|
1.A. Compston, A. Coles, Multiple sclerosis. Lancet 372, 1502 (Oct 25, 2008). 2.C. M. Costantino, C. Baecher-Allan, D. A. Hafler, Multiple sclerosis and regulatory T cells. J Clin Immunol 28, 697 (Nov, 2008). 3.G. Frisullo et al., Regulatory T cells fail to suppress CD4T+-bet+ T cells in relapsing multiple sclerosis patients. Immunology 127, 418 (Jul, 2009). 4.A. G. Baxter, The origin and application of experimental autoimmune encephalomyelitis. Nat Rev Immunol 7, 904 (Nov, 2007). 5.I. M. Stromnes, J. M. Goverman, Active induction of experimental allergic encephalomyelitis. Nat Protoc 1, 1810 (2006). 6.F. Chen, M. K. Shaw, J. Li, R. P. Lisak, H. Y. Tse, Adoptive transfer of myelin basic protein-induced experimental autoimmune encephalomyelitis between SJL and B10.S mice: correlation of priming milieus with susceptibility and resistance phenotypes. J Neuroimmunol 173, 146 (Apr, 2006). 7.B. Lucas et al., Adoptive transfer of CD4+ T cells specific for subunit A of Helicobacter pylori urease reduces H. pylori stomach colonization in mice in the absence of interleukin-4 (IL-4)/IL-13 receptor signaling. Infect Immun 69, 1714 (Mar, 2001). 8.S. Zamvil et al., T-cell clones specific for myelin basic protein induce chronic relapsing paralysis and demyelination. Nature 317, 355 (Sep 26-Oct 2, 1985). 9.H. O. McDevitt, R. Perry, L. A. Steinman, Monoclonal anti-Ia antibody therapy in animal models of autoimmune disease. Ciba Found Symp 129, 184 (1987). 10.J. E. Merrill et al., Inflammatory leukocytes and cytokines in the peptide-induced disease of experimental allergic encephalomyelitis in SJL and B10.PL mice. Proc Natl Acad Sci U S A 89, 574 (Jan 15, 1992). 11.J. L. Baron, J. A. Madri, N. H. Ruddle, G. Hashim, C. A. Janeway, Jr., Surface expression of alpha 4 integrin by CD4 T cells is required for their entry into brain parenchyma. The Journal of experimental medicine 177, 57 (Jan 1, 1993). 12.I. A. Ferber et al., Mice with a disrupted IFN-gamma gene are susceptible to the induction of experimental autoimmune encephalomyelitis (EAE). Journal of immunology 156, 5 (Jan 1, 1996). 13.A. Jager, V. Dardalhon, R. A. Sobel, E. Bettelli, V. K. Kuchroo, Th1, Th17, and Th9 effector cells induce experimental autoimmune encephalomyelitis with different pathological phenotypes. Journal of immunology 183, 7169 (Dec 1, 2009). 14.C. Dong, TH17 cells in development: an updated view of their molecular identity and genetic programming. Nat Rev Immunol 8, 337 (May, 2008). 15.N. Manel, D. Unutmaz, D. R. Littman, The differentiation of human T(H)-17 cells requires transforming growth factor-beta and induction of the nuclear receptor RORgammat. Nature immunology 9, 641 (Jun, 2008). 16.C. Lock et al., Gene-microarray analysis of multiple sclerosis lesions yields new targets validated in autoimmune encephalomyelitis. Nat Med 8, 500 (May, 2002). 17.J. S. Tzartos et al., Interleukin-17 production in central nervous system-infiltrating T cells and glial cells is associated with active disease in multiple sclerosis. The American journal of pathology 172, 146 (Jan, 2008). 18.L. E. Harrington et al., Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nature immunology 6, 1123 (Nov, 2005). 19.B. Stockinger, M. Veldhoen, Differentiation and function of Th17 T cells. Curr Opin Immunol 19, 281 (Jun, 2007). 20.P. A. Jones, S. B. Baylin, The epigenomics of cancer. Cell 128, 683 (Feb 23, 2007). 21.K. D. Robertson, A. P. Wolffe, DNA methylation in health and disease. Nat Rev Genet 1, 11 (Oct, 2000). 22.R. Holliday, J. E. Pugh, DNA modification mechanisms and gene activity during development. Science 187, 226 (Jan 24, 1975). 23.T. H. Bestor, A. Coxon, Cytosine methylation: the pros and cons of DNA methylation. Curr Biol 3, 384 (Jun 1, 1993). 24.H. Leonhardt, A. W. Page, H. U. Weier, T. H. Bestor, A targeting sequence directs DNA methyltransferase to sites of DNA replication in mammalian nuclei. Cell 71, 865 (Nov 27, 1992). 25.A. D. Riggs, X inactivation, differentiation, and DNA methylation. Cytogenet Cell Genet 14, 9 (1975). 26.P. A. Jones, S. B. Baylin, The fundamental role of epigenetic events in cancer. Nat Rev Genet 3, 415 (Jun, 2002). 27.C. Schmidl et al., Lineage-specific DNA methylation in T cells correlates with histone methylation and enhancer activity. Genome research 19, 1165 (Jul, 2009). 28.M. Teitell, B. Richardson, DNA methylation in the immune system. Clin Immunol 109, 2 (Oct, 2003). 29.A. M. Krieg et al., CpG motifs in bacterial DNA trigger direct B-cell activation. Nature 374, 546 (Apr 6, 1995). 30.S. Yamamoto et al., DNA from bacteria, but not from vertebrates, induces interferons, activates natural killer cells and inhibits tumor growth. Microbiol Immunol 36, 983 (1992). 31.S. F. Ziegler, FOXP3: of mice and men. Annu Rev Immunol 24, 209 (2006). 32.H. P. Kim, W. J. Leonard, CREB/ATF-dependent T cell receptor-induced FoxP3 gene expression: a role for DNA methylation. The Journal of experimental medicine 204, 1543 (Jul 9, 2007). 33.P. C. Janson et al., FOXP3 promoter demethylation reveals the committed Treg population in humans. PLoS One 3, e1612 (2008). 34.G. Lal et al., Epigenetic regulation of Foxp3 expression in regulatory T cells by DNA methylation. J Immunol 182, 259 (Jan 1, 2009). 35.G. Lal, J. S. Bromberg, Epigenetic mechanisms of regulation of Foxp3 expression. Blood 114, 3727 (Oct 29, 2009). 36.S. D. Gore, C. Jones, P. Kirkpatrick, Decitabine. Nat Rev Drug Discov 5, 891 (Nov, 2006). 37.J. Choi et al., In vivo administration of hypomethylating agents mitigate graft-versus-host disease without sacrificing graft-versus-leukemia. Blood 116, 129 (Jul 8, 2010). 38.J. K. Polansky, J. Huehn, [To be or not to be a Treg: epigenetic regulation of Foxp3 expression in regulatory T cells]. Z Rheumatol 66, 417 (Sep, 2007). 39.Q. Zheng et al., Induction of Foxp3 demethylation increases regulatory CD4+CD25+ T cells and prevents the occurrence of diabetes in mice. J Mol Med 87, 1191 (Dec, 2009). 40.R. L. Momparler, Molecular, cellular and animal pharmacology of 5-aza-2'-deoxycytidine. Pharmacol Ther 30, 287 (1985). 41.R. L. Momparler, Pharmacology of 5-Aza-2'-deoxycytidine (decitabine). Semin Hematol 42, S9 (Jul, 2005). 42.S. K. Chauhan, D. R. Saban, H. K. Lee, R. Dana, Levels of Foxp3 in regulatory T cells reflect their functional status in transplantation. Journal of immunology 182, 148 (Jan 1, 2009). 43.L. I. Sanchez-Abarca et al., Immunomodulatory effect of 5-azacytidine (5-azaC): potential role in the transplantation setting. Blood 115, 107 (Jan 7, 2010). 44.M. I. Garin et al., Galectin-1: a key effector of regulation mediated by CD4+CD25+ T cells. Blood 109, 2058 (Mar 1, 2007). 45.T. Takahashi et al., Immunologic self-tolerance maintained by CD25(+)CD4(+) regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. The Journal of experimental medicine 192, 303 (Jul 17, 2000). 46.K. Nakamura, A. Kitani, W. Strober, Cell contact-dependent immunosuppression by CD4(+)CD25(+) regulatory T cells is mediated by cell surface-bound transforming growth factor beta. The Journal of experimental medicine 194, 629 (Sep 3, 2001). 47.C. Asseman, S. Mauze, M. W. Leach, R. L. Coffman, F. Powrie, An essential role for interleukin 10 in the function of regulatory T cells that inhibit intestinal inflammation. The Journal of experimental medicine 190, 995 (Oct 4, 1999). 48.H. von Boehmer, Mechanisms of suppression by suppressor T cells. Nature immunology 6, 338 (Apr, 2005). 49.P. Pandiyan, L. Zheng, S. Ishihara, J. Reed, M. J. Lenardo, CD4+CD25+Foxp3+ regulatory T cells induce cytokine deprivation-mediated apoptosis of effector CD4+ T cells. Nature immunology 8, 1353 (Dec, 2007). 50.P. C. Janson et al., Profiling of CD4+ T cells with epigenetic immune lineage analysis. Journal of immunology 186, 92 (Jan 1, 2011). 51.S. Haak et al., IL-17A and IL-17F do not contribute vitally to autoimmune neuro-inflammation in mice. J Clin Invest 119, 61 (Jan, 2009). 52.B. M. Segal, Th17 cells in autoimmune demyelinating disease. Semin Immunopathol 32, 71 (Mar, 2010).
|