跳到主要內容

臺灣博碩士論文加值系統

(44.211.26.178) 您好!臺灣時間:2024/06/24 21:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林貴緯
研究生(外文):Guei-Wei, Lin
論文名稱:利用離子液體促進(bpy)MX2錯合物在氯仿溶液中的製備反應研究 (M = Pd, Pt, Ni; X = Cl, Br)
論文名稱(外文):Ionic Liquid Assisted Synthesis of (bpy)MX2 Complexes in CHCl3 Solution (M = Pd, Pt, Ni; X = Cl, Br)
指導教授:劉陵崗
指導教授(外文):Liu, Ling-Kang
口試委員:呂光烈廖儒修曾炳墝
口試委員(外文):Lu, Kuang-LiehLiao, Ju-HsiouTzeng, Biing-Chiau
口試日期:2011-06-20
學位類別:碩士
校院名稱:國立中正大學
系所名稱:化學暨生物化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:142
中文關鍵詞:離子液體
外文關鍵詞:ionic liquid
相關次數:
  • 被引用被引用:0
  • 點閱點閱:273
  • 評分評分:
  • 下載下載:10
  • 收藏至我的研究室書目清單書目收藏:0
離子液體是一種很好的相轉移試劑。本實驗中,利用到離子液體([BMIM]X, [BEIM]X; [BMIM] = 1-butyl-3methylimidazolium, [BEIM] = 1-butyl-3ethylimidazolium, X = Cl, Br)在氯仿中分相的性質。MX2 (M = Pd, Pt, Ni; X= Cl, Br)與bpy (= 2,2’-聯吡啶)加入含離子液體的氯仿溶液中,經過超音波震盪,會進行(bpy)MX2的合成反應,簡單加以純化即可得到產物。產物用1H NMR及X-ray單晶繞射來鑑定。金屬鹽MX2很難溶於一般的有機溶劑中,但離子液體可先將MX2溶到離子液體層,變成[BMIM]2MX4 (及[BEIM]2MX4)的狀態。再藉由非傳統形式加熱的超音波震盪,提供分子能量,與溶在氯仿相中的bpy反應,形成(bpy)MX2並從氯仿相中沉澱出來。本項反應流程提供了快速製備(bpy)MX2錯合物的方法。
等當量MX2及bpy加入含離子液體的氘-氯仿溶液中,震盪反應後所得的(bpy)PdBr2及(bpy)PtBr2取得了晶體結構證據,(bpy)PdCl2與(bpy)PtCl2,則1H NMR光譜與文獻相同。然而,(bpy)NiBr2具有順磁性質, 1H NMR圖譜中在非常低場的地方,才能觀察到其吸收峰訊號。當NiBr2的用量降低為1/3時,主產物變為[(bpy)3Ni].2Br,經離子交換後可以得到[(bpy)3Ni].2PF6的單晶。[(bpy)3Ni].2PF6在高低溫有不同的相,以變溫X-ray繞射實驗來觀察其晶格參數的改變,發現晶格體積在202至203 K左右有很大的不同,而且變化可逆,此溫度應為[(bpy)3Ni].2PF6相變溫度。


Abstract
Ionic liquid is one of the phase transfer reagents. In this study, I utilized the ionic liquids ([BMIM]X, [BEIM]X, X = Cl, Br) that are phase separated from chloroform at suitable concentration ranges. MX2 (M= Pd, Pt, Ni; X= Cl, Br) and bpy (= 2,2’-bipyridine) were added to an ionic liquid/chloroform mixture, from which (bpy)MX2 could be synthesized after short sonication. The products could be purified easily after a simple separation step. We had charactered the products by 1H NMR spectroscopic techniques and by single crystal X-ray diffraction methods. The metal salt MX2 is only slightly soluble in common organic solvents, but it is soluble in ionic liquids to become the [BMIM]2MX4 (and [BEIM]2MX4) form. The metallates then react with bpy in the chloroform phase, utilizing the sonication that is a non-traditional heating method to provide energy. The (bpy)MX2 formed then precipited from solution. This process easily and rapidly produce (bpy)MX2.
Starting from equivalent MX2 and bpy, we obtained (bpy)PdBr2 and (bpy)PtBr2 single crystals that were characterized with X-ray diffraction. The 1H NMR spectra of (bpy)PdCl2 and (bpy)PtCl2 were identical to those found in the literature. However, as (bpy)NiBr2 is paramagnetic, we observed the 1H NMR signals only at in very down fields in the spectrum. When the molar ratio of NiBr2 changed to 1/3 that of bpy, the major product became [(bpy)3Ni].2Br, from which we could get single crystals of [(bpy)3Ni].2PF6 after an anion exchange to PF6- anion. We found that there are two different phases of [(bpy)3Ni].2PF6, one at high temperature and the other at low temperature, respectively. The inter conversion of lattice parameters were found by variable-temperatue X-ray diffraction experiments. The cell volume of [(bpy)3Ni].2PF6 triple when the temperature decreases from 203 K to 202 K, the phase transition temperature of [(bpy)3Ni].2PF6.

目錄---------------------------------------------------------------------------------I
圖目錄-----------------------------------------------------------------------------V
表目錄--------------------------------------------------------------------------VIII
附錄目錄-------------------------------------------------------------------------IX
中文摘要-------------------------------------------------------------------------XI
英文摘要-----------------------------------------------------------------------XIII
謝誌------------------------------------------------------------------------------XV
第一章 緒論-----------------------------------------------------------------------1
1-1離子液體的起源---------------------------------------------------------1
1-2離子液體簡介------------------------------------------------------------1
1-3離子液體的性質---------------------------------------------------------4
1-3.1熔點(Melting point)---------------------------------------------------5
1-3.2 溶解度 (Solubility)--------------------------------------------------7
1-4單核咪唑型陽離子離子液體簡介------------------------------------8
1-5離子液體在化學反應上的應用-------------------------------------12
1-5.1離子液體與介面活性劑--------------------------------------------12
II
1-5.2溶劑 ( Solvent )------------------------------------------------------14
1-6 (bpy)MX2在文獻上的製備------------------------------------------15
1-7 研究動機---------------------------------------------------------------17
第二章 實驗部分---------------------------------------------------------------18
2-1 藥品---------------------------------------------------------------------18
2-2 儀器---------------------------------------------------------------------20
2-2.1核磁共振譜儀(Nuclear Magnetic Resonance Spectrometer,簡稱NMR)------------------------------------------------------------------20
2-2.2 X光單晶繞射儀-----------------------------------------------------20
2-3 合成流程---------------------------------------------------------------21
2-3.1離子液體合成步驟--------------------------------------------------21
2-3.1.1單咪唑離子液體[BEIM]Cl之合成-----------------------------21
2-3.1.2單咪唑子液體[BMIM]Cl之合成----------------------------22
2-3.1.3單咪唑子液體[BEIM]Br之合成-----------------------------23
2-3.1.4單咪唑子液體[BMIM]Br之合成----------------------------23
2-3.2 1H-NMR實驗-------------------------------------------------------24
2-3.2.1[BEIM]Br當量數與2, 2’-聯吡啶消耗量的關係-------------24
2-3.2.2不同MX2與不同離子液體對2, 2’-聯吡啶消耗量的影響-25
2-3.2.2.1 PdBr2與[BMIM]Br---------------------------------------------25
III
2-3.2.2.2 PdCl2與[BEIM]Cl----------------------------------------------25
2-3.2.2.3 PdCl2與[BMIM]Cl----------------------------------------------26
2-3.2.2.4 PtBr2與[BEIM]Br-----------------------------------------------26
2-3.2.2.5 PtBr2與[BMIM]Br----------------------------------------------26
2-3.2.2.6 PtCl2與[BEIM]Cl-----------------------------------------------27
2-3.2.2.7 PtCl2與[BMIM]Cl----------------------------------------------27
2-3.3(bpy)MX2的製備與純化--------------------------------------------27
2-3.3.1 (bpy)PdBr2----------------------------------------------------------27
2-3.3.2 (bpy)PdCl2----------------------------------------------------------28
2-3.3.3 (bpy)PtBr2----------------------------------------------------------28
2-3.3.4 (bpy)PtCl2----------------------------------------------------------29
2-3.3.5 (bpy)NiBr2----------------------------------------------------------30
2-3.3.6 [(bpy)3Ni].2Br與[(bpy)3Ni].2PF6------------------------------30
2-3.3.7 (bpy)NiCl2----------------------------------------------------------31
2-3.3.8 [(bpy)3Ni].2Cl-----------------------------------------------------32
第三章 結果與討論------------------------------------------------------------33
3-1離子液體所使用之當量數與在反應中2, 2’-聯吡啶(bpy)轉化率間的關係:1H NMR追蹤實驗--------------------------------------------33
3-2 錯合物(bpy)MX2的製備--------------------------------------------38
3-3 結論---------------------------------------------------------------------60
IV
第四章 參考文獻---------------------------------------------------------------61
第五章 附錄---------------------------------------------------------------------66
1. Hurley, F. H.; Wier, T. P. J. Electrochem. Soc. 1951, 98, 207. 2. Scheffler, T. B.; Hussey, C. L.; Seddon, K. R.; Kear, C. M.; Armitage, P. D. Inong. Chem. 1983, 22, 2099. 3. Erbeldinger, M.; Mesiano, A.; Ruessell, A. J. Biotechnol. Prog. 2000, 16,1129. 4. Yanes, E. G.; Gratz, S. R.; Baldwin, M. J.; Robison, S. E.; Stalcup, A. M. Anal. Chem. 2001, 73, 3838. 5. Visser, A. E.; Swatloski, R. P.; Reichert, W. M.; Mayton, R.; Sheff, S.; Weizbicki, A.; Davis, J. H.; Rogers, R. D. Chem. Commun. 2001, 135. 6. Armstrong, D. W.; He, L.; Liu, Y.-S., Anal. Chem. 1999, 71, 3873. 7. Wei, G. T.; Yang, Z.; Lee, C. Y.; Yang, H. Y.; Wang, C. R. J. Am. Chem. Soc. 2004, 126, 5036. 8. Hamaguchi, H.; Hayashi, S. Chem. Lett. 2004, 33, 12. 9. Seddon, K. R. J. Chem. Tech. Biotechnol. 1997, 68, 351. 10. Wasserschied, P., Welton, T., Eds.; Ionic Liquids in Synthesis; 2nd Ed.; Wiley-VCH: Weinheim, 2008. 11. Pernak, J.; Czepukowicz, A.; Pozniak, R. Ind. Eng. Chem. Res. 2001, 40, 2379. 12. Holbrey, J. D.; Seddon, K. R. J. Chem. Soc. Dalton Trans. 1999, 13, 2133. 13. Gordon, C. M.; Holbrey, J. D.; Kennedy, A. R. Seddon, K. R. J. Mater. Chem. 1998, 8, 2627. 14. Wasserscheid, P.; Keim, W. Angew. Chem. Int. Ed. 2000, 39, 3772.15. Migowski, P.; Dupont, J. Chem.-Eur. J. 2007, 13, 32. 16. Mathews, C. J.; Smith, P. J.; Welton, T. Chem. Commun. 2000, 1249. 17. Brennecke, J. F.; Anderson, J. L.; Dixon, J. K. Acc. Chem. Res. 2007, 40, 1208. 18. Hiroyuki, O. Bull. Chem. Soc. Jpn. 2006, 79, 1665. 19. Carmichael, A. J.; Earle, M. J.; Holbrey, J. D.; Mccormac, P. B.; Seddon, K. R. Org. Lett. 1999, 1, 997. 20. Hagiwara, H.; Shimizu, Y.; Hoshi, T.; Suzuki, T.; Ando, M.; Ohkubo, K.; Yokoyama, C. Tetrahedron Lett. 2001, 42, 4349. 21. Cassol, C. C.; Umpierre, A. P.; Machado, G.; Wolke, S. I.; Dupont, J. J. Am. Chem. Soc. 2005, 127, 3298. 22. Mathews, C. J.; Smith, P. J.; Welton, T. Chem. Commun. 2000, 1249. 23. Dyson, P. J.; Ellis, D. J.; Parke, D. G.; Welton, T. Chem. Commun. 1999, 25. 24. Handy, S. T.; Zhang, X. Org. Lett. 2001, 3, 233. 25. Chiappe, C.; Imprato, G.; Napolitano, E.; Pieraccini, D. Green Chem. 2004, 6, 33. 26. Vitz, J.; Mac, D. H.; Legoupy, S. Green Chem. 2007, 9, 431. 27. Pan, X.; She, X.; Li, Y.; Zhang, J.; Wang, W.; Miao, Q. J. Org. Chem. 2005, 70, 3285. 28. Han, B.; Zhang, Z.; Xie, Y.; Li, W.; Hu, .; Song, J.; Jiang, T. Angew. Chem. Int. Ed. 2008, 47, 1127. 29. Yabu, H.; Tajima, A.; Higuchi, T.; Shimomura, M. Chem. Commun. 2008, 4588. 30. Wasserscheid, P.; Keim, W. Angew. Chem. Int. Ed. 2000, 39, 3772.
31. Wilkes, J. S.; Levisky, J. A.; Wilson, R. A.; Hussey, C. L. Inorg. Chem. 1982, 1263 32. Bonhate, P.; Dias, A.-P.; Papageorgiou, N.; Kalyanasundaram, K.; Grätzel, M. Inorg. Chem. 1996, 35, 1168. 33. Koddermann, T.; Paschek, D.; Ludwig, R. ChemPhysChem 2007, 8, 2464. 34. Wulf, A.; Fumino, K.; Michalik, D.; Ludwig, R. ChemPhysChem 2007, 8, 2265. 35. Bagno, A.; Damico, F.; Saielli, G. J. Phys. Chem. B 2006, 110, 23004 36. Bagno, A.; Damico, F.; Saielli, G. ChemPhysChem 2007, 8, 873. 37. Dong, K.; Zhang, S.; Wang, D.; Yao, X. J. Phys. Chem. A 2006, 31, 110, 9775. 38. Zana, R. Dynamics of Surfactant Self-Assemblies; CRC Press: Taylor & Francis, 2005. 39. Ishida, Y.; Miyauchi, H.; Sigo, K. Chem. Commun., 2002, 2240. 40. Motirale, B. G.; Yadav, G. D. Ind. Eng. Chem. Res. 2008, 47, 9081. 41. Wang, M. L.; Huang, T. H. Chem. Eng. Comm. 2007, 194, 618. 42. Bender, J.; Jepkens, D.; Hȕsken, H. Org. Process Res. Dev. 2010, 14, 716–721 43. Okamoto, S.; Takano,K.; Ishikawa, T.; Ishigami, S.; Tsuhako, A. Tetrahed. Lett. 2006, 47, 8055-8058 44. Scheffler, T. B.; Hussey, C. L.; Seddon, K. R.; Kear, C. M.; Armitage, P. D. Inorg. Chem. 1983, 22, 2099 . 45. Jaeger, D. A.; Tucker, C. E. Tetrahed. Lett. 1989, 38. 46. Carmichael, A. J.; Earle, M. J.; Holbrey, J. D.; McCormac, P. B.; Seddon, K. R. Org. Lett. 1999, 1, 997.
47. Bőhm, V. P.; Herrmann. W. A. J. Organomet. Chem. 1999, 572, 141.48. Mehnert, C. P.; Dispenziere, N. C.; Cook, R. A.; Afeworki, M. J. Am. Chem. Soc. 2002, 124, 12932. 49. Mehnert, C. P.; Mozeleski, E. J.; Cook, R. A. Chem. Commun. 2002, 24, 3010. 50. Welton, S. T.; Woolf, J.; Fischer, A. T.; Tetrahed. Lett. 1999, 40, 793. 51. Lu, N.; Lin, Y. C.; Chen, J. Y.; Fan, C. W.; Liu, L. K. Tetrahedron 2007, 63, 2019. 52. Lu, N.; Chen, S. C.; Tsung, C. C.; Liu, L. K; Tetrahed. Lett. 2008, 49, 371. 53. Emmert, M. H.; Gary, J. B.; Villalobos, J. M.; Sanford, M. S. Angew. Chem. Int. Ed. 2010, 49, 5884. 54. Momeni, B. Z.; Hamzeh, S.; Hosseini, S. S.; Rominger, F. Inorg. Chim. Acta 2007, 360, 2661. 55. Klein, A.; Niemeyer, M. Z. Anorg. Allg. Chem. 2000, 626, 1191-1195 56. Barbara Soro, B.; Stoccoro, S.; Cinellu, M. A.; Minghetti, G.; ,Zucca, A.; Bastero, A.; Claver, C. J. Organomet. Chem. 2004, 689, 1521. 57. Mitchell, K. A.; Streveler, K. C.; Jensen, C. M. Inorg. Chem. 1993, 32, 2608. 58. Qin, Z.; Jennings, M. C.; Richard J. Puddephatt, R. J. Inorg. Chem. 2002 , 41, 3967. 59. Noskowska, M.; Ś´liwińska, E.; Duczmal, W. Trans. Metal Chem. 2003, 28, 756. 60. Budnikova, Y. G.; Yakhvarov, D. G.; Morozov, V. I.; Kargin, Y. M.;
Il’yasov, A. V.; Vyakhireva, Y. N.; Sinyashin, O. G. Russ. J. Gen. Chem. 2002, 72, 168.61. Stanger, A.; Patzke, B. Organometallics 1996, 15, 2633. 62. Smeets, W. J. J.; Spek, A. L.; Hoare, J. L.; Canty, A. J.; Hovestad, N.; van Koten, G. Acta Cryst. 1997. C53, 1045. 63. Pazderski, L; Szłyk, E.; Sitkowski, J.; Kamieński, B.; Kozerski, L.; Toušek, J.; Marek, R. Magn. Reson. Chem. 2006, 44, 163. 64. Sartori, D. A.; Hurst, S. K.;Wood, N.; Larsen, R. D.; Abbott, E. H. J. Chem. Cryst. 2005, 35, 995. 65. Momeni, B. Z.; Moradi, Z.; Rashidi, N. S.; Rominger, F. Polyhedron 2009, 28, 381. 66. Breu, J.; Domel, H.; Stoll, A. Eur. J. Inorg. Chem. 2000, 2401. 67. Brewer, B.; Brooks, N. R.; Abdul-Halim, S.; Sykes, A. G. J. Chem. Cryst. 2003, 33, 651. 68. Biner, M.; Bürgi, H. B.; Ludi, A.; Röhr, C. J. Am. Chem. Soc. 1992, 114, 5197.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top