跳到主要內容

臺灣博碩士論文加值系統

(98.80.143.34) 您好!臺灣時間:2024/10/07 20:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:孫煥庭
研究生(外文):Sun, Justin
論文名稱:以實驗性自體免疫腦脊髓炎動物模式探討DNA去甲基化藥劑抑制中樞神經系統發炎反應之現象
論文名稱(外文):DNA demethylation agent 5-Aza-2-deoxycytidine inhibits central nervous system inflammation in experimental autoimmune encephalomyelitis
指導教授:吳淑芬吳淑芬引用關係陳永恩陳永恩引用關係
指導教授(外文):Wu, Shu-FenChan, Michael
口試委員:孫昭玲江明格
口試委員(外文):Suen, Jau-LingChiang, Ming-Ko
口試日期:2011-07-21
學位類別:碩士
校院名稱:國立中正大學
系所名稱:生物醫學研究所
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:英文
論文頁數:66
中文關鍵詞:自體免疫腦脊髓炎甲基化
外文關鍵詞:DNA demethylation5-AzainflammationEAE
相關次數:
  • 被引用被引用:0
  • 點閱點閱:756
  • 評分評分:
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
對於生物體而言,要如何調控免疫系統的恆定是相當重要的,過度反應的免疫系統往往會傷害宿主;而此重要調控機制可藉由調節性T細胞所負責。調節性T細胞屬於CD4輔助型T細胞之一員。調節性T細胞特定表現重要轉錄因子— Forkhead box P3 (Foxp3);Foxp3的表現與否控制著調節性T細胞的發育以及細胞功能。個體之調節性T細胞功能若產生異變或是降低,則此個體罹患多種自體免疫疾病之機率也就大幅上升。先前針對自體免疫疾病患者的研究發現,病患體內之調節性T細胞組成比例明顯低於正常值。此外研究文獻指出,FOXP3基因的表達受到對位性基因體修飾(Epigenetic modification)的調控,且以去氧核醣核酸的甲基化為最。此外,以去氧核醣核酸之去甲基化藥劑5-Aza-2-deoxycytidine治療自體免疫糖尿病小鼠,可增加調節性T細胞抑制免疫功能以及降低糖尿病發生率。因此我們使用實驗性自體免疫腦脊髓炎做為小鼠動物模式;探討去甲基化藥劑於自體免疫疾病機制及其應用於治療之可能性。我們以轉殖FOXP3與綠螢光蛋白之基因轉殖鼠實驗發現;不論是活體外亦或活體內施予去甲基化藥劑皆能增加綠螢光蛋白的表現比率。小鼠預先施打去甲基化藥劑能減緩、延後實驗性自體免疫腦脊發病時間,同時某些實驗鼠甚至沒有實驗性自體免疫腦脊病徵。我們檢測由脊髓萃取出之核糖核酸發現;預先施予藥劑的小鼠其脊髓內與發炎反應相關的細胞激素含量明顯低於控制組。我們推論針對小鼠預先施予去甲基化藥劑能夠加強調節性T細胞抑制免疫功能並保護實驗鼠免於致病性淋巴球的攻擊;因而減緩實驗性自體免疫腦脊發病或是降低發病機率。
Regulatory T (Treg) cells play an indispensable role in immune tolerance and suppress immune responses after the infection and expressing an important transcription factor Forkhead box P3 (FOXP3). FOXP3 plays important roles for the development and function of Treg cells and has been identified as a specific marker for Treg cells. Autoimmune diseases arise from an overactive immune response against tissues normally present in the body. As previous studies shown, patients that suffered from autoimmune diseases have lower percentage of regulatory T cells including multiple scelrosis. Previous studies have indicated that epigenetic modifications were involved in the regulation of FOXP3 expression; treatment with the DNA demethylation agent enhanced the Treg-mediated suppression and decreased the occurrence of diabetes in NOD mice. In our study, we investigated the treatment of DNA demethylation agent 5-Aza (5-Aza-2- deoxycytidine) in experimental allergic encephalomyelitis (EAE), a widely used animal model for studying human multiple sclerosis, to evaluate the demethylation effect in autoimmune therapy. Using GFP knock-in FOXP3 transgenic mice to evaluate the FOXP3 expression after 5-Aza treatment, 5-Aza treatment increased the GFP expression in CD4+CD25- T cells in vitro and in vivo. Furthermore, MOG-induced mouse pretreated with 5-Aza delayed the onset of EAE at least about 20 days, and, in most cases, there is not any EAE clinical symptom. Moreover, the 5-Aza pretreated mice seem to have no inflammatory responses in central nervous system, because of the very low RNA expression level of inflammatory cytokines could be detected in central nervous system. Therefore, we hypothesized that pretreatment with 5-Aza in vivo enhanced the Treg-mediated suppression and could provide a protective effect against pathogenic lymphocyte, and as a result, decreased the occurrence of experimental allergic encephalomyelitis.
摘要 i
Abstract ii
List of Figures v
List of Tables vi
1. Introduction 1
1.1. Experimental autoimmune encephalomyelitis 1
1.1.1. Multiple sclerosis 1
1.1.2. Experimental autoimmune encephalomyelitis 2
1.2. T helper cells 4
1.2.1. Type 1 T helper cell 4
1.2.2. Type 2 T helper cell 5
1.2.3. Type 17 T helper cell 5
1.2.4. Regulatory T cell 6
1.3. Epigenetics 7
1.3.1. DNA methylation 7
1.3.2. Epigenetic modification-regulation of Regulatory T cell 8
1.3.3. Demethylating agent 5-aza-2'-deoxycytidine 8
2. Objectives of Study 10
3. Materials and Methods 11
3.1. Mice 11
3.2. EAE induction 11
3.3. Medium, buffer and reagents 12
3.3.1. T cell medium 12
3.3.2. Isolation buffer 12
3.3.3. RBC lysis buffer 12
3.3.4. Antibodies 12
3.3.5. 5-Aza-2’-deoxycytidine 13
3.4. Purification and culture of mouse T cells 13
3.4.1. In vitro 5-Aza treatment of CD4+CD25- T cells 13
3.4.2. In vitro 5-Aza treatment of CD4+GFP- T cells 14
3.4.3. Splenocytes treated with 5-aza in vitro. 14
3.4.4. In vitro Treg function assay 14
3.4.5. Isolation of CNS-infiltrating lymphocytes 15
3.5. DNA methylation analysis 15
3.5.1. Bisulphite modification of DNA 15
3.5.2. Combined Bisulphite Restriction Analysis (COBRA) 16
3.6. Analysis of mRNA expression 17
3.6.1. RNA extraction 17
3.6.2. Reverse transcription 18
3.6.3. Quantitative real-time RT PCR (qRT-PCR) 18
4. Result 20
4.1. In vitro 5-Aza treatment increased GFP expression of CD4+GFP- T cells and Foxp3 RNA level of Splenocytes 20
4.1.1. 5-Aza treatment increased Foxp3 RNA level of splenocytes 20
4.1.2. 5-Aza treatment increased GFP expression of CD4+GFP- T cells 21
4.2. 5-Aza increased GFP and RNA expression of splenocytes in vivo 22
4.3. Protection of MOG-induced EAE by 5-Aza pretreatment in B6 mice 23
4.4. Distinct differences of splenocyte population and cell number between 5-Aza and DMSO-treated EAE mice 24
4.4.1. Significant changes in cell number between 5-Aza and DMSO-treated EAE mice 24
4.4.2. Distinct differences of splenocyte population between 5-Aza and DMSO-treated EAE mice 24
4.5. Inhibited inflammatory cytokine RNA expressions in spinal cord of 5-Aza treated EAE mice 26
4.6. The expression of inflammatory cytokines increased in the CNS of 5-Aza treated mice while the disease progressed 27
4.7. Lower number of CNS-infiltrating lymphocytes in 5-Aza treated mice 28
4.8. Enhanced immune suppressive function of regulatory T cells in 5-Aza treated mice 29
5. Discussion 30
6. Figure 35
7. Supplementary Data 48
7.1. Supplementary Figure 48
7.2. Supplementary Table 55
8. References 57
1.A. Compston, A. Coles, Multiple sclerosis. Lancet 372, 1502 (Oct 25, 2008).
2.C. M. Costantino, C. Baecher-Allan, D. A. Hafler, Multiple sclerosis and regulatory T cells. J Clin Immunol 28, 697 (Nov, 2008).
3.G. Frisullo et al., Regulatory T cells fail to suppress CD4T+-bet+ T cells in relapsing multiple sclerosis patients. Immunology 127, 418 (Jul, 2009).
4.A. G. Baxter, The origin and application of experimental autoimmune encephalomyelitis. Nat Rev Immunol 7, 904 (Nov, 2007).
5.I. M. Stromnes, J. M. Goverman, Active induction of experimental allergic encephalomyelitis. Nat Protoc 1, 1810 (2006).
6.F. Chen, M. K. Shaw, J. Li, R. P. Lisak, H. Y. Tse, Adoptive transfer of myelin basic protein-induced experimental autoimmune encephalomyelitis between SJL and B10.S mice: correlation of priming milieus with susceptibility and resistance phenotypes. J Neuroimmunol 173, 146 (Apr, 2006).
7.B. Lucas et al., Adoptive transfer of CD4+ T cells specific for subunit A of Helicobacter pylori urease reduces H. pylori stomach colonization in mice in the absence of interleukin-4 (IL-4)/IL-13 receptor signaling. Infect Immun 69, 1714 (Mar, 2001).
8.S. Zamvil et al., T-cell clones specific for myelin basic protein induce chronic relapsing paralysis and demyelination. Nature 317, 355 (Sep 26-Oct 2, 1985).
9.H. O. McDevitt, R. Perry, L. A. Steinman, Monoclonal anti-Ia antibody therapy in animal models of autoimmune disease. Ciba Found Symp 129, 184 (1987).
10.J. E. Merrill et al., Inflammatory leukocytes and cytokines in the peptide-induced disease of experimental allergic encephalomyelitis in SJL and B10.PL mice. Proc Natl Acad Sci U S A 89, 574 (Jan 15, 1992).
11.J. L. Baron, J. A. Madri, N. H. Ruddle, G. Hashim, C. A. Janeway, Jr., Surface expression of alpha 4 integrin by CD4 T cells is required for their entry into brain parenchyma. The Journal of experimental medicine 177, 57 (Jan 1, 1993).
12.I. A. Ferber et al., Mice with a disrupted IFN-gamma gene are susceptible to the induction of experimental autoimmune encephalomyelitis (EAE). Journal of immunology 156, 5 (Jan 1, 1996).
13.A. Jager, V. Dardalhon, R. A. Sobel, E. Bettelli, V. K. Kuchroo, Th1, Th17, and Th9 effector cells induce experimental autoimmune encephalomyelitis with different pathological phenotypes. Journal of immunology 183, 7169 (Dec 1, 2009).
14.C. Dong, TH17 cells in development: an updated view of their molecular identity and genetic programming. Nat Rev Immunol 8, 337 (May, 2008).
15.N. Manel, D. Unutmaz, D. R. Littman, The differentiation of human T(H)-17 cells requires transforming growth factor-beta and induction of the nuclear receptor RORgammat. Nature immunology 9, 641 (Jun, 2008).
16.C. Lock et al., Gene-microarray analysis of multiple sclerosis lesions yields new targets validated in autoimmune encephalomyelitis. Nat Med 8, 500 (May, 2002).
17.J. S. Tzartos et al., Interleukin-17 production in central nervous system-infiltrating T cells and glial cells is associated with active disease in multiple sclerosis. The American journal of pathology 172, 146 (Jan, 2008).
18.L. E. Harrington et al., Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nature immunology 6, 1123 (Nov, 2005).
19.B. Stockinger, M. Veldhoen, Differentiation and function of Th17 T cells. Curr Opin Immunol 19, 281 (Jun, 2007).
20.P. A. Jones, S. B. Baylin, The epigenomics of cancer. Cell 128, 683 (Feb 23, 2007).
21.K. D. Robertson, A. P. Wolffe, DNA methylation in health and disease. Nat Rev Genet 1, 11 (Oct, 2000).
22.R. Holliday, J. E. Pugh, DNA modification mechanisms and gene activity during development. Science 187, 226 (Jan 24, 1975).
23.T. H. Bestor, A. Coxon, Cytosine methylation: the pros and cons of DNA methylation. Curr Biol 3, 384 (Jun 1, 1993).
24.H. Leonhardt, A. W. Page, H. U. Weier, T. H. Bestor, A targeting sequence directs DNA methyltransferase to sites of DNA replication in mammalian nuclei. Cell 71, 865 (Nov 27, 1992).
25.A. D. Riggs, X inactivation, differentiation, and DNA methylation. Cytogenet Cell Genet 14, 9 (1975).
26.P. A. Jones, S. B. Baylin, The fundamental role of epigenetic events in cancer. Nat Rev Genet 3, 415 (Jun, 2002).
27.C. Schmidl et al., Lineage-specific DNA methylation in T cells correlates with histone methylation and enhancer activity. Genome research 19, 1165 (Jul, 2009).
28.M. Teitell, B. Richardson, DNA methylation in the immune system. Clin Immunol 109, 2 (Oct, 2003).
29.A. M. Krieg et al., CpG motifs in bacterial DNA trigger direct B-cell activation. Nature 374, 546 (Apr 6, 1995).
30.S. Yamamoto et al., DNA from bacteria, but not from vertebrates, induces interferons, activates natural killer cells and inhibits tumor growth. Microbiol Immunol 36, 983 (1992).
31.S. F. Ziegler, FOXP3: of mice and men. Annu Rev Immunol 24, 209 (2006).
32.H. P. Kim, W. J. Leonard, CREB/ATF-dependent T cell receptor-induced FoxP3 gene expression: a role for DNA methylation. The Journal of experimental medicine 204, 1543 (Jul 9, 2007).
33.P. C. Janson et al., FOXP3 promoter demethylation reveals the committed Treg population in humans. PLoS One 3, e1612 (2008).
34.G. Lal et al., Epigenetic regulation of Foxp3 expression in regulatory T cells by DNA methylation. J Immunol 182, 259 (Jan 1, 2009).
35.G. Lal, J. S. Bromberg, Epigenetic mechanisms of regulation of Foxp3 expression. Blood 114, 3727 (Oct 29, 2009).
36.S. D. Gore, C. Jones, P. Kirkpatrick, Decitabine. Nat Rev Drug Discov 5, 891 (Nov, 2006).
37.J. Choi et al., In vivo administration of hypomethylating agents mitigate graft-versus-host disease without sacrificing graft-versus-leukemia. Blood 116, 129 (Jul 8, 2010).
38.J. K. Polansky, J. Huehn, [To be or not to be a Treg: epigenetic regulation of Foxp3 expression in regulatory T cells]. Z Rheumatol 66, 417 (Sep, 2007).
39.Q. Zheng et al., Induction of Foxp3 demethylation increases regulatory CD4+CD25+ T cells and prevents the occurrence of diabetes in mice. J Mol Med 87, 1191 (Dec, 2009).
40.R. L. Momparler, Molecular, cellular and animal pharmacology of 5-aza-2'-deoxycytidine. Pharmacol Ther 30, 287 (1985).
41.R. L. Momparler, Pharmacology of 5-Aza-2'-deoxycytidine (decitabine). Semin Hematol 42, S9 (Jul, 2005).
42.S. K. Chauhan, D. R. Saban, H. K. Lee, R. Dana, Levels of Foxp3 in regulatory T cells reflect their functional status in transplantation. Journal of immunology 182, 148 (Jan 1, 2009).
43.L. I. Sanchez-Abarca et al., Immunomodulatory effect of 5-azacytidine (5-azaC): potential role in the transplantation setting. Blood 115, 107 (Jan 7, 2010).
44.M. I. Garin et al., Galectin-1: a key effector of regulation mediated by CD4+CD25+ T cells. Blood 109, 2058 (Mar 1, 2007).
45.T. Takahashi et al., Immunologic self-tolerance maintained by CD25(+)CD4(+) regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. The Journal of experimental medicine 192, 303 (Jul 17, 2000).
46.K. Nakamura, A. Kitani, W. Strober, Cell contact-dependent immunosuppression by CD4(+)CD25(+) regulatory T cells is mediated by cell surface-bound transforming growth factor beta. The Journal of experimental medicine 194, 629 (Sep 3, 2001).
47.C. Asseman, S. Mauze, M. W. Leach, R. L. Coffman, F. Powrie, An essential role for interleukin 10 in the function of regulatory T cells that inhibit intestinal inflammation. The Journal of experimental medicine 190, 995 (Oct 4, 1999).
48.H. von Boehmer, Mechanisms of suppression by suppressor T cells. Nature immunology 6, 338 (Apr, 2005).
49.P. Pandiyan, L. Zheng, S. Ishihara, J. Reed, M. J. Lenardo, CD4+CD25+Foxp3+ regulatory T cells induce cytokine deprivation-mediated apoptosis of effector CD4+ T cells. Nature immunology 8, 1353 (Dec, 2007).
50.P. C. Janson et al., Profiling of CD4+ T cells with epigenetic immune lineage analysis. Journal of immunology 186, 92 (Jan 1, 2011).
51.S. Haak et al., IL-17A and IL-17F do not contribute vitally to autoimmune neuro-inflammation in mice. J Clin Invest 119, 61 (Jan, 2009).
52.B. M. Segal, Th17 cells in autoimmune demyelinating disease. Semin Immunopathol 32, 71 (Mar, 2010).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top