(3.238.96.184) 您好!臺灣時間:2021/05/08 04:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:李俊逸
研究生(外文):Li, Chun I
論文名稱:地震頻繁之工業區重金屬土壤汙染去除
論文名稱(外文):The Heavy Metal Removal from Contaminated Soils in the Industrial Park of High-frequency Seismicity Activity
指導教授:陳建易
指導教授(外文):Chen, Chien Yen
口試委員:陳建易范誠偉李文乾潘瑋
口試委員(外文):Chen, Chien YenFan, Cheng WeiLee, Wen ChienPan, Wei
口試日期:2011-06-13
學位類別:碩士
校院名稱:國立中正大學
系所名稱:地震研究所
學門:自然科學學門
學類:地球科學學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:51
中文關鍵詞:重金屬去除
外文關鍵詞:heavy metal removal
相關次數:
  • 被引用被引用:0
  • 點閱點閱:344
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:33
  • 收藏至我的研究室書目清單書目收藏:0
本論文之研究目的,是利用土壤沖洗的方法,去除位於地震頻繁地區工業區土壤之重金屬汙染。分別以微生物界面活性劑,以及無患子溶液進行土壤沖洗實驗。另以無患子溶液進行泡沫分餾法去除重金屬,並藉由控制因子,如流速(0.2, 0.4, 0.6, 0.8, 1.0, L/min)、溫度(30 , 40, 50, 60, 70 oC)、pH(4, 10)值以及濃度(0.5 ,1.0 M),探討天然之無患子溶液,針對汙染土壤之重金屬鋅、銅、鉛,進行去除之影響評估。
土壤沖洗的結果顯示,利用無患子溶液的去除效果,較微生物界面活性劑佳。故選擇無患子溶液進行進一步研究。在土壤沖洗pH值的實驗方面,銅離子之去除效果,對於pH值改變影響較小。而鋅離子則是在pH 4效果最好。另一方面,鉛離子卻在pH 10效果最明顯。在長時間的沖洗實驗中,銅離子在第四天的去除效果達到飽和。鋅離子則維持穩定去除效果。鉛離子去除效果,則隨著時間的增加而增加,並在的七天時達到飽和。在泡沫分餾法方面,實驗結果顯示,流速為1.0 L/min時,可對三種元素產生最好之去除效果。在溫度實驗方面,銅離子在40 oC時效果最佳,鋅離子則是在30 oC效果最好,鉛離子在70oC效果最明顯。在pH值方面,銅離子對於pH值的改變影響較小,鋅離子則是在pH 4效果最好,鉛離子卻在pH 10效果最明顯;無患子濃度實驗方面,不論何種重金屬元素,當無患子濃度增加時,都可以發現去除效果,獲得很大的改善。
本研究證實了利用泡沫分餾法,可以進一步改善土壤去除重金屬的效果,分別將銅離子由32 mg/kg 提升73 mg/kg,鋅離子由29 mg/kg 提升至83(mg/kg),而鉛離子由23 mg/kg提升至48mg/kg。

The main purpose of this study is to remove the heavy metals (Zn, Cu, Pb) from contaminated soil which is situated in a industrial park of high-frequency seismicity activity. Comparison study of two kinds of biosurfactants was performed for soil washing. One was surfactin and the other was saponin. The effects of pH values and reaction time have been investigated for removal efficiency.
Foam fractionation was further chosen to enhance the removal of heavy metals using saponin. Flow rate (0.2, 0.4, 0.6, 0.8, 1.0L/min), temperature (30, 40, 50, 60, 70 oC), pH (4, 10) and concentration (0.5, 1.0 M) have been investigated for removal efficiency.
In the soil washing the results showed that the removal efficiency of saponin was better than surfactin. The pH effect on Cu removal was limited. Zn removal had optimal pH of 4, but Pb removal preferred pH of 10. In the study of time cause (10 days), the results indicate that the maximum of Cu removal was on the 4th day but the Pb removal increased with the time increased and had a maximum on the 7th day. The Zn removal was not obviously affected by wash time. In the case of foam fractionation, the flow rate of 1.0 L/min was found to be the optimal for three metals removal. The removal of Zn decreased as the temperature increased. On the contrary, the removal of Pb increased as the temperature increased. However, the removal of Cu was not very obviously affected by temperature. In addition, the removals of Zn and Cu were better in the low pH 4, but the removal of Pb was better in the high pH 10. The removals of heavy metals were all enhanced as the saponin concentration increased.
In this study foam fraction has been found to enhance the heavy metal removal compared with the soil washing. Data indicated that removal of Cu could be improved from 32 mg/kg to 73mg/kg, from 29 mg/kg to 83 mg/kg for Zn removal and from 23 mg/kg to 48 mg/kg for Pb removal.

目錄
誌謝 (I)
中文摘要 (II)
Abstract (III)
目錄 (IV)
圖目錄 (V)
表目錄 (VI)
第一章 緒論 (1)
1.1前言 (2)
1.2文獻探討 (2)
1.2.1重金屬汙染 (2)
1.2.2土壤沖洗 (8)
1.2.2.1物理分離法 (8)
1.2.2.2化學分離法 (10)
1.2.3界面活性劑 (13)
1.2.3.1化學性的界面活性劑 (13)
1.2.3.2微生物性的界面活性劑 (14)
1.2.3.3植物性的界面活性劑 (16)
1.2.4泡沫分餾法 (16)
1.3研究動機 (18)
1.4組織章節 (19)
第二章 實驗材料與方法 (20)
2.1實驗材料 (20)
2.1.1重金屬汙染土壤 (20)
2.1.2無患子溶液 (21)
2.1.3界面活性劑 (22)
2.2實驗器材與設備 (24)
2.3實驗流程設計 (27)
2.4實驗方法與步驟 (28)
2.4.1重金屬汙染土壤的製備 (28)
2.4.2 兩種界面活性劑之比較 (29)
2.4.3不同沖洗液與無患子溶液之比較 (29)
2.4.4 不同pH無患子溶液之比較 (29)
2.4.5長時間沖洗下去除效果之比較 (29)
2.4.6泡沫分餾法之流速比較 (30)
2.4.7泡沫分餾法之溫度值比較 (30)
2.4.8泡沫分餾法之pH值比較 (30)
2.4.9泡沫分餾法之濃度比較 (30)
2.4.10原子吸收光譜檢測方法 (31)
2.4.11單位換算方法 (33)
第三章 結果與討論 (34)
3.1兩種界面活性劑之比較 (34)
3.2不同沖洗液與無患子溶液之比較 (34)
3.3 不同pH無患子溶液之比較 (35)
3.4長時間沖洗下去除效果之比較 (36)
3.5泡沫分餾法之流速比較 (37)
3.6泡沫分餾法之溫度值比較 (38)
3.7泡沫分餾法之pH值比較 (39)
3.8泡沫分餾法之濃度比較 (40)
第四章 結論與未來展望 (45)
4.1結論 (45)
4.2未來展望 (47)
參考文獻 (48)



圖目錄
圖1.1 Rhamnolipid結構圖 (15)
圖1.2三萜皂苷類的皂素結構 (16)
圖2.1樣品取樣位置圖 (20)
圖2.2無患子圖 (22)
圖2.3太陽轉盤靜止圖 (25)
圖2.4空氣幫浦與空氣流量計組合圖 (25)
圖2.5加熱攪拌器 (26)
圖2.6裝置示意圖 (26)
圖2.7原子吸收光譜儀 (26)
圖2.8土壤沖洗實驗流程圖 (27)
圖2.10泡沫分餾實驗流程圖 (28)
圖3.1不同介面活性劑去除效果之比較 (41)
圖3.2.1不同溶液對鋅離子去除效果之比較 (41)
圖3.2.2不同溶液對銅離子去除效果之比較 (41)
圖3.2.3不同溶液對鉛離子去除效果之比較 (42)
圖3.3相同濃度1.0 M下不同pH值之比較 (42)
圖3.4長時間沖洗之去除效果比較 (42)
圖3.5泡沫分餾法之流速比較 (43)
圖3.6泡沫分餾法溫度之比較 (43)
圖3.7泡沫分餾法不同pH值之比較 (43)
圖3.8泡沫分餾法不銅濃度之比較 (44)

表目錄
表1.1事業排放廢水與主要汙染物 (3)
表1.2土染汙染管制標準 (4)
表1.3臺灣重金屬汙染來源說明表 (6)
表1.4重金屬對作物以及人體的影響 (7)
表1.5物理去除法與化學去除法之間優缺點比較 (13)
表2.1土壤粒徑性質 (21)
表2.2樣本土壤之汙染物含量 (21)
表2.3固態培養基 (23)
表2.4液態培養基 (23)
表2.5實驗儀器設備 (24)


參考文獻
1.卓英仁 (1988),我國土壤汙染現況分析及防治政策之研究,環保通訊雜誌
社。
2.林務局全球資訊網
3.湯政明(2007),添加基丁聚醣對於受重金屬汙染土壤植物復育影響之個案研究,碩士論文,朝陽科技大學環境工程與管理系,臺灣臺中。
4.趙承琛(1993),工業升級之特用化學品-界面活性劑,復文書局。
5.歐靜枝(1990),乳化溶化技術實務,復漢出版社。
6.潘建志(2006),以泡沫分餾法吸附水中Reactive Orange 16 染料之研究
7.劉宏璨(2008),生物界面活性劑於汞離子的泡沫分餾法應用,碩士論文,國立中正大學應用地球物理研究所,臺灣嘉義。
8.賴麗娟(2002),臺灣野果觀賞情報,晨星出版社。
9.Abumaizar Riyad J., Smith Edward H. Heavy metal contaminants removal by soil washing (1999) Journal of Hazardous Materials 71-86
10.American Public Health Association, American Water Works Association & Water Pollution Control Federation, Standard Methods for the Examination of Water and Wastewater, 20th ed., Method 3111A&B, pp. 3-13~3-18, APHA, Washington, D.C., USA
11.Bruneton, J, Pharmacognosy, Phytochemistry, Medicinal Plants1995.. Lavoisier Publishing, Paris, pp. 538–544
12.Benschoten. E.Van, Matsumoto M.R., Young W.H., Evaluation and analysis
of soil washing for seven lead-contaminated soils(1997), Journal Environ. Eng.
123 (3) 217–224.
13.Chowdiah P., Misra B.R., Kilbane II J.J., Srivastava V.J., Hayes T.D. Foam propagation through soils for enhanced in-situ remediation (1998) Journal of Hazardous Materials (62) 265-280
14.Cauwenberg P., Verdonckt F., Maes A., Flotation as a remediation technique
for heavily polluted dredged material. 1. A feasibility study(1998), Sci.Total Environ. (209) 113–119.
15.Davis A.P., Hotha B.V., Washing of various lead compounds from a contaminated soil column, Journal Environ (1998). Eng. (124) 1066–1075.
16.Dermont G., Bergeron M., Mercier G., Richer-Lafl`eche M., Soil washing for metal removal: A review of physical/chemical technologies and field applications(2007) Journal of hazard Materials (152) 1-31
17.Dehrazma Behnaz, Mulligan Catherine N. Investigation of the removal of heavy metals from sediments using rhamnolipid in a continuous flow configuration(2007) Journal of Chemosphere (69) 705-711
18.Fritioff A., Kauntsky L., Greger M., Influenceof temperatureand salinity on heavy metal uptake by submersed plants(2005) Enviromental pollution 133 265-274
19.Griffiths Richard A. Soil-washing technology and practice (1995) Journal of Hazardous Materials 175-189
20.Gosselin A., Blackburn D., Bergeron M., Assessment Protocol of the
Applicability of Ore-Processing Technology to Treat Contaminated Soils,
Sediments and Sludges, prepared for Eco-Technology Innovation Section
Technology Development and Demonstration Program, Environment Canada, 1999.
21.Gauglitza P. A., Friedmannb F., Kamcd S. I., Rossenc W. R. Foam generation in homogeneous porous media(2002) Chemical Engineering Science (57) 4037 – 4052
22.Hong K.J., Tokunaga S., Ishigami Y., Kajiuchi Extraction of heavy metals from MSW incinerator fly ash using saponins (2000), Chemophere 345-352
23.Ibrahim Banat, Makkar M., R.S. Cameotra S.S., Potential commercial applications of microbial surfactants(1995), Appl.Microbiol. Biotechnol (53) 1-12
24.Inoh Y., Kitamoto D., Hirashima N., Nakanishi M.,Biosurfatants of MEL-A increase gene transfection mediated by cationic liposomes(2001),Biochem. Biophys. Res. Commun (289) 57-61
25.Ko I.W., Lee C.H., Lee K.P., Lee S.W., Kim K.W., Remediation of soil
contaminated with arsenic, zinc, and nickel by pilot-scale soil washing(2006),
Journal Environ. Prog. 25 (1) 39–48.
26.Lahoda E.J, Grant D.C., Method and apparatus for cleaning contaminated
particulate material(1993)., U.S. Patent 5,268,128
27.Lin H.K., Man X.D., Walsh D.E., Lead removal via soil washing and
leaching(2001), Journal Miner. Met. Mater. Soc. (53) 22–25.
28.Luttrell G.H., Westerfield T.C., Kohmuench J.N., Mankosa M.J., Mikkola K.A., G. Oswald, Development of high-efficiency hydraulic separators(2006),Min. Metallur. Process. 23 (1) 33–39.
29.Myers. D., Surfactant Science and Tecnology. (1988 ) VCH Publishers. Inc., New York, USA
30.Mulligan C.N., Yong R.N., Gibbs B.F., On the use of biosurfactants for the removal of heavy metals from oil-contaminated soil(1999), Journal Environ. Prog.(18) 50–54.
31.Mulligan C.N., Yong R.N., Gibbs B.F., Metal removal from contaminated
soil and sediments by the biosurfactant surfactin(1999), Journal Environ. Sci. Technol.(33) 3812–3820.
32.Mulligan C.N., Yong R.N., Gibbs B.F., An evaluation of technologies for
the heavy metal remediation of dredged sediments(2001), Journal of Hazard. Mater. (85) 145–163.
33.Mulligan, C.N., Yong, R.N., Gibbs, B.F.,2001. Heavy metal removal from sediments by biosurfactants(2001), Journal of Hazard. Mat. (85), 111-125
34.Mulligan C.N., Yong R.N., Gibbs B.F., Surfactant-enhanced remediation
of contaminated soil: a review(2001), Journal Environ. Geol. (60) 371–380.
35.Mulligan C.N., Yong R.N., Gibbs B.F., Heavy metal removal from
sediments by biosurfactants (2001), Journal of. Hazard. Mater.(85) 111–125.
36.Mulligan C.N., Yong R.N., Gibbs Surfactant-enhanced emediation of contaminated soil: a review (2001) Engineering Geology (60) 371-380
37.Mercier G., Duchesne J., Blackburn D., Prediction of the efficiency of physical methods to remove metals from contaminated soils(2001), Journal of Environ. Eng. 127 (4) 348–358.
38.Mulligan C.N., Environmental applications for biosurfactants(2005), Journal Environ. Pollut. (133) 183–198.
39.Mulligan, C.N.,Wang Suiling Remediation of a heavy metal-contaminated soi by a rhamnolipid foam (2006) Engineering Geology (85) 75-81
40.Mouton Julia, Mercier Guy, Blais Jean-Francois Blais Amphoteric Surfactants for PAH and Lead Polluted-Soil Treatment Using Flotation (2008), Water Air Soil Pollut 381-393
41.Peters R.W., Chelant extraction of heavy metals from contaminated soils(1999),
Journal of Hazard. Mater. (66) 151–210.
42.Rikers R.A., Rem P., Dalmijn W.L., Improved method for prediction of
heavy metal recoveries from soil using high intensity magnetic separation
(HIMS) (1998), Int. Journal Miner. Process. (54) 165–182.
43.Rosenberg E., Zuckerberg A., Rubinovitz C., Gutnick D.L., Emulsifier of Arthrobacter RAG-1: isolation and emulsifying properties(1979)Appl. Journal Environ. Microbiol. (37) 402-408
44.Sparg S.G., Light M.E, Staden J. van, Biological activities and distribution of plant saponins(2004). Journal of Ethnopharmacology (94) 219-243
45.Tyler, V.E., Brady, L.R., Bobbers, J.E., Pharmacognosy, eighth ed Lea & Ferbiger, Philadelphia(1981) P.67
46.Tsai Li-Jyur, Yu Kuang-Chung, Chen Shu-Fen, Kung Pei-Yi, Effect of temperature on removal of heavy metals from contaminated river sediments via bioleaching(2003) Water Research (37) 2449-2457
47.Wang Suiling, Mulligan Catherine N. ,Rhamnolipid biosurfactant-enhanced soil flushing for the removal of arsenic and heavy metals from mine tailings(2009) Process Biochemistry (44) 296-301

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔