電子顯微鏡(Transmission Electron Microscopy, TEM)
3-5-3熱重分析儀(Thermo Gravimetric Analyzer, TGA )
3-5-4 多功能電源電錶(Keithley 2410)
3-5-5原子力顯微鏡(Atomic Force Microscopy, AFM )
3-5-6雷射奈米粒徑及界面電位量測儀(Zetasizer )
3-5-7電化學阻抗分析儀(Electrochemical Impedance spectroscopy, EIS)
3-5-8 太陽能電池效率測試
第四章 結果與討論
4-1前趨物成分之比例對於揮發誘導自組裝的中孔洞二氧化鈦薄膜型態之影響
4-1-1 二氧化鈦前趨物中的界面活性劑含量對孔洞型態的影響
4-1-2 二氧化鈦前趨物中的四異丙氧基鈦含量對孔洞型態的影響
4-1-3 二氧化鈦前趨物中的鹽酸含量對孔洞型態的影響
4-1-4 二氧化鈦前趨物中的溶劑成分對孔洞型態的影響
4-1-5 規則中孔洞二氧化鈦薄膜之實驗小結
4-2 製作聚苯乙烯蛋白石結構模版
4-2-1 合成聚苯乙烯奈米粒子
4-2-2排列聚苯乙烯奈米粒子蛋白石結構
4-2-2-1 各種排列聚苯乙烯奈米粒子蛋白石結構的方法介紹
4-2-2-2 以電泳法排列聚苯乙烯奈米粒子
4-2-3 合成聚苯乙烯奈米粒子與利用電泳法排列蛋白石結構之實驗小結
4-3製作二氧化鈦逆蛋白石結構及中孔洞二氧化鈦填充二氧化鈦逆蛋白石結構
4-3-1 以二氧化鈦填充聚苯乙烯蛋白石結構模板
4-3-2 以中孔洞二氧化鈦前驅物填充二氧化鈦逆蛋白石結構
4-4 染料敏化太陽能電池之應用
4-4-1 不同結構之二氧化鈦工作電極之光電轉換效率測試
4-4-2 規則性中孔洞二氧化鈦薄膜電極
4-4-3 大孔洞二氧化鈦逆蛋白石結構電極
4-4-4以中孔洞二氧化鈦前驅物填充二氧化鈦逆蛋白石結構電極
4-4-6 染料敏化太陽能電池應用之實驗小結
第五章 總結與未來展望
5-1 總結
5-2 未來展望
參考文獻


[1]M.G. Brian O'regan and M. Gratzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature. 1991;353:737-40.
[2]C.Y. Chen, M.K. Wang, J.Y. Li, N. Pootrakulchote, L. Alibabaei, C.H. Ngoc-le, et al., Highly Efficient Light-Harvesting Ruthenium Sensitizer for Thin-Film Dye-Sensitized Solar Cells. ACS Nano. 2009 Oct;3(10):3103-9.
[3]M. Gratzel, Photoelectrochemical cells. Nature. 2001 Nov;414(6861):338-44.
[4]M.M. H. Tsubomura, Y. Nomura, T. Amamiya Dye sensitized zinc oxide: aqueous electrolyte: platinum photocell Nature. 1976 Jun;261:402-3.
[5]L.S. N. S. Sariciftci, A. J. Heeger, and F. Wudl Photoinduced Electron Transfer from a Conducting Polymer to Buckminsterfullerene Science. 1992 Nov;258:1474-6.
[6]M.C. Scharber, D. Wuhlbacher, M. Koppe, P. Denk, C. Waldauf, A.J. Heeger, et al., Design rules for donors in bulk-heterojunction solar cells - Towards 10 % energy-conversion efficiency. Adv Mater. 2006 Mar;18(6):789-+.
[7]American Society for Testing Materials, ASTM E892 and E891.
[8]M.E.L. C.T. Kresge, W.J. Roth, J. C. Vartuil and J. S. Beck, Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature. 1992 October;359:710-2.
[9]J.C.V. J. S. Beck, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt, C. T. W. Chu, D. H. Olson, E. W. Sheppard, A new family of mesoporous molecular sieves prepared with liquid crystal templates. J Am Chem Soc. 1992 December;114(27):10834-43.
[10]R. Ryoo, S.H. Joo, S. Jun, Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation. Journal of Physical Chemistry B. 1999 Sep;103(37):7743-6.
[11]C.J. Brinker, Y.F. Lu, A. Sellinger, H.Y. Fan, Evaporation-induced self-assembly: Nanostructures made easy. Adv Mater. 1999 May;11(7):579-82.
[12]D.Y. Zhao, J.L. Feng, Q.S. Huo, N. Melosh, G.H. Fredrickson, B.F. Chmelka, et al., Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science. 1998 Jan;279(5350):548-52.
[13]A. Wang, S.L. Chen, P. Dong, Z. Zhou, Preparation of photonic crystal heterostructures composed of two TiO2 inverse opal films with different filling factors. Synthetic Metals. Mar;161(5-6):504-7.
[14]J. Fan, C.Z. Yu, T. Gao, J. Lei, B.Z. Tian, L.M. Wang, et al., Cubic mesoporous silica with large controllable entrance sizes and advanced adsorption properties. Angewandte Chemie-International Edition. 2003;42(27):3146-50.
[15]A.E. Garcia-Bennett, S. Willliamson, P.A. Wright, I.J. Shannon, Control of structure, pore size and morphology of three-dimensionally ordered mesoporous silicas prepared using the dicationic surfactant [CH3(CH2)(15)N(CH3)(2)(CH2)(3)N(CH3)(3)]Br-2. Journal of Materials Chemistry. 2002;12(12):3533-40.
[16]A. Vinu, V. Murugesan, M. Hartmann, Pore size engineering and mechanical stability of the cubic mesoporous molecular sieve SBA-1. Chem Mat. 2003 Mar;15(6):1385-93.
[17]H.P. Lin, C.Y. Tang, C.Y. Lin, Detailed structural characterizations of SBA-15 and MCM-41 mesoporous silicas on a high-resolution transmission electron microscope. Journal of the Chinese Chemical Society. 2002 Dec;49(6):981-8.
[18]H.P. Lin, C.Y. Mou, Structural and morphological control of cationic surfactant-templated mesoporous silica. Accounts of Chemical Research. 2002 Nov;35(11):927-35.
[19]S.H. Tolbert, C.C. Landry, G.D. Stucky, B.F. Chmelka, P. Norby, J.C. Hanson, et al., Phase transitions in mesostructured silica/surfactant composites: Surfactant packing and the role of charge density matching. Chem Mat. 2001 Jul;13(7):2247-56.
[20]J.M. Kim, Y. Sakamoto, Y.K. Hwang, Y.U. Kwon, O. Terasaki, S.E. Park, et al., Structural design of mesoporous silica by micelle-packing control using blends of amphiphilic block copolymers. Journal of Physical Chemistry B. 2002 Mar;106(10):2552-8.
[21]Z.T. Zhang, Y. Han, F.S. Xiao, S.L. Qiu, L. Zhu, R.W. Wang, et al., Mesoporous aluminosilicates with ordered hexagonal structure, strong acidity, and extraordinary hydrothermal stability at high temperatures. Journal of the American Chemical Society. 2001 May;123(21):5014-21.
[22]A. Bhaumik, S. Inagaki, Mesoporous titanium phosphate molecular sieves with ion-exchange capacity. Journal of the American Chemical Society. 2001 Jan;123(4):691-6.
[23]Z.T. Zhang, Y. Han, L. Zhu, R.W. Wang, Y. Yu, S.L. Qiu, et al., Strongly acidic and high-temperature hydrothermally stable mesoporous aluminosilicates with ordered hexagonal structure. Angewandte Chemie-International Edition. 2001;40(7):1258-+.
[24]Y. Han, F.S. Xiao, S. Wu, Y.Y. Sun, X.J. Meng, D.S. Li, et al., A novel method for incorporation of heteroatoms into the framework of ordered mesoporous silica materials synthesized in strong acidic media. Journal of Physical Chemistry B. 2001 Aug;105(33):7963-6.
[25]J.S. Beck, Vartuli, J.C., Kennedy, G.J., Kresge, C.T., Roth, W.J., Schramm, S.E., Molecular or supramolecular templating - Defining the role of surfactant chemistry in the formation of microporous and mesoporous molecular-sieves. Chemistry of Materials. 1994;6.

[26]R.K. Neumann, K., Vanadium-substituted MCM-41 zeolites as catalysts for oxidation of alkanes with peroxides. Chemical Communications. 1996;23.
[27]F.S. A. Monnier, Q. Huo, D. Kumar, D. Margolese, R. S. Maxwell, G. D. Stucky, M. Krishnamurty, P. Petroff, A. Firouzi, M. Janicke, and B. F. Chmelka Cooperative Formation of Inorganic-Organic Interfaces in the Synthesis of Silicate Mesostructures Science. 1993.
[28]C.J. Brinker, Y.F. Lu, A. Sellinger, H.Y. Fan, Evaporation-induced self-assembly: Nanostructures made easy. Advanced Materials. 1999 May;11(7):579-+.
[29]P.D. Yang, D.Y. Zhao, D.I. Margolese, B.F. Chmelka, G.D. Stucky, Block copolymer templating syntheses of mesoporous metal oxides with large ordering lengths and semicrystalline framework. Chemistry of Materials. 1999 Oct;11(10):2813-26.
[30]K. Hou, B.Z. Tian, F.Y. Li, Z.Q. Bian, D.Y. Zhao, C.H. Huang, Highly crystallized mesoporous TiO2 films and their applications in dye sensitized solar cells. Journal of Materials Chemistry. 2005;15(24):2414-20.
[31]S. Agarwala, M. Kevin, A.S.W. Wong, C.K.N. Peh, V. Thavasi, G.W. Ho, Mesophase Ordering of TiO2 Film with High Surface Area and strong Light Harvesting for Dye-Sensitized Solar Cell. Acs Applied Materials & Interfaces. Jul;2(7):1844-50.
[32]W. Chen, X.D. Sun, Q. Cai, D. Weng, H.D. Li, Facile synthesis of thick ordered mesoporous TiO2 film for dye-sensitized solar cell use. Electrochemistry Communications. 2007 Mar;9(3):382-5.
[33]Y.J. Kim, Y.H. Lee, M.H. Lee, H.J. Kim, J.H. Pan, G.I. Lim, et al., Formation of Efficient Dye-Sensitized Solar Cells by Introducing an Interfacial Layer of Long-Range Ordered Mesoporous TiO2 Thin Film. Langmuir. 2008 Nov;24(22):13225-30.
[34]U.A. Que WX, Hu X, Thin film TiO2 electrodes derived by sol-gel process for photovoltaic applications JOURNAL OF POWER SOURCES 2006;159(1):353-6.
[35]T.K. Takahashi M, Uchino T, Yoko T Enhanced photocurrent in thin film TiO2 electrodes prepared by sol-gel method. THIN SOLID FILMS. 2001;388(1-2):231-6.
[36]E. Yablonovitch, Inhibited Spontaneous Emission in Solid-State Physics and Electronics. Phys Rev Lett. 1987;58:2059-62.
[37]S. John, Strong localization of photons in certain disordered dielectric superlattices. Phys Rev Lett. 1987;58:2486-9.
[38]H.J.C.a.S.M.H. Sung Thae Kim, Bulk polymerized polystyrene in the presence of multiwalled carbon nanotubes. Colloid & Polymer Science. 2006;285:593-8.
[39]A.V.T. J. P. Van Hook, The Solution Polymerization of Styrene and Methyl Methacrylate. Journal of Physical Chemistry 1958;63(3):257-60.
[40]P.C.M. J. Ugelstad, K.Herder Kaggerud, T. Ellingsen, A. Berge, Swelling of oligomer-polymer particles. New methods of preparation Advances in Colloid and Interface Science. 1980;13(1-2):101-40.
[41]Y.K.a.H.M. M. Okubo, Production of hollow polymer particles by suspension polymerization. Colloid & Polymer Science. 1998;276:638-82.
[42]W.H. Hongfei Qi, Huaizhe Xu, Junying Zhang and Tianmin Wang, Synthesis of large-sized monodisperse polystyrene microspheres by dispersion polymerization with dropwise monomer feeding procedure. Colloid & Polymer Science. 2009;287:243-8.
[43]H.K. K. Kato, A. Morita, K. Esumi and K. Meguro, Synthesis of polystyrene latex with amphoteric surfactant and its characterization. Colloid & Polymer Science.264:737-42.
[44]S.A.A. Chad E. Reese, Emulsifier-Free Emulsion Polymerization Produces Highly Charged, Monodisperse Particles for Near Infrared Photonic Crystals Journal of Colloid and Interface Science. 2002 April;248:61-4.
[45]M.M. Junpei Yamanaka, Yumie Iwayama, Masakastu Yonese, Kensaku Ito, and Tsutomu Sawada, One-Directional Crystal Growth in Charged Colloidal Silica Dispersions Driven by Diffusion of Base. Journal of the American chemical society 2004;126:7156-7.
[46]E.C. Alvaro Blanco, Serguei Grabtchak, Marta Ibisate, Sajeev John, Stephen W. Leonard, Cefe Lopez, Francisco Meseguer, Hernan Miguez, Jessica P. Mondia, et al. , Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres Nature. 2000;405:437-40.
[47]Q.B. Meng, Z.Z. Gu, O. Sato, A. Fujishima, Fabrication of highly ordered porous structures. Applied Physics Letters. 2000 Dec;77(26):4313-5.
[48]Q.B. Meng, C.H. Fu, Y. Einaga, Z.Z. Gu, A. Fujishima, O. Sato, Assembly of highly ordered three-dimensional porous structure with nanocrystalline TiO2 semiconductors. Chem Mat. 2002 Jan;14(1):83-8.
[49]S. Reculusa, S. Ravaine, Synthesis of colloidal crystals of controllable thickness through the Langmuir-Blodgett technique. Chem Mat. 2003 Jan;15(2):598-605.
[50]A.L. Rogach, D. Nagesha, J.W. Ostrander, M. Giersig, N.A. Kotov, "Raisin bun"-type composite spheres of silica and semiconductor nanocrystals. Chem Mat. 2000 Sep;12(9):2676-85.
[51]C.F.B. Brian T. Holland, Thang Do, and Andreas Stein*, Synthesis of Highly Ordered, Three-Dimensional, Macroporous Structures of Amorphous or Crystalline Inorganic Oxides, Phosphates, and Hybrid Composites. Chemistry of Materials. 1998;11:795-805.
[52]Y.Z. Li, T. Kunitake, S. Fujikawa, Efficient fabrication of large, robust films of 3D-ordered polystyrene latex. Colloids and Surfaces a-Physicochemical and Engineering Aspects. 2006 Mar;275(1-3):209-17.
[53]M. Holgado, F. Garcia-Santamaria, A. Blanco, M. Ibisate, A. Cintas, H. Miguez, et al., Electrophoretic deposition to control artificial opal growth. Langmuir. 1999 Jul;15(14):4701-4.
[54]Z.Z. Gu, S. Hayami, S. Kubo, Q.B. Meng, Y. Einaga, D.A. Tryk, et al., Fabrication of structured porous film by electrophoresis. Journal of the American Chemical Society. 2001 Jan;123(1):175-6.
[55]R.M. Amos, J.G. Rarity, P.R. Tapster, T.J. Shepherd, S.C. Kitson, Fabrication of large-area face-centered-cubic hard-sphere colloidal crystals by shear alignment. Physical Review E. 2000 Mar;61(3):2929-35.
[56]V.N.M. G. Subramanian1, J. D. Thorne2, D. J. Pine1, Ordered Macroporous Materials by Colloidal Assembly: A Possible Route to Photonic Bandgap Materials. Adv Mater. 1999;11:1261-5.
[57]A.S. Stein, R. C, Colloidal Crystal Templating of Three-Dimensionally Ordered Macroporous Solids-Materials for Photonics and Beyond. Current Opinion in Solid State & Materials Science. 2001;5:553-64.
[58]G.B. Su-Lan Kuai, Alain Hache´, Vo-Van Truong, Xing-Fang Hu, High quality ordered macroporous titania films with large filling fraction. Thin Solid Films. 2005;483:136-9.
[59]H.W. Yan, C.F. Blanford, B.T. Holland, W.H. Smyrl, A. Stein, General synthesis of periodic macroporous solids by templated salt precipitation and chemical conversion. Chem Mat. 2000 Apr;12(4):1134-41.
[60]P. Jiang, J. Cizeron, J.F. Bertone, V.L. Colvin, Preparation of macroporous metal films from colloidal crystals. Journal of the American Chemical Society. 1999 Sep;121(34):7957-8.
[61]E. Graugnard, Chawla, V., Lorang, D., Summers, C. J., High filling fraction gallium phosphide inverse opals by atomic layer deposition. Applied Physics Letters. 2006;89(21):211102 1-3.
[62]S.J.M.Z. J. E. G. J. Wijnhoven, M. A. Hendriks, D. Vanmaekelbergh, J. J. Kelly, W. L. Vos, Electrochemical Assembly of Ordered Macropores in Gold. Adv Mater. 2000;12(12):889-90.
[63]C.E. Miguez H, Garcia-Santamaria F, Ibisate M, John S, Lopez C, Meseguer F, Mondia JP, Ozin GA, Toader O, van Driel HM Photonic bandgap engineering in germanium inverse opals by chemical vapor deposition. Adv Mater. 2001;13(21):1634.
[64]S.A. Nishimura S, Abrams N, Mallouk TE Fabrication technique for filling-factor tunable titanium dioxide colloidal crystal replicas Applied Physics Letters. 2002;81(24):4532-4.
[65]K.U. Laboratory of Applied Inorganic Chemistry, http://www.chem.ryukoku.ac.jp/aoi/research/LPD_e.htm.
[66]B.T. Holland, C.F. Blanford, T. Do, A. Stein, Synthesis of highly ordered, three-dimensional, macroporous structures of amorphous or crystalline inorganic oxides, phosphates, and hybrid composites. Chem Mat. 1999 Mar;11(3):795-805.
[67]Y. Ma, J.F. Chen, Y.A. Ren, X. Tao, Transition metal-doped titania inverse opals: Fabrication and characterization. Colloids and Surfaces a-Physicochemical and Engineering Aspects. Nov;370(1-3):129-35.
[68]S.H.S.G. Stefan Guldin, Sven Hu¨ ttner, Matthias Kolle,, Mark E. Welland, Peter Mu¨ller-Buschbaum, Richard H. Friend, Ullrich Steiner, and Nicolas Te´treault, Dye-Sensitized Solar Cell Based on a Three-Dimensional Photonic Crystal. Nano Letters. 2010;10:2303-9.
[69]E.S. Kwak, W. Lee, N.G. Park, J. Kim, H. Lee, Compact Inverse-Opal Electrode Using Non-Aggregated TiO2 Nanoparticles for Dye-Sensitized Solar Cells. Advanced Functional Materials. 2009 Apr;19(7):1093-9.
[70]R. Jose, V. Thavasi, S. Ramakrishna, Metal Oxides for Dye-Sensitized Solar Cells. Journal of the American Ceramic Society. 2009 Feb;92(2):289-301.
[71]M. Gratzel, Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells. Journal of Photochemistry and Photobiology a-Chemistry. 2004 Jun;164(1-3):3-14.
[72]C. Sima, C. Grigoriu, S. Antohe, Comparison of the dye-sensitized solar cells performances based on transparent conductive ITO and FTO. Thin Solid Films. Nov;519(2):595-7.
[73]N.G. Park, J. van de Lagemaat, A.J. Frank, Comparison of dye-sensitized rutile- and anatase-based TiO2 solar cells. Journal of Physical Chemistry B. 2000 Sep;104(38):8989-94.
[74]B.H. Kim, J.H. Ahn, J.H. Jeong, Y.S. Jeon, K.O. Jeon, K.S. Hwang, Preparation of TiO2 thin film on SiO2 glass by a spin coating-pyrolysis process. Ceramics International. 2006;32(2):223-5.
[75]G.M. Hagfeldt A, Molecular photovoltaics. Accounts of Chemical Research. 2000;33(1):8-13.
[76]F. Hirose, M. Shikaku, Y. Kimura, M. Niwano, IR Study on N719 Dye Adsorption with High Temperature Dye Solution for Highly Efficient Dye-Sensitized Solar Cells. Journal of the Electrochemical Society.157(11):B1578-B81.
[77]M.K. Nazeeruddin, R. Humphry-Baker, P. Liska, M. Gratzel, Investigation of sensitizer adsorption and the influence of protons on current and voltage of a dye-sensitized nanocrystalline TiO2 solar cell. Journal of Physical Chemistry B. 2003 Aug;107(34):8981-7.
[78]M. Gratzel, Solar energy conversion by dye-sensitized photovoltaic cells. Inorg Chem. 2005 Oct;44(20):6841-51.
[79]G. Wolfbauer, A.M. Bond, J.C. Eklund, D.R. MacFarlane, A channel flow cell system specifically designed to test the efficiency of redox shuttles in dye sensitized solar cells. Solar Energy Materials and Solar Cells. 2001 Dec;70(1):85-101.
[80]P. Wang, S.M. Zakeeruddin, P. Comte, I. Exnar, M. Gratzel, Gelation of ionic liquid-based electrolytes with silica nanoparticles for quasi-solid-state dye-sensitized solar cells. Journal of the American Chemical Society. 2003 Feb;125(5):1166-7.
[81]P. Wang, S.M. Zakeeruddin, J.E. Moser, R. Humphry-Baker, M. Gratzel, A solvent-free, SeCN-/(SeCN)(3)(-) based ionic liquid electrolyte for high-efficiency dye-sensitized nanocrystalline solar cells. Journal of the American Chemical Society. 2004 Jun;126(23):7164-5.
[82]P. Wang, S.M. Zakeeruddin, R. Humphry-Baker, M. Gratzel, A binary ionic liquid electrolyte to achieve >= 7% power conversion efficiencies in dye-sensitized solar cells. Chem Mat. 2004 Jul;16(14):2694-6.
[83]K. Onoda, S. Ngamsinlapasathian, T. Fujieda, S. Yoshikawa, The superiority of Ti plate as the substrate of dye-sensitized solar cells. Solar Energy Materials and Solar Cells. 2007 Aug;91(13):1176-81.
[84]I.C. Baek, M. Vithal, J.A. Chang, J.H. Yum, M.K. Nazeeruddin, M. Gratzel, et al., Facile preparation of large aspect ratio ellipsoidal anatase TiO2 nanoparticles and their application to dye-sensitized solar cell. Electrochemistry Communications. 2009 Apr;11(4):909-12.
[85]S.H. Jang, Y.J. Kim, H.J. Kim, W.I. Lee, Low-temperature formation of efficient dye-sensitized electrodes employing nanoporous TiO2 spheres. Electrochemistry Communications. Oct;12(10):1283-6.
[86]K. Lee, S.W. Park, M.J. Ko, K. Kim, N.G. Park, Selective positioning of organic dyes in a mesoporous inorganic oxide film. Nature Materials. 2009 Aug;8(8):665-71.
[87]Z.S. Wang, H. Kawauchi, T. Kashima, H. Arakawa, Significant influence of TiO2 photoelectrode morphology on the energy conversion efficiency of N719 dye-sensitized solar cell. Coordination Chemistry Reviews. 2004 Jul;248(13-14):1381-9.
[88]J.H. Park, Y. Jun, H.G. Yun, S.Y. Lee, M.G. Kang, Fabrication of an efficient dye-sensitized solar cell with stainless steel substrate. J Electrochem Soc. 2008;155(7):F145-F9.
[89]L. Qi, J.D. Sorge, D.P. Birnie, Dye-Sensitized Solar Cells Based on TiO2 Coatings with Dual Size-Scale Porosity. Journal of the American Ceramic Society. 2009 Sep;92(9):1921-5.
[90]羅啟仁, 聚苯乙烯奈米粒子的製備及成膜微結構探討. 中正大學化學工程研究所碩士論文.
[91]C.W. Wu, T. Ohsuna, M. Kuwabara, K. Kuroda, Formation of highly ordered mesoporous titania films consisting of crystalline nanopillars with inverse mesospace by structural transformation. Journal of the American Chemical Society. 2006 Apr;128(14):4544-5.
[92]溫政達, 高規則中孔洞二氧化鈦薄膜製備及其於染料敏化太陽能電池之應用. 中正大學化學工程研究所碩士論文. 2007.
[93]曾健文, 中孔洞奈米二氧化鈦薄膜與粉體應用於染料敏化太陽能電池之研究. 中正大學化學工程研究所碩士論文. 2009.
[94]G. Soler-Illia, E.L. Crepaldi, D. Grosso, C. Sanchez, Block copolymer-templated mesoporous oxides. Curr Opin Colloid Interface Sci. 2003 Mar;8(1):109-26.
[95]陳永星, 張忠傑, 林忠賡, 詹志潔, 駱榮富 電泳自組裝技術製作具有不同粒徑聚苯乙烯微球之光子晶體模板與光學性質之分析. 國家科學委員會研究計畫.NSC 95-2221-E-035-065.
[96]H. Fudouzi, Fabricating high-quality opal films with uniform structure over a large area. Journal of Colloid and Interface Science. 2004 Jul;275(1):277-83.
[97]F. Fabregat-Santiago, J. Bisquert, G. Garcia-Belmonte, G. Boschloo, A. Hagfeldt, Influence of electrolyte in transport and recombination in dye-sensitized solar cells studied by impedance spectroscopy. Solar Energy Materials and Solar Cells. 2005 May;87(1-4):117-31.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top