(3.236.214.19) 您好!臺灣時間:2021/05/10 04:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:黃名秀
研究生(外文):Huang, Ming-Hsiu
論文名稱:奈米碳管薄膜:電熱性質的探討與在加熱器上的應用
論文名稱(外文):Electro-thermal Properties of CNT Film and Its Application of Heater
指導教授:陳建忠陳建忠引用關係
指導教授(外文):Chen, Chien-Chong
口試委員:王崇人李元堯李茂田
口試委員(外文):Wang, Churng-RenLi, Yuan-YaoLee, Maw-Tien
口試日期:2011-07-19
學位類別:碩士
校院名稱:國立中正大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:120
中文關鍵詞:奈米碳管薄膜熱對流係數熱傳導係數
外文關鍵詞:carbon nanotube filmheat transfer coefficientthermal conductivity
相關次數:
  • 被引用被引用:0
  • 點閱點閱:320
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:33
  • 收藏至我的研究室書目清單書目收藏:0
在本實驗中,以不織布做為基材,製備出一個質輕且具有可饒性的奈米碳管薄膜加熱器。對薄膜施加0噸到0.5噸的力,可以將薄膜的最高溫度由52.58 ℃提升到73.83 ℃。將薄膜的碳管沉積量由4 mg增加到9 mg,可以將薄膜的最高溫度由55.55 ℃提升到63.05 ℃。
將時間對溫度的數據代入lumped parameter system中,可以求出薄膜的熱對流係數及比熱,接著將求出的熱對流係數代入1-D steady-state PDE的能量平衡方程式中,求出熱傳導係數。對薄膜施加0噸到0.5噸的力,所求出的熱對流係數值為5.77~8.73 W/m2K、比熱值為0.29~0.42 J/gK及熱傳導係數值為2.63~8.4 W/mK。將薄膜的碳管沉積量由4 mg增加到9 mg,所求出的熱對流係數值為5.92~8.17 W/m2K、比熱值為0.24~0.5 J/gK及熱傳導係數值為6.5~13.5 W/mK。
在本實驗中所求得的熱對流係數均略小於文獻值的10 W/m2K,代表薄膜的熱量不易散失到空氣中。比熱值則略小於文獻值,表示在施加相同能量時,薄膜可以達到比較高的溫度。而熱傳導係數值在文獻值中屬於中上,代表薄膜傳熱速度快,在短時間就可以變成溫度均勻的薄膜。所以綜合以上幾點,我們所製備出來的薄膜很適合應用在加熱器的使用。

Recently there is strong interest in lightweight and flexible heater to meet the technological demands of modern society. In this study, we produced flexible heaters using fabric as the platform. With a filtration process using MWCNT ink, we can produced a CNT film heater.
The temperature of film appears to be dependent upon the CNT amount and density of film. For the film which has the same CNT amount, the heater using the loosest film shows the lowest temperature of 52.58℃.However, for the most compactness film, the temperature can reach 73.83℃. For the film which has the different CNT amount, the heater using the lightest film shows the lowest temperature of 55.55℃..However, for the heaviest film, the temperature can reach 63.05℃.
The thermal properties of CNT film is determined from energy balance equation, the properties of two kinds of CNT films are characterized as 5.5 W/mK and 10 W/mK for thermal conductivity, 7.25 W/m2K and 7.05 W/m2K for heat transfer coefficient, 0.355 J/gK and 0.37 J/gK for specific heat.

致謝 I
摘要 II
Abstract III
目錄 IV
圖目錄 VI
表目錄 X
第一章 緒論 1
1.1製備奈米碳管薄膜簡介 1
1.2奈米碳管的熱、電性質 2
1.3奈米碳管薄膜的熱、電性質 4
1.4奈米碳管薄膜發熱器簡介 13
1.4 研究動機 16
第二章 實驗方法與設備 17
2.1實驗藥品 17
2.2實驗儀器 17
2.3 實驗流程圖 18
2.4實驗步驟 20
第三章 結果與討論 22
3.1 奈米碳管薄膜 22
3.2 對奈米碳管薄膜施加不同壓力 23
3.2.1 薄膜的溫度 23
3.2.2 熱對流係數(h)值以及比熱(Cp) 58
3.2.3 熱傳導係數(κ)值 67
3.3 沉積不同重量的奈米碳管薄膜 74
3.3.1薄膜的溫度 74
3.3.2 熱對流係數(h)值以及比熱(Cp) 104
3.3.3 熱傳導係數(κ)值 110
第四章 結論與未來展望 115
4.1 結論 115
4.2 未來展望 116
第五章 參考文獻 117


[1]Sumio Iijima, “Helical microtubules of graphitic carbon,” Nature, 1991, 354‧7, 56.
[2]Yoon Huh, et al., “Growth of vertically aligned carbon nanotube emitters on patterned silicon trenches for field emission applications,” Thin Solid Films ,2005, 475, 267-270.
[3]Zi Ping Wu, et al., “Preparation of large-area double=walled carbon nanaotube film application as film heater,” Physica E, 2009, 42, 77-81.
[4]Ya-Li Li, et al., “Direct Spinning of Carbon Nanotube Fibers from Chemical Vapor Deposition Synthesis,” Science, 2004, 304, 276-278.
[5]Satoshi Yasuda, et al., “Improved and Large Area Single-Walled Carbon Nanotube Forest Growth by Controlling the Gas Flow Direction,” Acsnano, 2009, 3 ,4164-4170.
[6]Tsung-Cho Wu, et al., “Temperature enhanced growth of ultralong multi-walled carbon nanotubes forest,” Current Applied Physics, 2009, 9, 1117-1121.
[7]A.G. Rinzler, et al., “Large-scale purification of single-wall carbon nanotubes: process,product, and characterization,” Applied Physics A Materials Science & Processing, 1998, 67, 29-37.
[8]W. Zhou, et al., “Out-of-plane mosaic of single-wall carbon nanotube films,” APPLIED PHYSICS LETTERS, 2004, 84, 2172-2174.
[9]Liangbing Hu, et al.,“Stretchable, Porous, and Conductive Energy Textiles,”Nano Letters,2009,DOI:10.1021.
[10]Ding Wang, et al.,”Highly oriented carbon nanotube papers made of aligned carbon nanotubes,” Nanotechnology,2008, 075609.
[11]Eric Pop, et al., “Thermal Conductance of an Individual Single-Wall Carbon Nanotube above Room Temperature,” Nano Letters, 2006, 6, 96-100.
[12]N. Mingo, et al., “Length Dependence of Carbon Nanotube Thermal Conductivity and the “Problem of Long Waves”,” Nano Letters, 2005, 5, 1221-1225.
[13]Motoo Fujii, et al., “Measuring the Thermal Conductivity of a Single Carbon Nanotube,” PHYSICAL REVIEW LETTERS, 2005, 95, 065502.
[14]P.Kim, et al., “Thermal Transport Measurements of Individual Multiwalled Nanotubes,” PHYSICAL REVIEW LETTERS, 2001, 87, 215502.
[15]Wen-Tai Hong, et al., “Investigations on the thermal conductivity of composites reinforced with carbon nanotubes,”Diamond & Related Materials,2008, 1577-1581.
[16]H.-Y. Chiu, et al., “Ballistic Phonon Thermal Transport in Multiwalled Carbon Nanotubes,” PHYSICAL REVIEW LETTERS, 2005, 95, 226101.
[17]Seung I. cha, et al., “Mechanical and electrical properties of cross-linked carbon nanotubes,” Carbon, 2008, 482-488.
[18]N.R. Pradhan, et al., “The specific heat and effective thermal conductivity of composites containing single-wall and multi-wall carbon nanotubes,” Nanotechnology, 2009, 245705.
[19]Yanan Yue, et al., “Thermal transport in multiwall carbon nanotube buckypapers,” Physics Letters A, 2010, 374, 4144-4151.
[20]Keqin Yang, et al., “Tuning electrical and thermal connectivity in multiwalled carbon nanotube buckypaper,” Journal of Physics : Condensed Mater, 2010, 334215.
[21]Da Jiang Yang, et al., “Thermal conductivity of multiwalled carbon nanotubes,” PHYSICAL REVIEW B, 2002, 66, 165440.
[22]Chuizhou Meng, et al., “A Promising Approach to Enhanced Thermoelectric Properties Using Carbon Nanotube Networks,” Advanced Materials, 2010, 22, 535-539.
[23]Hua Huang, et al., “Aligned Carbon Nanotube Composite Films for Thermal Management,” Advanced Materials, 2005, 17, 1652-1656.
[24]Tony McNally, et al., “Polyethylene multiwalled carbon nanotube composites,” Polymer, 2005, 46, 8222-8232.
[25]G. Golan, et al., “Integrated thin film heater-thermocouple systems,” Microelectronics Reliability , 2003, 43, 509-512.
[26]Mohammadreza Riahi, et al., “Design and fabrication of a spatial light modulator using thermally tunable grating and a thin-film heater,” APPLIED OPTICS, 2009, 48, 5647-5654.
[27]Tae June Kang, et al., “Thickness-dependent thermal resistance of a transparent glass heater with a single-walled carbon nanotube coating,” Carbon, 2011, 49, 1087-1093.
[28]Yeo-Hwan, et al., “Transparent Film Heater Using Single-Walled Carbon Nanotubes,” Advanced Materials ,2007, 19, 4284-4287.
[29]G.S. Yang, et al., “The characterization of single structure diamond heater and temperature sensor,” Dimond and Related Materials, 1997, 6, 394-397.
[30]Incropera et al., “ Fundamentals of Heat and Mass Transfer, ” John Wiley and Sons,2007.
[31]ERIC C. GUYEr, “Handbook of applied thermal design ,” McGraw-Hill Book company, 1988.
[32]Shaoxin Lu et al., “All-Optical Micromirriors Form Nanotube MOMS With Wavelungth Selectivity,” JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 2007, 6, 16
[33]Satish Kumar et al., “Computational Thermal Model for Nanotube Based Electronic Display,” IEEE, 2006, 6, 1283-1291.
[34]Satish Kumar., “Electro-Thermal Transport in Nanotube Based Composites for Macroelectronic Applications,” Purdue University,2007.
[35]Lin Xiao et al. “Flexible Stretchable Transparent Magnet-free Carbon Nanotube Thin Film Loudspeakers,” Nano Letters,2008,8,12,4539-4545.
[36]Tae-Youl Choi et al. “Focused Ion Beam In Thermal Science And Engineering,” Microsc Microanal, 2007,13,1498-1499.
[37]Jim Gyu Park et al. “The high current-carrying capacity of various carbon nanotube-based buckypapers,” Nanotechnology, 2008, 19, 185710.
[38]Roderic C. Don et al. “Two-Dimensional Thermal Analysis of Resistance Welded Thermoplastic Composites,” POLYMER ENGINEERING AND SCIENCE, 1989
[39]Philippe Gonnet et al. “Thermal conductivity of magnetically aligned carbon nanotube buckypapers and nanocomposites,” Current Applied Physics, 2006, 6, 119-122.
[40]Alexander A. Balandin et al. “Superior Thermal Conductivity of Single-Layer Graphene,” Nano Letters, 2008, 8, 3, 902-907.
[41]Budhadipta Dan et al. “Continuous and Scalable Fabrication of Transparent Conducting Carbon Nanotube Films,” ACSNANO, 2009, 3, 4, 835-843.
[42]Liangbing Hu et al. “Highly conductive paper for energy-storage devices,” PNAS, 2009, 106, 51, 21490-21494.
[43]Onnik Yaglioglu et al. “Method of characterizing electrical contact properties of carbon nanotube coated surfaces,” REVIEW OF SCIENTIFIC INSTRUMENTS, 2006, 77, 095105.
[44]Aruna Velamakanni et al. “Site-Specific Deposition of Au Nanoparticles in CNT Films by Chemical Bonding,” ACSNANO, 2010, 4,1, 540-546.
[45]Ross Ulbricht et al. “Transparent carbon nanotube sheets as 3-D charge collectors in organic solar cells,” Solar Energy Materials & Solar Cells, 2007, 91, 416-419.
[46]C. M. Aguirre et al. “Carbon nanotube sheets as electrodes in organic light-emitting diodes,” Applied Physics Letters, 2006, 88, 183104.
[47]Yangxin Zhou et al. “A method of printing carbon nanotube thin films,” Applied Physics Letters, 2006, 88, 123109.
[48]Hong-Zhang Geng et al. “Absorption spectroscopy of surfactant-dispersed carbon nanotube film:,” Chemical Physics Letters, 2008, 455, 275-278.
[49]James Hone “Phonons and Thermal Properties of Carbon Nanotubes,” Department of Physics, University of Pennsylvania, 2001, 273-286.
[50]Sishen Xie et al. “Mechanical and physical properties on carbon nanotube:,” Journal of Physics and Chemistry of Solids, 2000, 61, 1153-1158.
[51]W. Yi et al. “Linear specific heat of carbon nanotubes:,” PHYSICAL REVIEW B, 1999,59, R9015- R9018.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 侯迺慧:〈《水滸傳》的特殊正義結構〉,《中國古典文學研究》第七期2002年6月,頁189-212。
2. 李金松:〈金批「水滸傳」的批評方法研究〉,《漢學研究》第20卷第2期2002年12月,頁217-248。
3. 郭玉雯:〈《水滸傳》之構成與金聖歎的詮釋--以宋江為核心〉,《漢學研究》第23卷第1期2005年6月,頁227-260。
4. 劉承炫:〈金聖歎《水滸傳》評點之敘事話語的探究〉,《中國文化大學中文學報》13期2006年10月,頁113-130。
5. 李志宏〈在天道循環與人事際遇之間--論《水滸傳》敘事的後設命題及其話語構成〉,《東華人文學報》2007年1月,頁107-156。
6. 李豐楙:〈暴力敘述與謫凡神話:中國敘事學的結構問題〉,《中國文哲研究通訊》第十七卷第三期2007年9月,頁147-153。
7. 許麗芳:〈士庶價值意識之對話與辯證:《三國演義》及《水滸傳》對歷史人事的道德想像〉,《慈濟大學人文社會科學學刊》2008年6月,頁188-220。
8. 許麗芳:〈章回小說中的韻文運用與相關意義:以百回本及百二十回本《水滸傳》之比較為中心 〉,《嘉大中文學報》2010年3月,頁149-176。
9. 許凱鈞:〈《水滸傳》梁山泊文化景觀析論〉,《臺北教育大學語文集刊》第18期2010年10月1日,頁77-128。
10. 陳文尚:〈存在空間的結構〉,《地學彙刊》1986年3月第5期,頁130-148。
11. 鄭志明:〈社區文化的宇宙圖式與神聖空間〉《鵝湖月刊》312期2001年6月,頁30-41。
12. 鄒睿怡:〈段義孚(Yi-Fu Tuan)論家「家」之形成與意義〉,《獨者 台灣基督徒思想論刊》第十六期2008年,頁231-261。
13. 曹勝雄,孫君儀:〈建構地方依附因果關係模式〉,《地理學報》2009年第55期,頁43-63。
14. 王應棠:〈棲居與空間 海德格空間思維的轉折〉,《地理學報》2009年4月第55期,頁25-42。
15. 曾旭正:〈地點、場所或所在論“place”的中譯及其啟發〉,《地理學報》2010年第58期,頁115-132。
 
系統版面圖檔 系統版面圖檔