跳到主要內容

臺灣博碩士論文加值系統

(44.220.184.63) 您好!臺灣時間:2024/10/08 07:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳朝杰
研究生(外文):Chen, Chau-je
論文名稱:相間轉移觸媒催化技術和成醚類與醯亞胺類化合物動力學之研究
論文名稱(外文):Kinetic Study of Synthesizing Ether and Inimide Compounds under Phase Transfer Catalysis
指導教授:王茂齡王逢盛
指導教授(外文):Wang, Maw-lingWang, Feng-sheng
口試委員:王茂齡王逢盛劉清田吳和生楊鴻銘謝育民劉彥君
口試日期:2011-07-03
學位類別:博士
校院名稱:國立中正大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:396
中文關鍵詞:相間轉移觸媒
外文關鍵詞:phase transfer catalyst
相關次數:
  • 被引用被引用:1
  • 點閱點閱:352
  • 評分評分:
  • 下載下載:41
  • 收藏至我的研究室書目清單書目收藏:0
本論文所研究之反應系統為: (I)酚與苯丙基溴在鹼性水溶液/有機溶劑中,藉由相間轉移觸媒之催化氧位置上的烷化反應,其產物醚類化合物之主要用途於塑化劑、麻醉劑、香料及液晶材料等;(II)琥珀醯亞胺與苯丙基溴在鹼性無水溶液/有機溶劑中,藉由相間轉移觸媒之催化氮位置上的烷化反應,其產物醯亞胺類化合物之主要用途於生化活性、化妝品及醫學藥品等。另外,由於相間轉移觸媒催化技術越來越多元化,外加能量的方式也經常更新,除了傳統加熱及機械攪拌方式外,可結合超音波化學或微波化學方法應用在相間轉移觸媒催化技術上。
在本論文之研究過程中,主要探討醚類與醯亞胺類的合成反應、反應機制、動力學行為、活性觸媒中間體分佈及其理論之相關問題。由實驗中可獲得結論如下所示:
(a) 本論文中,反應系統均為烷化反應:(i)以酚與苯丙基溴反應合成醚類,分別藉由相間轉移觸媒技術、結合超音波化學技術來催化氧位置上之烷化反應;(ii)以醇類與溴烷類反應合成九種醚類,藉由相間轉移觸媒技術、結合超音波化學技術來催化氧位置上之烷化反應;(iii)以琥珀醯亞胺與苯丙基溴反應合成醯胺類,分別藉由相間轉移觸媒技術、結合超音波化學技術與結合微波化學技術來催化氮位置上之烷化反應。由於相間轉移觸媒與水相反應物可形成高反應性、強親油性之活性觸媒中間體,故有效地加速氧位置上或氮位置上之烷化反應,其反應形態均符合萃取機(Stark’s)。(b) 氧位置上之烷反應可利用擬穩態理論與雙膜理論可成功地推導出反應機制之數理模型;氮位置上之烷反應可利用化學反應速率式、動態平衡與誘導期末可成功地推導出反應機制之數理模型。由此可見,氧位置上或氮位置上之烷化反應其反應速率均遵循擬一次反應速率式。
(c) 活性觸媒中間體具有強親油性,其界面間之質傳速率非常地快速,在較高的攪拌速率下,其濃度在短時間內維持一定值,故有機相化學反應為速率決定步驟,而反應之活化能高於10 kcal/mol,亦可證明此結論。(d) 相間轉移觸媒技術可溫和且有效地加速液-液相氧位置上之烷化反應與固-液相氮位置上之烷化反應。另外,超音波振盪及微波技術能使反應物接觸更加地完全,故有效地提高反應速率。(e) 由動力學結果可知:增加攪拌速率、鹼量、反應溫度、觸媒用量、溶劑之介電常數與觸媒陽離子之親油性及對稱性等均可促進氧上或氮位置上之烷化反應,並以質傳率、Arrhenius方程式、活性觸媒中間體之濃度與反應性來加以解釋其原因。水量會影響鹼鹽的濃度、水合作用、反應接觸面積及水中陰離子的濃度,但在氧位置上之烷化反應系統中,過多的水量添加反而會使水中陰離子的濃度降低,使得反應速率降低,故其水量的添加有著最適值的存在。

In this dissertation, (I) the O-alkylation of phenol and hydrocinnamyl cinnamyl bromide to synthesize ether compounds in a two-phase alkaline solution of KOH/organic solvent medium under phase transfer catalysis (PTC) was studied. Those products from PTC reaction can be used as the plasticizers, anesthetics, perfume, and liquid crystal materials and others in industries. (II) The N-alkylation of succinimide and hydrocinnamyl bromide to synthesize inimide compounds in a two-phase alkaline free-solution of KOH/organic solvent medium under phase transfer catalysis (PTC) was also studied in this thesis. Those products from PTC reaction can be used in biochemical activities, cosmetics, and medical drugs etc in industries. Besides, the technologies of phase transfer catalysis are more and more diversity, and the ways of the power are also update. Including traditional heat and mechanical agitations, we can use the ways of ultrasonic chemistries or microwave chemistries in phase transfer catalysis.
The primary purposes of this dissertation are to study the phase-transfer catalytic reaction for ether and inimide compounds, reaction mechanism, kinetics, distribution of active catalyst, and other related theories. Several rigid conclusions were obtained from the experimental results.(a)In the present study, systems are confined within the alkylationreactions. (i)The reaction of phenol and hydrocinnamyl bromide to synthesize ether compounds divided by phase transfer catalysis and to combination ultrasonic chemistries in the reaction of O-alkylation. (ii)The reaction of phenol and hydrocinnamyl bromide to synthesize nine kinds of ether compounds divided by phase transfer catalysis and to combination ultrasonic chemistries in the reaction of O-alkylation. (iii)The reaction of succinimide and hydrocinnamyl bromide to synthesize inimide compounds divided by phase transfer catalysis, and to combination ultrasonic chemistries and microwave chemistries in the reaction of N-alkylation. High reactivity of organophilic catalysts were obtained by reacting the aqueous reactants and the phase transfer catalysts. For this, the O-alkylation and N-alkylation reaction are effectively enhanced by the phase transfer catalyst. The reaction type was confirmed as an SN2 reaction by using various bromoalkanes.(b)In the reaction of O-alkylation, the pseudo steady-state hypothesis, and two-film theory are successfully applied to describe the reaction behaviors. In the reaction of N-alkylation, the chemical reaction rate, dynamical equilibrium, and induction period are successfully applied to describe the reaction behaviors. In the opinion, the reaction rates of O- (N-) alkylation follow the pseudo first-order rate law.(c) The two-phase mass transfer rate of the active catalyst is rapid, because of its high organophilicity in the two-phase transfer. Thus, the concentration of the active catalyst in the organic phase keeps at a constant value at a high agitation speed. The organic reaction is the rate-determining step and the active energy is larger than 10 kcal/mol. (d) The O-alkylation and N-alkylation reactions are effectively enhanced in the mild conditions via the phase transfer catalyst. Besides, the ultrasonic and microwave technologies can contact reactants fully and effectively raise the rate of the reaction. (e) As the results of experiments, the reaction rate is increased with the increase in agitation speed, amounts of KOH, temperature, amounts of catalyst, the dielectric constant of solvent, symmetry and organophilicity of the catalyst cation. The reason for these factors can be explained by mass transfer rate, Arrhenius equation, concentration and reactivity of the active catalyst. The amounts of water were effected the concentration of alkali salt, solvation, contact area of the reaction, and the concentration of anion in aqueous-phase. However, the concentration of anion in aqueous-phase was decreased by using larger amount of water as described in the reaction of O-alkylation. Thus, an optimal value of amounts of water is obtained.

目 錄
頁數
中文摘要 ---------------------------------------------------------------- i
英文摘要 ---------------------------------------------------------------- iii
目錄 ---------------------------------------------------------------------- vi
表目錄 ------------------------------------------------------------------- xiv
圖目錄 ------------------------------------------------------------------- xx
符號說明 ---------------------------------------------------------------- xxxvii
第一章 緒論 ----------------------------------------------------------- 1
§1.1 觸媒之催化原理與應用 --------------------------------- 1
§1.2 有機合成中常見的觸媒催化反應 --------------------- 2
§1.2.1 勻相觸媒催化反應 ------------------------------- 2
§1.2.2 非勻相觸媒催化反應 ---------------------------- 2
§1.2.3 相間轉移觸媒催化反應 ------------------------- 3
§1.2.3.1 相間轉移觸媒之緣起 -------------------- 3
§1.2.3.2 相間轉移觸媒之發展與應用 ----------- 5
§1.2.3.3 相間轉移觸媒之種類 -------------------- 6
§1.2.3.4 相間轉移觸媒之反應機構 -------------- 12
§1.2.3.5 應用相間轉移觸媒合成及反應種類 -- 13
§1.2.3.6 相間轉移觸媒之途徑 -------------------- 14
§1.3 本論文之研究目的及內容 ------------------------------ 15
第二章 利用相間轉移觸媒催化反應合成醚類:以酚與1-溴-
3-苯基丙烷合成苯基苯丙基醚 ---------------------------
20
§2.1 前言 --------------------------------------------------------- 20
§2.1.1 醚類之簡介與應用 ------------------------------- 20
§2.1.2 醚類之合成 ---------------------------------------- 20
§2.2 本章之簡介及研究目的 --------------------------------- 22
§2.3 實驗藥品、設備、分析儀器及條件 ------------------- 23
§2.3.1 實驗藥品 ------------------------------------------- 23
§2.3.2 實驗設備 ------------------------------------------- 25
§2.3.3 分析儀器 ------------------------------------------- 27
§2.3.4 分析條件 ------------------------------------------- 27
§2.4 合成、純化及鑑定 ---------------------------------------- 28
§2.4.1a 產物之合成 --------------------------------------- 28
§2.4.1b 產物之純化 -------------------------------------- 29
§2.4.1c 產物之鑑定 --------------------------------------- 29
§2.4.2 觸媒中間體C6H5OQ之合成及鑑定 ----------- 32
§2.5 反應物及產物之校正曲線(calibration curve) --------- 37
§2.6 動力實驗步驟 --------------------------------------------- 37
§2.7 質量守恆檢驗 --------------------------------------------- 39
§2.8 總反應式、反應機構及反應動力學模式 ------------- 39
§2.8.1 總反應式 ------------------------------------------- 39
§2.8.2 反應機構 ------------------------------------------- 39
§2.8.3 反應動力學模式 ---------------------------------- 41
§2.9 動力學因素實驗之探討 --------------------------------- 45
§2.10 結論 -------------------------------------------------------- 82
第三章 在超音波環境下利用相間轉移觸媒催化反應合成醚類: 以酚與1-溴-3-苯基丙烷合成苯基苯丙基醚-------
84
§3.1 前言 --------------------------------------------------------- 84
§3.1.1 超音波之簡介與應用 ---------------------------- 84
§3.1.2 超音波化學在相間轉移催化反應的應用 ---- 85
§3.1.3 超音波發振儀器 ---------------------------------- 86
§3.2 本章之簡介及研究目的 --------------------------------- 88
§3.3 實驗藥品、設備、分析儀器及條件 ------------------- 89
§3.3.1 實驗藥品 ------------------------------------------- 89
§3.3.2 實驗設備 ------------------------------------------- 89
§3.3.3 分析儀器 ------------------------------------------- 89
§3.3.4 分析條件 ------------------------------------------- 89
§3.4 合成、純化及鑑定 ---------------------------------------- 89
§3.5 反應物及產物之校正曲線 ------------------------------ 89
§3.6 動力實驗步驟 --------------------------------------------- 91
§3.7 質量守恆檢驗 --------------------------------------------- 91
§3.8 總反應式、反應機構及反應動力學模式 ------------- 91
§3.8.1 總反應式 ------------------------------------------- 91
§3.8.2 反應機構 ------------------------------------------- 93
§3.8.3 反應動力學模式 ---------------------------------- 93
§3.9 動力學因素實驗之探討 --------------------------------- 93
§3.10 結論 -------------------------------------------------------- 136
第四章 氧位置上烷化反應之有機合成研究:以醇類(alcohols)與溴烷類(alkylbromides)合成------------------------------
138
§4.1 前言 --------------------------------------------------------- 138
§4.2 本章之簡介及研究目的 --------------------------------- 139
§4.3 實驗藥品、設備、分析儀器及條件 ------------------- 143
§4.3.1 實驗藥品 ------------------------------------------- 143
§4.3.2 實驗設備 ------------------------------------------- 145
§4.3.3 分析儀器 ------------------------------------------- 145
§4.3.4 分析條件 ------------------------------------------- 145
§4.4 產物(非對稱醚類)之合成、純化及鑑定 -------------- 147
§4.4.1a 產物(非對稱醚類)之合成 ---------------------- 147
§4.4.1b 產物(非對稱醚類)之純化 --------------------- 147
§4.4.1c 產物(非對稱醚類)之鑑定 ---------------------- 148
§4.5 反應物及產物之校正曲線 ------------------------------ 170
§4.6 動力實驗步驟 --------------------------------------------- 170
§4.7 質量守恆檢驗 --------------------------------------------- 174
§4.8 總反應式、反應機構及反應動力學模式 ------------- 174
§4.8.1 總反應式 ------------------------------------------- 174
§4.8.2 反應機構 ------------------------------------------- 181
§4.8.3 反應動力學模式 ---------------------------------- 181
§4.9 動力學因素實驗之探討 --------------------------------- 181
§4.10 結論 -------------------------------------------------------- 206
第五章 利用相間轉移觸媒催化反應合成醯亞胺類:以琥珀醯亞胺與苯丙基溴合成N-苯丙基琥珀醯亞胺 -----------
208
§5.1 前言 --------------------------------------------------------- 208
§5.1.1 固-液相反應系統之簡介 ------------------------ 208
§5.1.2 固-液相反應機構之簡介 ------------------------ 210
§5.2 本章之前提、簡介及研究目的 ------------------------- 210
§5.3 實驗藥品、設備、分析儀器及條件 ------------------- 216
§5.3.1 實驗藥品 ------------------------------------------- 216
§5.3.2 實驗設備 ------------------------------------------- 218
§5.3.3 分析儀器 ------------------------------------------- 218
§5.3.4 分析條件 ------------------------------------------- 218
§5.4合成、純化及鑑定 ----------------------------------------- 218
§5.4.1a 產物之合成 --------------------------------------- 218
§5.4.1b 產物之純化 -------------------------------------- 219
§5.4.1c 產物之鑑定 --------------------------------------- 220
§5.4.2 觸媒中間體SUC-Q之合成及鑑定 ------------ 224
§5.5 反應物及產物之校正曲線 ------------------------------ 224
§5.6 動力實驗步驟 --------------------------------------------- 227
§5.7 質量守恆檢驗 --------------------------------------------- 227
§5.8 總反應式、反應機構及反應動力學模式 ------------- 229
§4.8.1 總反應式 ------------------------------------------- 229
§5.8.2 反應機構及反應動力學模式 ------------------- 229
§5.9 動力學因素實驗之探討 --------------------------------- 233
§5.10 結論 -------------------------------------------------------- 269
第六章 在超音波環境下利用相間轉移觸媒催化反應合成醯亞胺類:以琥珀醯亞胺與苯丙基溴合成N-苯丙基琥珀醯亞胺 --------------------------------------------------------

271
§6.1 前言 --------------------------------------------------------- 271
§6.1.1 固-液相反應系統之簡介 ------------------------ 271
§6.1.2 超音波之簡介與應用 ---------------------------- 271
§6.1.3 超音波化學在相間轉移催化反應的應用 ---- 272
§6.2 本章之簡介及研究目的 --------------------------------- 273
§6.3 實驗藥品、設備、分析儀器及條件 ------------------- 274
§6.3.1 實驗藥品 ------------------------------------------- 274
§6.3.2 實驗設備 ------------------------------------------- 274
§6.3.3 分析儀器 ------------------------------------------- 274
§6.3.4 分析條件 ------------------------------------------- 274
§6.4合成、純化及鑑定 ----------------------------------------- 275
§6.5 反應物及產物之校正曲線 ------------------------------ 275
§6.6 動力實驗步驟 --------------------------------------------- 275
§6.7 質量守恆檢驗 --------------------------------------------- 276
§6.8 總反應式、反應機構及反應動力學模式 -------------- 276
§6.8.1 總反應式 ------------------------------------------- 276
§6.8.2 反應機構及反應動力學模式 ------------------- 276
§6.9 動力學因素實驗之探討 --------------------------------- 278
§6.10 結論 -------------------------------------------------------- 323
第七章 在微波環境下利用相間轉移觸媒催化反應合成醯亞胺類:以琥珀醯亞胺與苯丙基溴合成N-苯丙基琥珀醯亞胺 -----------------------------------------------------------

325
§7.1 前言 --------------------------------------------------------- 325
§7.1.1 固-液相反應系統之簡介 ------------------------ 325
§7.1.2 微波之簡介與應用 ------------------------------- 325
§7.1.3 微波之理論 ---------------------------------------- 326
§7.1.4 微波化學技術運用在相間轉移觸媒技術上 - 328
§7.1.5 微波反應器之設備 ------------------------------- 329
§7.2 本章之簡介及研究目的 --------------------------------- 329
§7.3 實驗藥品、設備、分析儀器及條件 ------------------- 331
§7.3.1 實驗藥品 ------------------------------------------- 331
§7.3.2 實驗設備 ------------------------------------------- 331
§7.3.3 分析儀器 ------------------------------------------- 331
§7.3.4 分析條件 ------------------------------------------- 331
§7.4合成、純化及鑑定 ----------------------------------------- 333
§7.5 反應物及產物之校正曲線 ------------------------------ 333
§7.6 動力實驗步驟 --------------------------------------------- 333
§7.7 質量守恆檢驗 --------------------------------------------- 334
§7.8 總反應式、反應機構及反應動力學模式 -------------- 334
§7.8.1 總反應式 ------------------------------------------- 334
§7.8.2 反應機構及反應動力學模式 ------------------- 334
§7.9 動力學因素實驗之探討 --------------------------------- 336
§7.10 結論 -------------------------------------------------------- 372
第八章 結論與未來展望 -------------------------------------------- 374
§8.1 結論 --------------------------------------------------------- 374
§8.2 未來展望 --------------------------------------------------- 376
參考文獻 ---------------------------------------------------------------- 378
自述 ---------------------------------------------------------------------- 395











表 目 錄
頁數
Table 1.1
General dffect of reaction variables on PTC reactions -------------------------------------------------
17
Table 1.2
The comparison of the quaternary ammonium salts and the macrocyclic ether -----------------------------
18
Table 1.3 The extent of different reaction mechanisms ------- 19
Table 2.1 The retention time of the chemical material -------- 28
Table 2.2
Fragmental structure of 1-phenyl-3-propyl ether (product) -------------------------------------------------
31
Table 2.3 1H-NMR of 1-phenyl-3-propyl ether (calculated) - 34
Table 2.4
1H-NMR of tetrabutylammonium phenoxide (calculated) ----------------------------------------------
36
Table 2.5
Effect of the agitation speeds on the apparent rate constants -------------------------------------------------
50
Table 2.6
Effect of the amounts of KOH on the apparent rate constants -------------------------------------------------
54
Table 2.7
Effect of the volume of water on the apparent rate constants -------------------------------------------------
59
Table 2.8
Effect of the temperature on the apparent rate constants -------------------------------------------------
60
Table 2.9
Effect of the amount of TBAB on the apparent rate constants -------------------------------------------------
66
Table 2.10
Effect of the volume of C6H5Cl on the apparent rate constants --------------------------------------------
74
Table 2.11
Effect of the phase transfer catalyst on the apparent rate constants ---------------------------------
78
Table 2.12
Effect of the organic solvents on the apparent rate constants -------------------------------------------------
82
Table 3.1
Effect of the agitation speeds on the apparent rate constants -------------------------------------------------
99
Table 3.2
Effect of the ultrasound frequency on the apparent rate constants ----------------------------------------------
103
Table 3.3
Effect of the amounts of KOH on the apparent rate constants -------------------------------------------------
107
Table 3.4
Effect of the volume of water on the apparent rate constants -------------------------------------------------
112
Table 3.5
Effect of the temperature on the apparent rate constants -------------------------------------------------
118
Table 3.6
Effect of the amount of TBAB on the apparent rate constants -------------------------------------------------
123
Table 3.7
Effect of the volume of C6H5Cl on the apparent rate constants --------------------------------------------
127
Table 3.8
Effect of the phase transfer catalyst on the apparent rate constants ---------------------------------
132
Table 3.9
Effect of the organic solvents on the apparent rate
constants -------------------------------------------------
136
Table 4.1
The synopsis of aqueous-phase reactant (R1OH) and product structure and molecular weight --------
141
Table 4.2
The synopsis of organic-phase reactant (R2Br) and product structure and molecular weight -------------
142
Table 4.3 The retention time of the chemical material -------- 145
Table 4.4 Fragmental structure of phenyl phenylpropyl ether 152
Table 4.5 1H-NMR of phenyl phenylpropyl ether ------------- 153
Table 4.6
Fragmental structure of 4-methylphenyl phenylpropyl ether -------------------------------------
154
Table 4.7 1H-NMR of 4-methylphenyl phenylpropyl ether --- 155
Table 4.8
Fragmental structure of 3-methylphenyl phenylpropyl ether -------------------------------------
156
Table 4.9 1H-NMR of 3-methylphenyl phenylpropyl ether --- 157
Table 4.10
Fragmental structure of 2-methylphenyl phenylpropyl ether -------------------------------------
158
Table 4.11 1H-NMR of 2-methylphenyl phenylpropyl ether --- 159
Table 4.12
Fragmental structure of 4-methoxyphenyl phenylpropyl ether -------------------------------------
160
Table 4.13 1H-NMR of 4-methoxyphenyl phenylpropyl ether 161
Table 4.14 Fragmental structure of phenyl butyl ether --------- 162
Table 4.15 1H-NMR of phenyl butyl ether ----------------------- 163
Table 4.16 Fragmental structure of phenyl pentyl ether -------- 164
Table 4.17 1H-NMR of phenyl pentyl ether ---------------------- 165
Table 4.18 Fragmental structure of phenyl hexyl ether --------- 166
Table 4.19 1H-NMR of phenyl hexyl ether ----------------------- 167
Table 4.20 Fragmental structure of phenyl benzyl ether -------- 168
Table 4.21 1H-NMR of phenyl benzyl ether --------------------- 169
Table 4.22
The calibration curve ratio constant (K) of compounds ----------------------------------------------
173
Table 4.23
Effect of alcohols on the apparent rate constant with various temperatures -----------------------------
193
Table 4.24
Effect of alkylbromides on the apparent rate constant with various temperatures ------------------
205
Table 5.1
Fragmental structure of 1-bromo-4-(3-phenyl-
propoxy)benzene ------------------------------------------
211
Table 5.2 1H-NMR of 1-bromo-4-(3-phenylpropoxy)benzene 212
Table 5.3 Fragmental structure of succinimide ----------------- 213
Table 5.4 The retention time of the chemical material -------- 218
Table 5.5
Fragmental structure of N-hydrocinnamyl-
succinimide ---------------------------------------------
222
Table 5.6 1H-NMR of N-hydrocinnamylsuccinimide --------- 223
Table 5.7 13C-NMR spectral data of active catalysts ------------ 225
Table 5.8
Effect of the agitation speeds on the apparent rate constants -------------------------------------------------
238
Table 5.9
Effect of the volume of water on the apparent rate constants -------------------------------------------------
243
Table 5.10
Effect of the amounts of KOH on the apparent rate constants -------------------------------------------------
247
Table 5.11
Effect of the temperature on the apparent rate constants -------------------------------------------------
252
Table 5.12
Effect of the amount of TOAB on the apparent rate constants -------------------------------------------------
257
Table 5.13
Effect of the volumes of cyclohexanone on the apparent rate constants ---------------------------------
261
Table 5.14
Effect of the phase transfer catalysts on the apparent rate constants ---------------------------------
263
Table 5.15
Effect of the organic solvents on the apparent rate constants -------------------------------------------------
269
Table 6.1
Effect of the agitation speeds on the apparent rate constants -------------------------------------------------
283
Table 6.2
Effect of the ultrasound frequency on the apparent rate constants ----------------------------------------------
288
Table 6.3
Effect of the volume of water on the apparent rate constants -------------------------------------------------
292
Table 6.4
Effect of the amounts of KOH on the apparent rate constants -------------------------------------------------
296
Table 6.5
Effect of the temperatures on the apparent rate constants -------------------------------------------------
297
Table 6.6
Effect of the amounts of TBAB on the apparent rate constants --------------------------------------------
306
Table 6.7
Effect of the volumes of cyclohexanone on the apparent rate constants ---------------------------------
307
Table 6.8
Effect of the amounts of succinimide on the apparent rate constants ---------------------------------
311
Table 6.9
Effect of the phase transfer catalysts on the apparent rate constants ---------------------------------
316
Table 6.10
Effect of the organic solvents on the apparent rate constants -------------------------------------------------
322
Table 7.1
Effect of the agitation speeds on the apparent rate constants -------------------------------------------------
341
Table 7.2
Effect of the microwave powers on the apparent rate constants --------------------------------------------
342
Table 7.3
Effect of the temperatures on the apparent rate constants -------------------------------------------------
351
Table 7.4
Effect of the amounts of KOH on the apparent rate constants -------------------------------------------------
355
Table 7.5
Effect of the amounts of TOAB on the apparent rate constants --------------------------------------------
360
Table 7.6
Effect of the volumes of cyclohexanone on the apparent rate constants ---------------------------------
364
Table 7.7
Effect of the amounts of succinimide on the apparent rate constants ---------------------------------
365
Table 7.8
Effect of the phase transfer catalysts on the apparent rate constants ---------------------------------
372













圖 目 錄
頁數
Figure 2.1 Experimental apparatus -------------------------------- 26
Figure 2.2
EI mass spectrum of 1-phenyl-3-propyl ether (product) -------------------------------------------------
30
Figure 2.3 1H-NMR plot of 1-phenyl-3-propyl ether (product) 33
Figure 2.4
1H-NMR plot of tetrabutylammonium phenoxide (C6H5OQ) ------------------------------------------------
35
Figure 2.5
A plot of the calibration curves of compounds vs.
benzene --------------------------------------------------
38
Figure 2.6
Distribution of reactant and product during the
reaction period ------------------------------------------
40
Figure 2.7
Conversion of 1-bromo-3-phenylpropane versus time with various agitation speed --------------------
47
Figure 2.8
A plot of –Ln(1-X) of 1-bromo-3-phenylpropane versus time with various agitation speed ------------
48
Figure 2.9
A plot of the apparent rate constants (kapp) versus various agitation speed --------------------------------
49
Figure 2.10
Conversion of 1-bromo-3-phenylpropane versus time with various amounts of KOH ------------------
51
Figure 2.11
A plot of –Ln(1-X) of 1-bromo-3-phenylpropane versus time with various amounts of KOH ---------
52
Figure 2.12
A plot of the apparent rate constants (kapp) versus
various amounts of KOH ------------------------------
53
Figure 2.13
Conversion of 1-bromo-3-phenylpropane versus time with various volumes of water ------------------
56
Figure 2.14
A plot of –Ln(1-X) of 1-bromo-3-phenylpropane versus time with various volumes of water ---------
57
Figure 2.15
A plot of the apparent rate constants (kapp) versus various volumes of water ------------------------------
58
Figure 2.16
Conversion of 1-bromo-3-phenylpropane versus time with various temperatures -----------------------
61
Figure 2.17
A plot of –Ln(1-X) of 1-bromo-3-phenylpropane versus time with various temperatures --------------
62
Figure 2.18
A plot of the apparent rate constants (kapp) versus various various temperatures -------------------------
63
Figure 2.19 Arrhenius plot for -Ln(kapp) versus 1/T -------------- 64
Figure 2.20
Conversion of 1-bromo-3-phenylpropane versus time with various amounts of TBAB ----------------
67
Figure 2.21
A plot of –Ln(1-X) of 1-bromo-3-phenylpropane versus time with various amounts of TBAB --------
68
Figure 2.22
A plot of the apparent rate constants (kapp) versus various amounts of TBAB ----------------------------
69
Figure 2.23
Conversion of 1-bromo-3-phenylpropane versus time with various volumes of chlorobenzene -------
71
Figure 2.24
A plot of –Ln(1-X) of 1-bromo-3-phenylpropane versus time with various volumes of chlorobenzene -------------------------------------------
72
Figure 2.25
A plot of the apparent rate constants (kapp) versus various volumes of chlorobenzene -------------------
73
Figure 2.26
Conversion of 1-bromo-3-phenylpropane versus time with various phase transfer catalysts -----------
76
Figure 2.27
A plot of –Ln(1-X) of 1-bromo-3-phenylpropane versus time with various phase transfer catalysts --

77
Figure 2.28
Conversion of 1-bromo-3-phenylpropane versus time with various organic solvents -------------------
80
Figure 2.29
A plot of –Ln(1-X) of 1-bromo-3-phenylpropane versus time with various organic solvents ----------
81
Figure 3.1 Experimental apparatus -------------------------------- 90
Figure 3.2
Distribution of reactant and product during the
reaction period ------------------------------------------
92
Figure 3.3
Conversion of 1-bromo-3-phenylpropane versus time with various agitation speeds -------------------
95
Figure 3.4
A plot of –Ln(1-X) of 1-bromo-3-phenylpropane versus time with various agitation speeds -----------
96
Figure 3.5
A plot of the apparent rate constants (kapp) versus various agitation speeds -------------------------------
97
Figure 3.6
Conversion of 1-bromo-3-phenylpropane versus
time with various ultrasound frequencies -----------
100
Figure 3.7
A Plot of –Ln(1-X) of 1-bromo-3-phenylpropane
Versus time with various ultrasound frequencies --
101
Figure 3.8
A plot of the apparent rate constants (kapp) versus
various ultrasound frequencies -----------------------
102
Figure 3.9
Conversion of 1-bromo-3-phenylpropane versus time with various amounts of KOH ------------------
104
Figure 3.10
A plot of –Ln(1-X) of 1-bromo-3-phenylpropane versus time with various amounts of KOH ---------
105
Figure 3.11
A plot of the apparent rate constants (kapp) versus various amounts of KOH ------------------------------
106
Figure 3.12
Conversion of 1-bromo-3-phenylpropane versus
time with various volumes of water ------------------
109
Figure 3.13
Plot of –Ln(1-X) of 1-bromo-3-phenylpropane
versus time with various volumes of water ---------
110
Figure 3.14
A plot of the apparent rate constants (kapp) versus
various volumes of water ------------------------------
111
Figure 3.15
Conversion of 1-bromo-3-phenylpropane versus
time with various temperatures -----------------------
114
Figure 3.16
A plot of –Ln(1-X) of 1-bromo-3-phenylpropane
versus time with various temperatures --------------
115
Figure 3.17
A plot of the apparent rate constants (kapp) versus various temperatures -----------------------------------
116
Figure 3.18 Arrhenius plot for -Ln(kapp) versus 1/T -------------- 117
Figure 3.19
Conversion of 1-bromo-3-phenylpropane versus
time with various amounts of TBAB ----------------
119
Figure 3.20
A plot of –Ln(1-X) of 1-bromo-3-phenylpropane
versus time with various amounts of TBAB --------
120
Figure 3.21
A plot of the apparent rate constants (kapp) versus
various amounts of TBAB ----------------------------
121
Figure 3.22
Conversion of 1-bromo-3-phenylpropane versus
time with various volumes of chlorobenzene -------
124
Figure 3.23
A plot of –Ln(1-X) of 1-bromo-3-phenylpropane
versus time with various volumes of
chlorobenzene -------------------------------------------

125
Figure 3.24
A plot of the apparent rate constants (kapp) versus
various volumes of chlorobenzene -------------------
126
Figure 3.25
Conversion of 1-bromo-3-phenylpropane versus time with various phase transfer catalysts -----------
130
Figure 3.26
A plot of –Ln(1-X) of 1-bromo-3-phenylpropane versus time with various phase transfer catalysts --
131
Figure 3.27
Conversion of 1-bromo-3-phenylpropane versus time with various organic solvents -------------------
134
Figure 3.28
A plot of –Ln(1-X) of 1-bromo-3-phenylpropane versus time with various organic solvents ----------
135
Figure 4.1 EI mass spectrum of phenyl phenylpropyl ether --- 152
Figure 4.2 1H-NMR plot of phenyl phenylpropyl ether -------- 153
Figure 4.3
EI mass spectrum of 4-methylphenyl phenylpropyl ether-------------------------------------------------------
154
Figure 4.4
1H-NMR plot of 4-methylphenyl phenylpropyl ether ------------------------------------------------------
155
Figure 4.5
EI mass spectrum of 3-methylphenyl phenylpropyl ether ------------------------------------------------------
156
Figure 4.6
1H-NMR plot of 3-methylphenyl phenylpropyl ether ------------------------------------------------------
157
Figure 4.7
EI mass spectrum of 2-methylphenyl phenylpropyl ether ------------------------------------------------------
158
Figure 4.8
1H-NMR plot of 2-methylphenyl phenylpropyl ether ------------------------------------------------------
159
Figure 4.9
EI mass spectrum of 4-methoxyphenyl phenylpropyl ether -------------------------------------
160
Figure 4.10
1H-NMR plot of 4-methoxyphenyl phenylpropyl ether ------------------------------------------------------
161
Figure 4.11 EI mass spectrum of phenyl butyl ether ------------- 162
Figure 4.12 1H-NMR plot of phenyl butyl ether ------------------ 163
Figure 4.13 EI mass spectrum of phenyl pentyl ether ------------ 164
Figure 4.14 1H-NMR plot of phenyl pentyl ether ----------------- 165
Figure 4.15 EI mass spectrum of phenyl hexyl ether ------------ 166
Figure 4.16 1H-NMR plot of phenyl hexyl ether ----------------- 167
Figure 4.17 EI mass spectrum of phenyl benzyl ether ----------- 168
Figure 4.18 1H-NMR plot of phenyl benzyl ether ---------------- 169
Figure 4.19
A plot of the calibration curves of compounds vs. benzene --------------------------------------------------
171
Figure 4.20
A plot of the calibration curves of compounds vs. benzene --------------------------------------------------
172
Figure 4.21
Distribution of reactant and product during the
reaction period in the absence of ultrasonic
irradiation ------------------------------------------------

175
Figure 4.22
Distribution of reactant and product during the
reaction period ------------------------------------------
175
Figure 4.23
Distribution of reactant and product during the
reaction period in the absence of ultrasonic
irradiation ------------------------------------------------

176
Figure 4.24
Distribution of reactant and product during the
reaction period ------------------------------------------
176
Figure 4.25
Distribution of reactant and product during the
reaction period in the absence of ultrasonic
irradiation ------------------------------------------------

177
Figure 4.26
Distribution of reactant and product during the
reaction period ------------------------------------------
177
Figure 4.27
Distribution of reactant and product during the
reaction period in the absence of ultrasonic
irradiation ------------------------------------------------


178
Figure 4.28
Distribution of reactant and product during the
reaction period ------------------------------------------
178
Figure 4.29
Distribution of reactant and product during the
reaction period in the absence of ultrasonic
irradiation ------------------------------------------------

179
Figure 4.30
Distribution of reactant and product during the
reaction period ------------------------------------------
179
Figure 4.31
Distribution of reactant and product during the
reaction period in the absence of ultrasonic
irradiation ------------------------------------------------

180
Figure 4.32
Distribution of reactant and product during the
reaction period ------------------------------------------
180
Figure 4.33
Conversion of 1-bromo-3-phenylpropane versus
time with various alcohols at 40℃ in the absence
of ultrasonic irradiation --------------------------------

183
Figure 4.34
Conversion of 1-bromo-3-phenylpropane versus
time with various alcohols at 40℃ -------------------
183
Figure 4.35
A plot of –Ln(1-X) of 1-bromo-3-phenylpropane
versus time with various alcohols at 40℃ in the
absence of ultrasonic irradiation ----------------------

184
Figure 4.36
A plot of –Ln(1-X) of 1-bromo-3-phenylpropane versus time with various alcohols at 40℃ ----------
184
Figure 4.37
Conversion of 1-bromo-3-phenylpropane versus
time with various alcohols at 45℃ in the absence
of ultrasonic irradiation --------------------------------

185
Figure 4.38
Conversion of 1-bromo-3-phenylpropane versus time with various alcohols at 45℃ -------------------

185
Figure 4.39
A plot of –Ln(1-X) of 1-bromo-3-phenylpropane
versus time with various alcohols at 45℃ in the
absence of ultrasonic irradiation ----------------------

186
Figure 4.40
A plot of –Ln(1-X) of 1-bromo-3-phenylpropane versus time with various alcohols at 45℃ ----------
186
Figure 4.41
Conversion of 1-bromo-3-phenylpropane versus
time with various alcohols at 50℃ in the absence
of ultrasonic irradiation --------------------------------

187
Figure 4.42
Conversion of 1-bromo-3-phenylpropane versus time with various alcohols at 50℃ -------------------
187
Figure 4.43
A plot of –Ln(1-X) of 1-bromo-3-phenylpropane
versus time with various alcohols at 50℃ in the
absence of ultrasonic irradiation ----------------------

188
Figure 4.44
A plot of –Ln(1-X) of 1-bromo-3-phenylpropane versus time with various alcohols at 50℃ ----------
188
Figure 4.45
Conversion of 1-bromo-3-phenylpropane versus
time with various alcohols at 55℃ in the absence
of ultrasonic irradiation --------------------------------

189
Figure 4.46
Conversion of 1-bromo-3-phenylpropane versus time with various alcohols at 55℃ -------------------
189
Figure 4.47
A plot of –Ln(1-X) of 1-bromo-3-phenylpropane
versus time with various alcohols at 55℃ in the
absence of ultrasonic irradiation ----------------------

190
Figure 4.48
A plot of –Ln(1-X) of 1-bromo-3-phenylpropane versus time with various alcohols at 55℃ ----------
190
Figure 4.49
A plot of the apparent rate constants (kapp) versus
various alcohols at various temperatures in the
absence of ultrasonic irradiation ----------------------

191
Figure 4.50
A plot of the apparent rate constants (kapp) versus various alcohols at various temperatures ------------
191
Figure 4.51
Arrhenius plot for –Ln(kapp) versus 1/T at various
alcohols in the absence of ultrasonic irradiation ---
192
Figure 4.52
Arrhenius plot for –Ln(kapp) versus 1/T at various alcohols --------------------------------------------------
192
Figure 4.53
Conversion of alkylbromides versus time with
various alkylbromides at 40℃ in the absence of
ultrasonic irradiation -----------------------------------

195
Figure 4.54
Conversion of alkylbromides versus time with various alkylbromides at 40℃ ------------------------
195
Figure 4.55
A plot of –Ln(1-X) of alkylbromides versus time
with various alkylbromides at 40℃ in the absence
of ultrasonic irradiation --------------------------------

196
Figure 4.56
A plot of –Ln(1-X) of alkylbromides versus time with various alkylbromides at 40℃ ------------------
196
Figure 4.57
Conversion of alkylbromides versus time with
various alkylbromides at 45℃ in the absence of
ultrasonic irradiation -----------------------------------

197
Figure 4.58
Conversion of alkylbromides versus time with various alkylbromides at 45℃ ------------------------
197
Figure 4.59
A plot of –Ln(1-X) of alkylbromides versus time
with various alkylbromides at 45℃ in the absence
of ultrasonic irradiation --------------------------------

198
Figure 4.60
A plot of –Ln(1-X) of alkylbromides versus time with various alkylbromides at 45℃ ------------------
198
Figure 4.61
Conversion of alkylbromides versus time with
various alkylbromides at 50℃ in the absence of
ultrasonic irradiation -----------------------------------

199
Figure 4.62
Conversion of alkylbromides versus time with various alkylbromides at 50℃ ------------------------
199
Figure 4.63
A plot of –Ln(1-X) of alkylbromides versus time
with various alkylbromides at 50℃in the absence
of ultrasonic irradiation --------------------------------

200
Figure 4.64
A plot of –Ln(1-X) of alkylbromides versus time with various alkylbromides at 50℃ ------------------
200
Figure 4.65
Conversion of alkylbromides versus time with
various alkylbromides at 55℃ in the absence of
ultrasonic irradiation -----------------------------------

201
Figure 4.66
Conversion of alkylbromides versus time with various alkylbromides at 55℃ ------------------------
201
Figure 4.67
A plot of –Ln(1-X) of alkylbromides versus time
with various alkylbromides at 55℃ in the absence
of ultrasonic irradiation --------------------------------

202
Figure 4.68
A plot of –Ln(1-X) of alkylbromides versus time with various alkylbromides at 50℃ ------------------
202
Figure 4.69
A plot of the apparent rate constants (kapp) versus
various alkylbromides at various temperatures in
the absence of ultrasonic irradiation -----------------

203
Figure 4.70
A plot of the apparent rate constants (kapp) versus various alkylbromides at various temperatures -----
203
Figure 4.71
Arrhenius plot for –Ln(kapp) versus 1/T at various
alkybromides in the absence of ultrasonic
irradiation ------------------------------------------------

204
Figure 4.72
Arrhenius plot for –Ln(kapp) versus 1/T at various alkybromides --------------------------------------------
204
Figure 5.1
EI mass spectrum of 1-bromo-4-(3-phenyl-
propoxy)benzene ---------------------------------------
211
Figure 5.2
1H-NMR plot of 1-bromo-4-(3-phenylpropoxy)-
Benzene --------------------------------------------------
212
Figure 5.3 EI mass spectrum of succinimide -------------------- 213
Figure 5.4 1H-NMR plot of succinimide ------------------------- 214
Figure 5.5
EI mass spectrum of N-hydrocinnamylsuccinimide (SUC-R) -------------------------------------------------
221
Figure 5.6 1H-NMR plot of N-hydrocinnamylsuccinimide ---- 223
Figure 5.7
13C-NMR plot of N-(tetrabutylammonium)-
succinimide (SUC-Q) ----------------------------------
225
Figure 5.8
A plot of the calibration curves of compounds vs. naphthalene ------------------------------------------------
226
Figure 5.9
Distribution of reactant and product during the
reaction period ------------------------------------------
228
Figure 5.10
Conversion of 1-bromo-3-phenylpropane versus
time with various agitation speeds -------------------
235
Figure 5.11
A plot of –Ln(1-X) of 1-bromo-3-phenylpropane
versus time with various agitation speeds -----------
236
Figure 5.12
A plot of the apparent rate constants (kapp) versus
various agitation speeds -------------------------------
237
Figure 5.13
Conversion of 1-bromo-3-phenylpropane versus
time with various volumes of water ------------------
240
Figure 5.14
A plot of –Ln(1-X) of 1-bromo-3-phenylpropane
versus time with various volumes of water ---------
241
Figure 5.15
A plot of the apparent rate constants (kapp) versus
various volumes of water ------------------------------
242
Figure 5.16
Conversion of 1-bromo-3-phenylpropane versus
time with various amounts of KOH ------------------
244
Figure 5.17
A plot of –Ln(1-X) of 1-bromo-3-phenylpropane
versus time with various amounts of KOH ---------
245
Figure 5.18
A plot of the apparent rate constants (kapp) versus
various amounts of KOH ------------------------------
246
Figure 5.19
Conversion of 1-bromo-3-phenylpropane versus
time with various temperatures -----------------------
248
Figure 5.20
A plot of –Ln(1-X) of 1-bromo-3-phenylpropane
versus time with various temperatures --------------
249
Figure 5.21
A plot of the apparent rate constants versus (kapp) various temperatures -----------------------------------
250
Figure 5.22 Arrhenius plot for -Ln(kapp) versus 1/T -------------- 251
Figure 5.23
Conversion of 1-bromo-3-phenylpropane versus
time with various amounts of TOAB ----------------
254
Figure 5.24
A plot of –Ln(1-X) of 1-bromo-3-phenylpropane
versus time with various amounts of TOAB --------
255
Figure 5.25
A plot of the apparent rate constants (kapp) versus
various amounts of TOAB ----------------------------
256
Figure 5.26
Conversion of 1-bromo-3-phenylpropane versus
time with various volumes of cyclohexanone ------
258
Figure 5.27
A plot of –Ln(1-X) of 1-bromo-3-phenylpropane
versus time with various volumes of
cyclohexanone ------------------------------------------

259
Figure 5.28
A plot of the apparent rate constants (kapp) versus
various volumes of cyclohexanone ------------------
260
Figure 5.29
Conversion of 1-bromo-3-phenylpropane versus
time with various phase transfer catalysts -----------
264
Figure 5.30
A plot of –Ln(1-X) of 1-bromo-3-phenylpropane
versus time with various phase transfer catalysts --
265
Figure 5.31
Conversion of 1-bromo-3-phenylpropane versus
time with various organic solvents -------------------
267
Figure 5.32
A plot of –Ln(1-X) of 1-bromo-3-phenylpropane
versus time with various organic solvents ----------
268
Figure 6.1
Distribution of reactant and product during the
reaction period ------------------------------------------
277
Figure 6.2
Conversion of 1-bromo-3-phenylpropane versus
time with various agitation speeds -------------------
280
Figure 6.3
A plot of –Ln(1-X) of 1-bromo-3-phenylpropane
versus time with various agitation speeds -----------
281
Figure 6.4
A plot of the apparent rate constants (kapp) versus
various agitation speeds -------------------------------
282
Figure 6.5
Conversion of 1-bromo-3-phenylpropane versus
time with various ultrasound frequency -------------
285
Figure 6.6
A plot of –Ln(1-X) of 1-bromo-3-phenylpropane
versus time with various ultrasound frequency -----
286
Figure 6.7
A plot of the apparent rate constants (kapp) versus
various ultrasound frequency -------------------------
287
Figure 6.8
Conversion of 1-bromo-3-phenylpropane versus
time with various volumes of water ------------------
289
Figure 6.9
A plot of –Ln(1-X) of 1-bromo-3-phenylpropane
versus time with various volumes of water ---------
290
Figure 6.10
A plot of the apparent rate constants (kapp) versus
various volumes of water ------------------------------
291
Figure 6.11
Conversion of 1-bromo-3-phenylpropane versus
time with various amounts of KOH ------------------
293
Figure 6.12
A plot of –Ln(1-X) of 1-bromo-3-phenylpropane
versus time with various amounts of KOH ---------
294
Figure 6.13
A plot of the apparent rate constants (kapp) versus
various amounts of KOH ------------------------------
295
Figure 6.14
Conversion of 1-bromo-3-phenylpropane versus
time with various temperatures -----------------------
298
Figure 6.15
A plot of –Ln(1-X) of 1-bromo-3-phenylpropane
versus time with various temperatures --------------
299
Figure 6.16
A plot of the apparent rate constants (kapp) versus
various temperatures -----------------------------------
300
Figure 6.17 Arrhenius plot for -Ln(kapp) versus 1/T -------------- 301
Figure 6.18
Conversion of 1-bromo-3-phenylpropane versus
time with various amounts of TBAB ----------------
303
Figure 6.19
A plot of –Ln(1-X) of 1-bromo-3-phenylpropane
versus time with various amounts of TBAB --------
304
Figure 6.20
A plot of the apparent rate constants (kapp) versus
various amounts of TBAB ----------------------------
305
Figure 6.21
Conversion of 1-bromo-3-phenylpropane versus
time with various volumes of cyclohexanone ------
308
Figure 6.22
A plot of –Ln(1-X) of 1-bromo-3-phenylpropane
versus time with various volumes of
cyclohexanone ------------------------------------------

309
Figure 6.23
A plot of the apparent rate constants (kapp) versus
various volumes of cyclohexanone ------------------
310
Figure 6.24
Conversion of 1-bromo-3-phenylpropane versus
time with various amounts of succinimide ----------
312
Figure 6.25
A plot of –Ln(1-X) of 1-bromo-3-phenylpropane
versus time with various amounts of succinimide -
313
Figure 6.26
A plot of the apparent rate constants (kapp) versus
various amounts of succinimide ----------------------
314
Figure 6.27
Conversion of 1-bromo-3-phenylpropane versus
time with various phase transfer catalysts -----------
317
Figure 6.28
A plot of –Ln(1-X) of 1-bromo-3-phenylpropane
versus time with various phase transfer catalysts --
318
Figure 6.29
Conversion of 1-bromo-3-phenylpropane versus
time with various organic solvents -------------------
320
Figure 6.30
A plot of –Ln(1-X) of 1-bromo-3-phenylpropane
versus time with various organic solvents ----------
321
Figure 7.1 Experimental apparatus -------------------------------- 332
Figure 7.2
Distribution of reactant and product during the
reaction period ------------------------------------------
335
Figure 7.3
Conversion of 1-bromo-3-phenylpropane versus
time with various agitation speeds -------------------
338
Figure 7.4
A plot of –Ln(1-X) of 1-bromo-3-phenylpropane
versus time with various agitation speeds -----------
339
Figure 7.5
A plot of the apparent rate constants (kapp) versus
various agitation speeds -------------------------------
340
Figure 7.6
Conversion of 1-bromo-3-phenylpropane versus
time with various microwave powers ----------------
343
Figure 7.7
A plot of –Ln(1-X) of 1-bromo-3-phenylpropane
versus time with various microwave powers -------
344
Figure 7.8
A plot of the apparent rate constants (kapp) versus
various microwave powers ----------------------------
345
Figure 7.9
Conversion of 1-bromo-3-phenylpropane versus
time with various temperatures -----------------------
347
Figure 7.10
A plot of –Ln(1-X) of 1-bromo-3-phenylpropane
versus time with various temperatures --------------
348
Figure 7.11
A plot of the apparent rate constants (kapp) versus various temperatures -----------------------------------
349
Figure 7.12 Arrhenius plot for -Ln(kapp) versus 1/T -------------- 350
Figure 7.13
Conversion of 1-bromo-3-phenylpropane versus
time with various amounts of KOH ------------------
352
Figure 7.14
A plot of –Ln(1-X) of 1-bromo-3-phenylpropane
versus time with various amounts of KOH ---------
353
Figure 7.15
A plot of the apparent rate constants (kapp) versus
various amounts of KOH ------------------------------
354
Figure 7.16
Conversion of 1-bromo-3-phenylpropane versus
time with various amounts of TOAB ----------------
357
Figure 7.17
A plot of –Ln(1-X) of 1-bromo-3-phenylpropane
versus time with various amounts of TOAB --------
358
Figure 7.18
A plot of the apparent rate constants (kapp) versus
various amounts of TOAB ----------------------------
359
Figure 7.19
Conversion of 1-bromo-3-phenylpropane versus
time with various volumes of cyclohexanone ------
361
Figure 7.20
A plot of –Ln(1-X) of 1-bromo-3-phenylpropane
versus time with various volumes of
cyclohexanone ------------------------------------------

362
Figure 7.21
A plot of the apparent rate constants (kapp) versus
various volumes of cyclohexanone ------------------
363
Figure 7.22
Conversion of 1-bromo-3-phenylpropane versus
time with various amounts of succinimide ----------
366
Figure 7.23
A plot of –Ln(1-X) of 1-bromo-3-phenylpropane
versus time with various amounts of succinimide -
367
Figure 7.24
A plot of the apparent rate constants (kapp) versus
various amounts of succinimide ----------------------
368
Figure 7.25
Conversion of 1-bromo-3-phenylpropane versus
time with phase transfer catalysts --------------------
370
Figure 7.26
A plot of –Ln(1-X) of 1-bromo-3-phenylpropane
versus time with various phase transfer catalysts --
371












符 號 說 明

A 水油兩相間之界面面積
Ai 內標準物在HPLC之分析面積
Ai 阿瑞尼士方程式之視頻率因子
Ap 樣品在HPLC之分析面積
Aliquat-336 Trioctylmethylammonium chloride
BTEAB Benzyltriethylammonium bromide
Ea 阿瑞尼士方程式之視反應活化能
EI 電子衝撞法
f 有機相與水相體積之比例
FAB 高速原子撞擊法
kapp 有機相反應之視反應速率常數
kaq.1 水相中之第一本質反應速率常數
kaq.2 水相中之第二本質反應速率常數
kint 本質反應速率常數
korg 有機相中之本質反應速率常數
K 校正曲線比例常數
K1 SUC-H與QBr反應之平衡常數
K2 無機鹽類KBr之平衡常數
KQBr QBr介於兩相間之總質傳係數
KQOR QOR介於兩相間之總質傳係數
L-L PTC 液-液相相間轉移觸媒催化技術
MQBr QBr介於兩相間之分配係數
MQOR QOR介於兩相間之分配係數
PTC 相間轉移觸媒催化技術
Q0 相間轉移觸媒之總量
Q+ (C4H9)4N+
QBr (C4H9)4N+Br-, TBAB
QOR (C4H9)4N+--OC6H5
R 阿瑞尼士方程式之氣體常數
R2 R square,表示正確度之值
RBr 1-bromo-3-phenylpropane
ROK C6H5O-K+
S-L PTC 固-液相相間轉移觸媒催化技術
SUC-H succinimide
SUC-K Succinimide potassium salt
SUC-Q N-(tetraoctylammonium)succinimide
SUC-R N-hydrocinnamylsuccinimide
t 反應時間
T 阿瑞尼士方程式之絕對溫度
TEAB tetraethylammonium bromide
TBAB tetrabutylammonium bromide
THAB tetrahexylammonium bromide
TOAB tetraoctylammonium bromide
Va 水相體積
Vo 有機相體積
Wi 內標準物之重量
Wp 樣品之重量
X 溴烷類之轉化率
α 極性參數
ε 介電常數
μ 偶極距參數
τ 偶極距
δ NMR光譜圖之化學位移
m/z 核質比
[ ] 化合物濃度
下標0 表初始狀態
下標a 表水相溶液
下標o 表有機相溶液



參 考 文 獻

[1]陳正清, "對-羥基苯甲醇相間轉移觸媒氧化反應之研究", 國立中正大學化學工程研究所碩士論文 (1999).
[2]Smith, J. M., "Chemical Engineering Kinetics", McGraw-Hill book Company, 3rd ed., New York (1981).
[3]Forment, G. F., "Chemical Reaction Analysis and Design", John
Wiley & Sons, New York (1990).
[4]Jarrouse, J., "The Influence of Quaternary Ammonium Chlorides on the Reaction of Labile Hydrogen Compounds and Chloride-
Substituted Chlorine Derivatives", C. R. Hebd Seances Acad.
Sci, Ser C232, pp. 1424-1434 (1951).
[5]Starks, C. M.; Liotta, C. L., "Phase Transfer Catalysis. I. Hetergeneous Reactions Involving Anion Transfer by Quaternary Ammonium and Phosphonium Salts", J. Am. Chem. Soc., 93, pp. 195-199 (1971).
[6]Dehmlow, E. V.; Dehmlow, S. S., "Phase Transfer Catalysis",
Verlag Chemie, Weinheim, Germany (1983).
[7]Joshi, G. C.; Singh, N.; Pande, L. M., "Dichlorocarbenene Generation and Reactions in Cationic Micelles Aqueous Phase. Part I. Cyclo Addition to Alkenes", Tetrahedron Letters,6, pp. 1461-1464 (1972).
[8]Fendler, J. E., "Catalysis in Micelle and Micromolecular System",
Academic Press, New York (1975).
[9]Stark, C. M.; Owens, R. M., "Phase Transfer Catalysis, II. Kinetic Details of Cyanide Displacement on 1-Haloctanes", J. Am. Chem.
Soc., 95, pp. 3613-3617 (1973).
[10]Brandstrom, A., "Principles of Phase-Transfer Catalysis by Quaternary Ammonium Salts", Adv. Phys. Org. Chem., 15,
pp. 267-330 (1977).
[11]Brandstrom, A.; Hans, K. A., "Ion Pair Extraction in Preparative Organic Chemistry. IX. Kinetic Evidence for an Ion Pair Mechanism in the Halogen Exchange of Alkyl Halidesn Catalyed by Tetrabutylammonium Halides", Acta. Chem. Scand. B, 29, pp. 201-205 (1975).
[12]Stark, C. M.; Loitta, C. L.; Halpern, M., "Phase Transfer Catalysis: Fundamentals, Applications and Industrial Perspectives", Chapman & Hall, New York (1994).
[13]Freedman, H. H., "Industrial Applications of Phase Transfer Catalysis; Past, Present and Future", Pure & Appl. Chem., 58(6),
pp. 857-868 (1986).
[14]Scott, P. E.; Bradshow, J. S.; Parish, W. W., "Modified Crown Ether Catalysis 3. Structural Parameters Affecting Phase Transfer Catalysis By Crown Ethers and a Comparison of the Effectiveness of Crown Ether to that of Other Phase Transfer Catalysts", J. Am. Chem. Soc., 102, pp. 4810-4815 (1980).
[15]Angeletti, E. P.; Tundo, P.; Venturello, P.; Trotta, F., "Synthetic Opportunities of Gas-Liquid Phase Transfer Catalysis", British Polymer J., 16, pp. 219-221 (1984).
[16]Tundo, P.; Trotta, F.; Moraglio, G.; Ligorati, F., "Synthetic Opportunities of Gas-Liquid Phase Transfer Catalysis Condition: The Reaction of Dialkyl Carbonates with Phenol, Alcohol, and Mercaptans", Ind. Eng. Chem. Res., 27, pp. 1565-1571 (1988).
[17]Regen, S. L.; Basse, J. J.; Mclick, J., "Solid Phase Cosolvents Triphase Catalytic Hydrolysis of 1-Bromoadamantane", J. Am.
Chem. Soc., 101, pp. 116-120 (1979).
[18]Mackenzie, W. M.; Sherrington, D. C., "Mechanism of Solid-
Liquid Phase Transfer Catalysis by Polymer-Supported Linear Polyether", Polymer, 21, pp. 791-797 (1980).
[19]Jang, S. M.; Shich, T. S., "Phase Transfer Catalytic Process for
Preparing Intermediates of Atenolol, Propanol; Their Derivatives", US Patent 5290958 (1994).
[20]Abromovici, S.; Sasson, Y., "Sodium Hypochlorite as Oxidant in
Phase-Transfer Catalytic System. Part II, Oxidation of Aromatic
Alcohols", J. Mol. Catal., 29, pp. 229-235 (1985).
[21]Stark, C. M., "Phase Transfer Catalysis: An Overview", ACS Symposium Series, No 326, pp. 1-7 (1985).
[22]Herriott, A. W.; Picker, D., "Phase Transfer Catalysis and Evaluation of Catalysis", J. Am. Chem. Soc., 97, pp. 2345-2349 (1975).
[23]Hennis, H. E.; Easterly, J. P.; Collins, R.; Thompson, L. R.,
"Esters From the Reactions of Alkyl Halides and Salt of Carboxylic Acids Reactions of Primary Alkylchlordes and Sodium Salts of Carboxylic Acid", Ind. Eng. Chem. Prod. Res.
Dev., 6, pp. 193-195 (1967).
[24]Hennis, H. E.; Thompson, L. R.; Long, J. P., "Esters From the Reaction of Alkyl Halides and Salts of Carboxylic Acid Comprehensive Study of Amine Catalysis", Ind. Eng. Chem.
Prod. Res. Dev., 7, pp. 96-101 (1968).
[25]Merck Index, 12th Edition, Chapman & Hall, New York (1996).
[26]Pederson, C. J., "Cyclic Polyethers and Their Complexes with Metal Salts", J. Am. Chem. Soc., 89, pp. 7017-7035 (1967).
[27]Sam, D. J.; Simmons, H. E., "Crown Polyether Chemistry Potassium Permanganate Oxidation in Benzene", J. Am. Chem.
Soc., 94, pp. 4024-4025 (1972).
[28]邢其毅, "基礎化學:上冊(第三版)", 高等教育出版社, 台灣,
台北 (2005).
[29]Fernando, M. T., "Hydroxymethyl 18-Crown-6 and Hydroxymethyl [2.2.2] Cryptnad: Versatile Derivatives for Binding the Two Polyethers to Lipophilic Chains and to Polymer
Matrices", Tetrahedron Lett., 20, pp. 5055-5058 (1979).
[30]Smid, J.; Chen, L. L., "Contact and Solvent-Separated Ion Pairs of Carbanions", J. Am. Chem. Soc., 89, pp. 4547-4579 (1967).
[31]Smid, P. M.; Leusen, A. M.; Strating, J., "Photolysis of
α-Diazo-β-ketosulfones and β-Ketosulfones", Tetrahedron Lett., 8, pp. 1165-1167 (1967).
[32]Santaniello, E.; Ferraboshchi, P., "Efficient and Selective Oxidation of Alcohols by Potassium Dichromate Solutions",
Synthesis, pp. 646-647 (1980).
[33]Suzuki, N.; Shimazu, K.; Izawa, Y., "Photocyanation of Anisol in the Presence of Polyethylene Glycol", J. Chem. Soc., Chem.
Commum., pp. 1253-1255 (1980).
[34]Yanagida, S.; Noji, Y.; Okahara, M., "Phase Transfer Catalysis of Poly(oxyethylene)Dimethyl Ether", Tetrahedron Lett., pp. 2893-
2894 (1977).
[35]Angeletti, E.; Tundo, P.; Venturello, P., "Gas-Liquid Phase Transfer Synthesis of Phenyl Ethers and Sulphides with
Carbonate as Base and Carbowax as Catalyst", J. Am. Chem.
Soc., Perkin Trans. I., pp. 1137-1142 (1982).
[36]Zupancic, B.; Kokalj, M., "Aromatic β-Unsaturated Nitriles via Polyethylene Glycol-Catalyzed Two-Phase Aldol-Type Condensation", Synthesis, pp. 913-915 (1981).
[37]Kimura, Y.; Regan, S. L., "Polyethylene Glycols are Extraordinary Catalysts in Liquid-Liquid Two-Phase Dehydro- halogenation", J. Org. Chem., 47, pp.2493-2494 (1982).
[38]Yuri, N.; Belokon, R.; Gareth, D.; Michael, N., "A Practical Asymmetric Synthesis of α-methyl α-amino Acids Using a Chiral Cu-Salen Complex as a Phase Transfer Catalyst", Tetrahedron Lett., 41, pp. 7245-7248 (2000).
[39]Barry, L.; Philip, G. W., "A New Class of Asymmetric Phase-
Transfer Catalysts Derived from Cinchona Alkaloids Application in the Enantioselective Synthesis of α-amino Acids", Tetrahedron Lett., 38, pp. 8595-8598 (1997).
[40]Joseph, P. J.; Thayikkannu, B.; Maw-Ling, W., "Phase-Transfer Catalyzed Darzen’s Condensation of Chloroacetonitrile with Cyclohexanone Using Aqueous Sodium Hydroxide and a New Phase Transfer Catalyst", J. Mol. Catal. A: Chemical, 152,
pp. 91-98 (2000).
[41]Siswanto, C.; Battal, T.; Schuss, O. E.; Rathamn, J. F., "Synthesis of Alkylphenyl Ethers in Aqueous Surfactant Solutions by Micellar Phase-Transfer Catalysis. 1. Single-PhaseSystem",
Langmuir, 13, pp. 6047-6052 (1997).
[42]Siswanto, C.; Battal, T.; Schuss, O. E.; Rathamn, J. F., "Synthesis of Alkylphenyl Ethers in Aqueous Surfactant Solutions by Micellar Phase-Transfer Catalysis. 2. Two-Phase System", Langmuir, 13, pp. 6053-6057 (1997).
[43]Makosza, M.; Bialeeka, E., "Reactions of Organic Anions XXXVI, Catalytic Method of Preparation of 1-Chloro-1-phenyl-
thiocyclopropane Derivative in Aqueous Medium", Tetrahedron Lett., pp. 4517-4518 (1971).
[44]Herriott, A.W.; Picker, D., "On the Mechanism of Phase Transfer
Catalysis", Tetrahedron Lett., 44, pp. 4521-4524 (1972).
[45]Rabinovitz, M.; Cohen, Y.; Halpern, M., "Hydroxide Ion
Initiated Reaction Under Phase Transfer Catalysis Condition; Mechanism and Implication", Angew. Chem. Ind., Engl., 25, pp.
960-970 (1986).
[46]Gordon, J. E.; Kutina, R. E., "On the Theory of Phase Transfer
Catalysis", J. Am. Chem. Soc., 99, pp. 3903-3909 (1977).
[47]Gokel, G. W.; Weber, W. P., "Phase Transfer Catalysis. Part I:
General Principles", J. Chem. Education, 55 (6), pp. 350-354 (1978).
[48]Gokel, G. W.; Weber, W. P., "Phase Transfer Catalysis. Part II:
General Principles", J. Chem. Education, 55 (7), pp. 429-433 (1978).
[49]Dehmlow, E. V., "Advances in Phase Transfer Catalysis", Angew. Chem. Ind., Engl., 16, pp. 493-505 (1977).
[50]Starks, C. M.; Liotta, C., "Phase Transfer Catalysis, Principle and Techniques", Academic Press, New York (1978).
[51]Weber, W. P.; Gokel, G. W., "Phase Transfer Catalysis in Organic
Synthesis", Spring-Verlag Berlin Heidelberg, New York (1977).
[52]Marion, B.; Markus, F.; Jürgen, S.; Frank, S., "Water-Soluble
Calix[n]arenas as Receptor Molecules for Non-Polar Substrates
and Inverse Phase Transfer Catalysts", Tetrahedron, 57,
pp. 6985-6991 (2001).
[53]Kuo, C. S.; Jwo, J. J., "Inverse Phase Transfer Catalysis, Kinetics and Mechanism of The Pyridine 1-Oxide-Catalyzed Substitution Reaction of Benzoyl Chloride and Benzoate Ion in a Two-Phase Water/Dichloromethane Medium", J. Org. Chem., 57, pp. 1991-
1995 (1992).
[54]Wang, M. L.; Ou, C. C.; Jwo, J. J., "Effect of The Organic
Solvent on The Pyridine 1-Oxide-Catalyzed Reaction of Benzoyl Chloride and Acetate Ion in a Two-Phase Medium", Ind. Eng. Chem. Research., 33, pp. 2034-2039 (1994).
[55]Mathias, K.; Vaidya, R. A., "Inverse Phase Transfer Catalysis
First Report of a New Class of Interfacial Reaction", J. Am. Chem. Soc., 108, pp. 1093-1094 (1986).
[56]Shimizu, S.; Sasaki, Y.; Hirai, C., "Inverse Phase Transfer Catalysis by Cyclodextrins, Palladium Catalyzed Reduction of Bromoanisoles with Sodium Formate", Bull. Chem. Soc. Jpn.,
63, pp. 176-178 (1990).
[57]Konno, S.; Amano, M.; Sagi, M.; Yamanaka, H., "Synthesis of
4,5-Diarylthiazole Derivatives as Blood Platelet Aggregation
Inhibitors", Yakugaku Zasshi., 110, pp. 105-114 (1990).
[58]David, C. H.; Richard, F. D, "The Sliding Cyclohexane
Rearrangement", Tetrahedron, 53, pp. 15771-15786 (1997).
[59]吳榮宗, 工業觸媒概論, 國興出版社, 台灣, 台北 (1989).
[60]Iwona, B.; Magdalena, M.; Tomasz, S.; Adam, H., "Effect of a
Plasticizer on the Dection Limit of Calcium-Selective Electrodes",
J. Electroanal. Chem., 537, pp. 111-118 (2002).
[61]Yazdanian, M.; Chen, E., "The Effect of Diethylene Glycol
Monoethyl Ether as a Vehicle for Topical Delivery of Ivermectin",
Vet. Res. Commun., 19, pp. 309-319 (1995).
[62](2-Chloro-1,1,2-Trifluoroethyl Difluoromethyl Ether) in the
Presence of Oxygen: Reaction with Electrogenerated Superoxide",
J. Electroanal. Chem., 541, pp. 117-131 (2003).
[63]Eddy, R.., "Ether, the Anesthetic from 19th through 21st Century",
International Cong. Ser., 1242, pp. 51-55 (2002).
[64]Jone, D. S. J., "Elements of Petroleum Processing", John Wiley
& Sons, New York, USA (1995).
[65]Frank, P. H.; Mark, E. D.; Klaus, P. M., "Single Stage Synthesis
of Diisopropyl Ether – An Alternative Octane Enhancer for
Lead-Free Petrol", Catal. Today, 49, pp. 327-335 (1999).
[66]Fujikawa, F.; Hirayama, T.; Nakamura, Y.; Matsuo, S.; Mizutani,
T., "Studies on Antiseptics for Foodstuff. LXXII. Studies on
Diphenyl Ether Derivatives, Biphenyl Derivatives and Dibenzofuran Derivatives as a Preservative for Sake", Yakugaku
Zasshi, 91, pp. 930-933 (1971).
[67]Metodiewa, D.; Kochman, A.; Karolczak, S., "Evidence for
Antiradical and Antioxidant Properties of Four Biologically
Active N,N-Dithylaminoethyl Ethers of Flavanone Oximes:
A Comparison with Natural Polyphenolic Flavonoid (Rutin) Action", Biochem. Mol. Biol. Int., 41, pp. 1067-1075 (1997).
[68]Maggioni, "Process for Preparing Aromatic Methylene-dioxy Compounds", US Patent 4183861 (1980).
[69]Holden, E. R., "Gas Chromatographic Determination of
Residues of Methylcarbamate Insecticides in Crops as Their
2,4-Dinitrophenyl Ether Derivatives", J. Assoc. Off. Anal. Chem., 56, pp. 713-717 (1973).
[70]Colling, P. J.; Hird, M., "Introduction to Liquid Crystals Chemistry and Physics", Taylor & Francis Ltd., New York, USA,
pp. 150-155 (1997).
[71]Sharma, M. M.; Pradhan, N. C., "Kinetics of Reaction of Benzyl
Chloride/p-Chlorobenyl Chloride with Sodium Sulfide: Phase
Transfer Catalysis and the Reaction Role of the Omega Phase",
Ind. Eng. Chem. Res., 29, pp. 1103-1108 (1990).
[72]Weber, W. P.; Gokel, G. W., "Phase Transfer Catalysis in Organic
Chemistry", 2nd, pp. 559-592, Springer Verlag, New York, USA,
(1991).
[73]李至發, "相間轉移觸媒催化技術合成醚類化合物之研究", 國
立中正大學化學工程研究所博士論文 (2006).
[74]Silverstein, R. M.; Bassler, G. C.; Morrill, T. C., "Spectrometric
Identification of Organic Compound", 5th ed., pp. 22-23, John Wiley & Sons, Inc., New York (1991).
[75]Gross, H.; Flute, E. H., "The Formation of C-C Bonds with the Aide of α-Halogeno Ether, Sulfides and Amines", Angew. Chem., Int. Ed. Engl., 6 (4), pp. 335-355 (1967).
[76]Summers, L., "The α-Haloalkyl Ethers", Chem. Reviews, 55,
pp. 301-353 (1955).
[77]Lopez, A. F.; Peralta de Ariza, M. T.; Orio, O. A., "Rapid Method
for Quantitative Determination of Tetrabutylammonium Bromide in Aqueous Solution by Gas Chromatography", J. High Resolut.
Chromatogr., 12, pp. 503-504 (1989).
[78]Sakai, T.; Tsubouchi, M.; Tanaka, M., "Determination of Quaternary Ammonium Salts by Ion-pair Extraction-Titrations with Tetrabromophenol-phthalein Ethyl Ester as Indicator", Anal. Chim. Acta., 93, pp. 357-358 (1977).
[79]Wang, M. L.; Chang, S. W., "Mechanism and Kinetics of
Synthesizing Dibiutanoxymethane by Phase Transfer Catalysis",
Reaction Kinetics & Catalysis Letters, 49, pp. 333-337 (1993).
[80]March, J., "Advanced Organic Chemistry", 4th ed., John Wiley, New York, pp. 261-263 (1992).
[81]Wang, M. L.; Yang, H. M., "Dynamics of Phase Catalyzed Reaction for the Allylation of 2,4,6-tribromophenol", Chem. Eng. Sci., 46 (2), pp. 619-627 (1991).
[82]曾堯宣, "相間轉移觸媒催化技術合成雙醚化合物之研究", 國
立中正大學化學工程研究所博士論文 (2002).
[83]Yadav, G. D.; Sharma, M. M., "Kinetics of Reaction of Benzyl Chloride with Sodium Acetate/Benzoate: Phase Transfer Catalysis in Solid-Liquid System", Ind. Eng. Chem. Process Des. Dev., 20, pp. 385-390 (1981).
[84]Yoel, S.; Zahalka, H. A., "Catalyst Poisoning Phenomenon
in Phase Transfer Catalysis: Effect of Aqueous Phase
Concentration", J. Chem. Soc., Chem. Commun., pp. 1347-1349 (1983).
[85]Palit, S. R.,; Venkateswarlu, U., "Solubilization of Water in
Non-polar Solvents by Detergent Mixtures", J. Chem. Soc., pp.
2129-2134 (1954).
[86]Dutta, N. N.; Borthakur, S.; Patil, G. S., "Triphase Catalysis for Recovery of Phenol from an Aqueous Alkaline Stream", Ind. Eng. Chem. Res., 31, pp. 2727-2731 (1992).
[87]Mason, D.; Magdassi, S.; Sasson, Y., "Interfacial Activity of Quaternary Salts as a Guide to Catalytic Performance in Phase-
Transfer Catalysis", J. Org. Chem., 55, pp. 2714-2717 (1990).
[88]Yufit, S. S.; Esikova, I. A., "Aldol Condensation of Acetone in the Two-Phase System Solid Base-Benzene in the Presence of Benzyltriethylammonium Chloride", Bull. Acad. Sci. USSR Div. Chem. Sci. (Engl. Transl.), 33, pp. 2012-2016 (1984).
[89]Brandstrom, A., "Preparative Ion Pair Extraction", Apotekarsocieten Hassle Lakemedel, Stockholm (1974).
[90]Makosza, M.; Danikiewicz, W., "An Unusual Reaction of 4-Methoxy-1-nitronaphthalene and 4-Amino-1-nitronaphthalene with Dimethyl Phosphate Under Basic Conditions", Tetrahedron Lett., 28, pp. 1707-1710 (1987).
[91]陳建行, "超音波輔助三液相相間轉移觸媒合成鄰-羥基苯甲酸丁酯之反應動力學研究", 國立中興大學化學工程研究所碩士論文 (2007).
[92]彭冠益, "以續流式反應器合成鄰-羥基苯甲酸丁酯之超音波輔助三液相相間轉移催化反應研究", 國立中興大學化學工程研究所碩士論文 (2008).
[93]邱俊誠, "以超音波輔助之雙活性基相間轉移觸媒在三液相催化酯化合成苯甲酸4-乙醯基苯酯之研究", 國立中興大學化學工程研究所碩士論文 (2009).
[94]陳威宏, "相間轉移觸媒進行有機化合物烷化反應及縮醛反應之研究", 國立中正大學化學工程研究所博士論文 (2008).
[95]Louis, J. L., "Synthetic Organic Sonochemistry", Plenum Press, New York and London.
[96]Lindermeir, A.; Horst, C.; Hoffmann, U., "Ultrasound Assisted Electrochemical Oxidation of Substituted Toluenes", Ultrason. Sonochem., 10, pp. 223-229 (2003).
[97]Timothy, J. M.; John, P. L., "Applied Sonochemistry: Uses of Power Ultrasound in Chemistry and Processing", Wiley, New York, USA, (2002).
[98]Timothy, J. M., "Large Scale Sonochemical Processing: Aspiration and Actuality", Ultrason. Sonochem., 7, pp. 145-149 (2000).
[99]Bonrath, W., "Industrial Applications of Sonochemistry in the Syntheses of Vitamin-building Blocks", Ultrason. Sonochem., 10, pp. 55-59 (2003).
[100]Li, J. T.; Dai, H. G.; Xu, W. Z.; Li, T. S., "An Efficient and Practical Synthesis of Bis(indolyl)methanes Catalyzed by Aminosulfonic Acid Under Ultrasound", Ultrason. Sonochem., 13, pp. 24-27 (2006).
[101]Sreedhar, B.; Reddy, P. S.; Prakash, B. V.; Ravindra, A., "Ultrasound-Assisted Rapid and Efficient Synthesis of Propargylamines", Tetrahedron Lett., 46, pp. 7019-7022 (2005).
[102]Carcenac, Y.; Tordeux, M.; Wakselman, C.; Diter, P., "Convenient Synthesis of Fluorinated Alkanes and Cycloalkanes by Hydrogenation of Perfluoroalkylalkenes Under Ultrasound Irradiation", Journal of Fluorine Chemistry, 126, pp. 1347-1355 (2005).
[103]Xiao, Y. M.; Wu, Q.; Gai, Y.; Lin, X. F., "Ultrasound-Accelerated Enzymatic Synthesis of Sugar Esters in Nonaqueous Solvents", Carbohydr Res., 340, pp. 2097-2103 (2005).
[104]Hofmann, J.; Freier, U.; Wecks, M., "Ultrasound Promoted C-alkylation of Benzyl Cyanide-Effect of Reactor and Ultrasound Parameters", Ultrason. Sonochem., 10, pp. 271-275 (2003).
[105]Walton, D. J.; Iniesta, J.; Plattes, M.; Mason, T. J.; Lorimer, J. P.; Ryley, S.; Phull, S. S.; Chyla, A.; Heptinstall, J.; Thiemann, T., "Sonoelectrochemical Effects in Electro-Organic System", Ultrason. Sonochem., 10, pp. 209-216 (2003).
[106]Cognet, P.; Ghanem, L. A.; Berlan, J.; Wilhelm, A. M.; Delmas, H.; Fabre, P. L., "Application of Ultrasound Technology to Electroorganic Synthesis: Reduction of Acetophenone", Chem. Eng. Sci., 55, pp. 2571-2578 (2000).
[107]Wang, M. L.; Rajendran, V., "Ultrasound Assisted Phase-Transfer Catalytic Epoxidation of 1,7-Octadiene – A Kinetic Study", Ultrason. Sonochem., 14, pp. 46-54 (2007).
[108]Nandurkar, N. S.; Bhanushali, M. J.; Jagtap, S. R.; Bhanage, B. M., "Ultrasound Promoted Regioselective Nitration of Phenols using Dilute Nitric Acid in the Presence of Phase Transfer Catalyst", Ultrason. Sonochem., 14, pp. 41-45 (2007).
[109]Wang, M. L.; Chen, W. H., "Kinetic Study of Synthesizing Dimethoxydiphenylmethane under Phase Transfer Catalysis and Ultrasonic irradiation", Ind. Eng. Chem. Res., 48, pp. 1376-1383 (2009).
[110]Li, J. T.; Li, X. L., "An Efficient and Practical Synthesis of Methylene Dioximes by Combination of Ultrasound and Phase Transfer Catalyst", Ultrason. Sonochem., 14, pp. 677-679 (2007).
[111]Davidson, R. S.; Patel, A. M.; Safdar, A.; Thornthwaite, D., "The Application of Ultrasound to the N-Alkylation of Amines Using Phase Transfer Catalysis", Tetrahedron Lett., 24, pp. 5907-5910 (1983).
[112]Wang, M. L.; Chen, C. J., "Kinetic Study of Synthesizing 1-(3-phenylpropyl)-pyrrolidine-2,5-dione under Solid-Liquid Phase-Transfer Catalytic Conditions Assisted by Ultrasonic Irradiation", Org. Process Res. Dev., 14, pp. 737-745 (2010).
[113]Torok, B.; Balazsik, K.; Felfoldi, K.; Bartok, M., "Asymmetric
Reactions in Sonochemistry", Ultrason. Sonochem., 8,
pp. 191-200 (2001).
[114]Herriott, A. W.; Picker, D., "On the Mechanism of Phase Transfer Catalysis", Tetrahedron Lett., 44, pp. 4521-4524 (1972).
[115]Hennis, H, E.; Easterly, J. P.; Collins, L. R.; Thompson, L. R.,
"Ester from the Reaction of Alkyl Chlorides and Sodium Salts of Carboxylic Acids", Ind. Eng. Chem. Prod. Res. Dev., 6,
pp. 193-195 (1967).
[116]Hennis, H. E.; Thompson, L. R.; Long, J. P., "Ester from the Reaction of Alkyl Halides and Salts of Carboxylic Acids, Comprehensive Study of Amine Catalysis", Ind. Eng. Chem. Prod. Res. Dev., 7, pp. 96-101 (1968).
[117]Zahalka H. A.; Sasson, Y., "Catalyst Poisoning Phenomenon in Phase Transfer Catalysis: Effect of Aqueous Phase Concentration", J. Chem. Soc., Chem. Commun., 22, pp. 1347-
1349 (1983).
[118]Yang, H. M.; Wu, H. E., "Kinetic Study for Synthesizing Dibenzyl Phthalate via Solid-Liquid Phase-Transfer Catalysis", Ind. Eng. Chem. Res., 37, pp. 4536-4541 (1998).
[119]Yang, H. M.; Wu, P. I.; Li, C. M., "Etherification of Halo-Ester by Phase-Transfer Catalysis in Solid-Liquid System", Applied Catalysis A: General, 193, pp. 129-137 (2000).
[120]Yee, H. A.; Palmer, H. J.; Chen, S. H., "Solid-Liquid Phase Transfer Catalysis", Chem. Eng. Prog. Feb., 83, pp. 33-39
(1987).
[121]Melville, J. B.; Goddard, J. D., "A Solid-Liquid Phase-Transfer Catalysis in Rotating-Disk Flow", Ind. Eng. Chem. Res., 27,
pp. 551-555 (1988).
[122]Walker, M. A., "A High Yield Synthesis of N-Alkylmaleimides Using a Novel Modification of the Mitsunobu Reaction", J. Org. Chem., 60, pp. 5352-5355 (1995).
[123]Saidi, K.; Darehkordi, A., "A Conventients Synthesis of
N-aryltrifluoroacetimidoyl Phthalimide and Succinimide", J. Fluor. Chem., 105, pp. 49-51 (2000).
[124]Wilkes, J. S.; Levisky, J. A.; Wilson, R. A.; Hussey, C. L., "Dialkylimidazolium Chloroaluminate Melts: A New Class of Room-Temperature Ionic Liquids for Electrochemistry, Spectroscopy and Synthesis", Inorg. Chem., 21, pp. 1263-1264 (1982).
[125]Gesson, J. P.; Jacquesy, J. C.; Ramband, D., "A Practical Method for N-alkylation of Succinimide and Glutarimide", Bull. Soc. Chem. Fr., 129, pp. 227-231 (1992).
[126]艾文健, "以微波輔助萃取法探討影響土中多氯聯苯脫附因子", 國立中興大學環境工程學系碩士論文 (2001).
[127]高健玲, "微波加熱與微波萃取教學與實驗教材之設計", 國立高雄師範大學化學系碩士論文 (2001).
[128]許薊, "微波化學教學設計", 國立高雄師範大學化學系碩士論文 (2001).
[129]Yadav, G. D.; Bisht, P. M., "Novelties of Microwave Assisted Liquid-Liquid Phase Transfer Catalysis in Enhancement of Rates and Selectivities in Alkylation of Phenols Under Mild Conditions", Catalysis Communication, 5, pp. 259-263 (2004).
[130]Yadav, G. D.; Bisht, P. M., "Fundamental Analysis of Microwave Irradiated Liquid-Liquid Phase Transfer Catalysis (MILL-PTC):
Simultaneous Measurement of Rate and Exchange Equilibrium
Constants in Selective O-Alkylation of p-tert-Butylphenol with Benzyl Chloride", Journal of Molecular Catalysis A: Chemical, 236, pp. 54-64 (2005).
[131]Yadav, G. D.; Bisht, P. M., "Novelties of Microwave Irradiated Solid-Liquid Phase Transfer Catalysis (MISL-PTC) in Synthesis of 2’-Benzyloxyacetophenone", Journal of Molecular Catalysis A: Chemical, 221, pp. 59-69 (2004).
[132]Zhu, Y. J.; Wang, W. W.; Qi, R. J.; Hu, X. L., "Microwave-
Assisted Synthesis of Single-Crystalline Tellurium Nanorods and Nanowires in Ionic Liquid", Angew. Chem. Int. Ed. Engl., 43,
pp. 1410-1414 (2004).
[133]Loupy, A., "Microwaves in Organic Synthesis", Weinheim, Wiley-VCH, New York (2002).
[134]http://www.kohan.com.tw/
[135]Lidstrom, P.; Tierney, J.; Wathey, B.; Westman, J., "Microwave
Assisted Organic Synthesis – A Review", Tetrahedron, 57, pp. 9225-9283 (2001).
[136]Larhed, M; Hallberg, A., "Microwave-Assisted High-Speed Chemistry: A New Technique in Drug Discovery", Drug Discovery Today, 6, pp. 406-416 (2001).
[137]Strauss, C. R.; Trainor, R. W., "Invited Review- Developments in
Microwave-Assisted Organic-Chemistry", Aust. J. Chem., 48, pp. 1665-1692 (1995).
[138]Elander, N.; Jones, J. R.; Lu, S. Y.; Stone-Elander, S., "Microwave-Enhanced Radiochemistry", Chem. Soc. Rev., 29,
pp. 239-250 (2000).
[139]Albanese, D.; Donghi, A.; Landini, D.; Lupi V.; Penso, M., "Environmentally Benign, Sequential Synthesis of
3,4-Dihydro-2H-1,4-Benzoxazines under Phase Transfer
Catalysis Condition", Green Chemistry, 5, pp. 367-369 (2003).
[140]Zha, Z.; Wang, Y.; Yang, G.; Zhang, L.; Wang, Z., "Efficient Barbier Reaction of Carbonyl Compounds Improved by a Phase Transfer Catalyst in Water", Green Chemistry, 4, pp. 578-580 (2002).
[141]Bielski, R.; Joyce, P. J., "Exhaustive Removal of Anions from Aqueous Waste via Nucleophilic Displacement Reaction in the Presence of Phase Transfer Catalysts", Catalysis Communication, 4, pp. 401-404 (2003).
[142]Lancaster, M., Green Chemistry. An Introductory Text, Royal Society of Chemistry (2002).
[143]Bielski, R.; Joyce, P. J., "Conversion of Pollutants in Dilute Aqueous Waste Streams to Useful Products: a Potential Method Based on Phase-Transfer Catalysis", Organic Process Research & Development, 7, pp. 551-552 (2003).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top