(3.231.29.122) 您好!臺灣時間:2021/02/25 22:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳貽春
研究生(外文):Chen I-Chuen
論文名稱:球狀半導體量子點聲子振動研究比熱及低頻拉曼散射
論文名稱(外文):SPECIFIC HEAT AND LOW-FREQUENCY RAMAN SCATTERING FROM ACOUSTIC VIBRATIONS OF SPHERICAL SEMICONDUCTOR QUANTUM-DOT
指導教授:蔡炎熾
指導教授(外文):Tsai Yan-Chr
口試委員:林明發魏台輝門福國梁贊全
口試委員(外文):Lin Ming-FaWei Tai-HueiMen Fu-KwoLeung Tsan-Chuen
口試日期:2011-01-12
學位類別:博士
校院名稱:國立中正大學
系所名稱:物理系
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:英文
論文頁數:105
中文關鍵詞:量子點拉曼散射
外文關鍵詞:Quantum Dot Raman Scattering
相關次數:
  • 被引用被引用:0
  • 點閱點閱:220
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:52
  • 收藏至我的研究室書目清單書目收藏:0
In the first part of this thesis, I will present a study of the vibrational modes of acoustic
phonons and their corresponding eigenfrequencies in CdS/CdSe/CdS quantum-dot
quantum wells (QDQWs) obtained on the continuum model. The energy spectra of
the phonons in nanocrystals from the analytic solutions are checked by the Finite-
Element Method (FEM). Based on the spectrum of acoustic phonons and the Debye
model, the temperature dependences of the specific heat contributed from lattice
phonons are calculated to investigate their size-dependent effects. Lattice softening
is also demonstrated and the results qualitatively agree with the experimental observations
for fine particles and quantum dots. We found that the phonon density of
states of a QDQW is important for calculating specific heat, and, perhaps, also for
modifying the effective sound velocity in the nanocrystal.
In the second part of the thesis, I will describe an investigation of the Raman
light-to-vibration coupling coefficients Cαβ of the l=0 and the l=2 spheroidal phonon
modes of quasi-free spherical CdSe/CdS core/shell nanoparticles calculated. Based on
the Lamb model, the displacement vectors of acoustic phonon modes are obtained and
the Cαβ is also derived. The Raman scattering from quasi-free CdSe/CdS nanoparticles
with various inner radii is investigated. For the l=0 acoustic modes, the bond
polarizability model is adopted to calculate Cαβ, whose peak positions shift toward
lower frequencies with the increase of the inner radius. This could be accounted for
by the decrease of the averaged longitudinal and transverse sound velocities. Moreover,
the ratio of the coefficients Aαβγδ [Montagna and Dusi, Phys. Rev. B 52, 10080
(1995)] between layers characterizes behaviors of peak heights of Cαβ. For the l=2
modes based on the dipole-induced-dipole model, the behaviors of peak positions are
obtained by varying the values of vL and vT of materials in both layers. Because we
treat the core/shell nanoparticle as a whole, the behavior of Cαβ peak positions on a
CdSe/CdS core/shell nanoparticle is consistent with its dependence on the averaged
sound velocities of the whole nanoparticle. At the same time, it also agrees with the
calculated results for a CdSxSe1¡x nanoparticle [Risti´c et al., J. Appl. Phys. 104,
073519 (2008)]. However, we observed that some peaks reach dramatically high values
for given inner radii of the CdSe/CdS nanoparticles, which occur only in spherical
core/shell nanoparticles.
Table of Contents iv
List of Tables vi
List of Figures vii
Acknowledgements x
Abstract xi
1 Introduction 1
2 Theoretical Backgrounds: Elasticity Theory, Raman Spectrum 8
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Elasticity Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 The Generalized Hook’s Law . . . . . . . . . . . . . . . . . . . . . . . 15
2.4 The Autocorrelation Functions of Statistical Mechanics . . . . . . . . 29
2.5 Raman Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3 Specific heat of CdS/CdSe/CdS quantum-dot quantum wells 44
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.2 Spectrums of vibrational modes . . . . . . . . . . . . . . . . . . . . . 47
3.3 Lattice specific heat . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.4 Discussion and conclusions . . . . . . . . . . . . . . . . . . . . . . . . 59
4 Low-frequency Raman scattering from acoustic vibrations of spherical
CdSe/CdS nanoparticles 64
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.2 The Vibrational Modes of a spherical core/shell nanoparticle . . . . . 67
4.3 The Light to Vibration Coupling Coefficient for CdSe/CdS nanoparticles 71
4.3.1 Bond polarizability model for l=0 vibrational modes . . . . . 72
4.3.2 Dipole-induced-dipole model for the l=2 vibrational modes . . 78
4.3.3 The difference in light to vibration coupling coefficients between
CdSe/CdS and CdSxSe1¡x nanoparticles . . . . . . . . . . . . 82
4.4 Discussion and conclusions . . . . . . . . . . . . . . . . . . . . . . . . 85
5 Conclusion 87
Appendix 90
A Elements of the secular equations for a QDQW 90
A.1 Elements of the 5£5 secular equation for the torsional mode in a QDQW 91
A.2 Elements of the 5 £ 5 secular equation for the spheroidal mode and
L = 0 in a QDQW . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
A.3 Elements of the 10 £ 10 secular equation for the spheroidal mode and
L 6= 0 in a QDQW . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
B The functions in the linear equations 97
Bibliography 99
[1] T. M. Atanackovic and A. Guran, Theory of Elasticity for Scientists and Engineers
(Birkh¨auser, Boston, 2000).
[2] L. D. Landau, and E. M. Lifshitz, Institute of Physical Problems, U.S.S.R.
Academy of Sciences, Theory of Elasticity, Volume 7 of Course of Theoretical
Physics.
[3] J. B. Marion and S. T. Thornton, Classical dynamics of particles and system,
4th Ed.
[4] D. Risti´c, M. Ivanda, K. Furi´c, U. V. Desnica, M.Buljan, M. Montagna,
M.Ferrari, A. Chiasera, and Y.Jestin, JAP. 104, 073519 (2008)
[5] B. J. Berne and R. Pecora, Dynamic Light Scattering (Wiley, New York, 1976).
[6] M. Montagna and R. Dusi, Phys. Rev. B 52, 1008 (1995).
[7] M. Mattarelli, M. Montagna, F. Rossi, A. Chiasera, and M.Ferrari, Phys. Rev.
B 74, 153412 (2006).
[8] M. Montagna, Phys. Rev. B 77, 045418 (2008).
[9] H. Lamb, Proc. London Math. Soc. 13, 187 (1882).
[10] M. A. Stroscio and M.Dutta, Phonons in Nanostructures (Cambridge University
Press, Cambridge, UK, 2001).
[11] R. Shuker and R. W. Gammon, Phys. Rev. Lett. 25, 222 (1970).
[12] X. Peng, M. Schlamp, A. Kadavanish, and A. Alivisatos, J. Am. Chem. Soc.
119, 7019 (1997).
[13] D. Talapin, R. Koeppe, S. Gotzinger, A. Kornowski, J. Lupton, A. Rogach, O.
Benson, J. Feldmann, and H. Weller, Nano Lett. 3, 1677 (2003).
[14] J. Li and L.-W. Wang, Appl. Phys. Lett. 84, 3648 (2004).
[15] M. Hines and P. Guyot-Sionnest, J. Phys. Chem. 100, 468 (1996).
[16] D. Battaglia, B. Blackman, and X. Peng, J. Am. Chem. Soc. 127, (2005).
[17] D. Battaglia, J. J. Li, Y. Wang, and X. Peng, Angew. Chem. Int. Ed. 42, 5035
(2003).
[18] R. B. Little, M. A. El-Sayed, G. W. Bryant, and S. Burke, J. Chem. Phys. 114,
1813 (2001).
[19] L. Cao, S. Huang, and J. Lin, J. Colloid Interface Sci. 284, 516 (2005).
[20] D. Schooss, A. Mews, A. Eychm¨uller, and H. Weller, Phys. Rev. B 49, 17072
(1994).
[21] S. Neeleshwar, C. L. Chen, C. B. Tsai, Y. Y. Chen, S. G. Shyu, and M. S. Seehra,
Phys. Rev. B 71, 201307 (2005).
[22] V. Mazzacurati and G. Ruocco, Mol. Phys. 61, 1391 (1987).
[23] H. P. Baltes and E. R. Hilf, Solid State Commun. 12, 369 (1973).
[24] W. P. Halperin, Rev. Mod. Phys. 58, 533 (1986).
[25] N. Nishiguchi and T. Sakuma, Solid State Commun.58, 533 (1986).
[26] A. Tamura, K. Higeta, and T. Ichinokawa, J. Phys. C: Solid State Phys. 15, 4975
(1982).
[27] P. Swaminathan, V. N. Antonov, J. A. N. Soares, J.S. Palmer, and H. H. Weaver,
Phys. Rev. B 73, 125430 (2006).
[28] J. Schrier and L.-W. Wang, Phys. Rev. B 73, 245332 (2006).
[29] J. Xu, M. Xiao, D. Battaglia, and X. Peng, Appl. Phys. Lett 87, 043107 (2005).
[30] J. Berezovsky, M. Ouyang, F. Meier, D. D. Awschalom, D. Battaglia, and X.
Peng, 71, 081309 (2005).
[31] F. Meier and D. D. Awschalom, Phys. Rev. B 71, 205315 (2005).
[32] J. Xu and M. Xiao, Appl. Phys. Lett 87, 173117 (2005).
[33] J. P. Hirth and J. Lothe, Theory of Dislocations, 2nd Ed. (John Wiley and Sons,
New York, 1982).
[34] N. W. Ashcroft and N. D. Mermin, Solid State Physics. (Saunders College, 1976).
[35] A. E. H. Love, A Treatise on the Mathematical Theory of Elasticity. (Dover, New
York, 1944).
[36] S. Adachi, Optical Properties of Crystalline Amorphous Semiconductors, (Kluwer
Academic, Massachusetts, 1999).
[37] O. Madelung, Semiconductors: Data Handbook, 3rd Ed. (Springer, Berlin Heidelberg,
2004).
[38] M. Schultz, Semiconductors, Landolt-B¨ornstein, New Series, Group III, Vol. 4,
(Springer, New York, 1998).
[39] T. Takagahara, J. Lumin. 70, 129 (1996).
[40] Y. Masumoto, ed., Semiconductor Quantum Dots. (Springer, Berlin Heidelberg,
2002).
[41] C. J. Bradley and A. P. Cracknell, The Mathematical Theory of Symmetry in
Solids. (Oxford University Press, London 1972).
[42] J. R. Childress, C. L. Chien, M. Y. Zhou, and P. Sheng, Phys. Rev. B. textbf44,
11689 (1991).
[43] A. P. Alivisatos, T. D. Harris, P. J. Carroll, M. L. Steigerwald, and L. E. Brus,
J. Chem. Phy. 90, 3463 (1989).
[44] M. C. Klein, F. Hache, D. Ricard, and C. Flytzanis, Phy. Rev. B 42, 11123
(1990).
[45] A. Tanaka, S. Onari, and T. Arai, Phys. Rev. B 45, 6587 (1992).
[46] A. Tanaka, S. Onari, and T. Arai, Phys. Rev. B 47, 1237 (1993).
[47] M. Rajalakshmi, T. Sakuntala, and A. K. Arora, J. Phys.: Condensed Matter 9,
9745 (1997).
[48] T. R. Ravindran, A. K. Arora, B. Balamurugan, and B. R. Mehta, Nanostruct.
Mater. 11, 603 (1999).
[49] I. H. Campbell and P. M. Fauchet, Solid State Commun. 58, 739 (1986).
[50] R. J. Nemanich and S. A. Solin, Phys. Rev. B 20, 392 (1979).
[51] E. Duval, A. Boukenter, and B. Champagnon, Phys. Rev. Lett. 56, 2052 (1986).
[52] G. Mariotto, M. Montagna, G. Viliani, E. Duval, S. Lefrant, E. Rzepka, and C.
Mai, Europhys. Lett. 6, 239 (1988).
[53] M. Fujii, T. Nagareda, S. Hayashi, and K. Yamamoto, Phys. Rev. B 44, 6243
(1991).
[54] R. Ceccato, R. D. Maschio, S. Gialanella, G. Maritto, M. Montagna, F. Rossi,
M. Ferrari, K. E. Lipinska-Kalita, and Y. Ohki, J. Appl. Phys. 90, 2522 (2001).
[55] Y. Jestin, N. Afify, C. Armellini, S. Berneschi, S. N. B. Bhaktha, B. Boulard,
A. Chiappini, A. Chiasera, G. Dalba, C. Duverger, et al., Proc. SPIE 6183, 438
(2006).
[56] V. K. Tikhomirov, D. Furniss, A. B. Seddon, M. Ferrari, and R. Rolli, Appl.
Phys. Lett. 81, 1937 (2002).
[57] M. Montagna, E. Moser, F. Visintainer, L. Zampedri, M. Ferrari, A. Martucci,
M. Guglielmi, and M. Ivanda, J. Sol-Gel Sci. Technol. 26, 241 (2003).
[58] M. Ivanda, A. Hohl, M. Montagna, G. Mariotto, M. Ferrari, Z. C. Orel, A.
Turkovic, and K. Furic, J. Raman Spectrosc. 37, 161 (2006).
[59] M. Ivanda, K. Babosci, C. Dem, M. Schmitt, M. Montagna, and W. Kiefer, Phys.
Rev. B 67, 235329 (2003).
[60] M. Ivanda, K. Furi´c, S. Musi´c, M. Risti´c, M. Goti´c, D. Risti´c, A. M. Tonejc, I.
Djerdj, and M. Montagna, J. Raman Spectrosc. 38, 161647 (2007).
[61] S. Adichtchev, S. Sirotkin, G. Bachelier, L. Saviot, S. Etienne, B. Stephanidis,
E. Duval, and A. Mermet, Phys. Rev. B 79, 201402 (2009).
[62] A. L. Efros and A. L. Efros, Sov. Phys.-Semicomd 16, 772 (1982).
[63] A. I. Ekimov and A. A. Onushchenko, JETP Lett. 40, 1136 (1984).
[64] A. I. Ekimov, F. Hache, M. C. Schanne-Klein, D. Ricard, C. Flyt-zanis, I. A.
Kudryavtsev, T. V. Yazeva, A. V. Rodina, and A. L. Efros, J. Opt, Soc. Am. B
10, 100 (1993).
[65] A. I. Ekimov, J. Lumin. 70, 1 (1996).
[66] M. Rajalakshmi and A. K. Arora, Solid State Commun. 110, 75 (1999).
[67] A. V. Gomonnai, Y. M. Azhniuk, V. V. Lopushansky, I. G. Megela, I. I. Turok,
M. Kranjˇcec, and V. O. Yukhymchuk, Phys. Rev. B 65, 245327 (2002).
[68] S. Schmitt-Rink, D. A. B. Miller, and D. S. Chemla, Phys. Rev. B 35, 8113
(1987).
[69] J. Schroeder and P. D. Persans, J. Lumin. 70, 69 (1996).
[70] P. D. Persans, L. B. Lurio, J. Pant, H. Y¨ukselici, G. Lian, and T. M. Hayes, J.
Appl. Phys. 87, 3850 (2000).
[71] S. K. Gupta, S. Sahoo, P. K. Jha, A. K. Arora, and Y. M. Azhniuk, J. Appl.
Phys. 106, 024307 (2009).
[72] L. Saviot and D. B. Murray, Phys. Rev. B 72, 205433 (2005).
[73] H. Portal´es, L. Saviot, E. Duval, M. Gaudry, E. Cottancin, M. Pellarin, J.Lerm´e,
and M. Broyer, Phys. Rev. B 65, 165422 (2002).
[74] S. K. Gupta, P. K. Jha, and A. K. Arora, Journal of Applied Physics 103, 124307
(2008).
[75] L. Saviot and D. B. Murray, Phys. Rev. Lett. 93, 055506 (2004).
[76] D. B. Murray and L. Saviot, Phys. Rev. B 69, 094305 (2004).
[77] L. Saviot, D. B. Murray, and M. d. C. M. de Lucas, Phys. Rev. B 69, 113402
(2004).
[78] M. Montagna, Phys. Rev. B 77, 167401 (2008).
[79] M. Kanehisa, Phys. Rev. B 72, 241405 (2005).
[80] M. Kanehisa, Phys. Rev. B 74, 197402 (2006).
[81] S. V. Goupalov, L. Saviot and E. Duval, Phys. Rev. B 74, 197401 (2006).
[82] E. Duval, Phys. Rev. B 46, 5795 (1992).
[83] W. U. Huynh, J. J. Dittmer, and A. P. Alivisatos, Science 295, 2425 (2002).
[84] P. M. Morse and H. Feshbach, Methods of Theoretical Physics (McGraw-Hill,
New York, 1953).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
1. 26. 賴明信、陳正昌、郭益全、陳治官、李長沛、曾東海、林英俊。1997。現行水稻推廣品種生產力與氮肥用量之關係II.氮肥用量對稻米容重及品質之影響。中華農業研究 46(1):1-14。
2. 16. 陳烈夫、楊清祥、卓緯玄、呂秀英。2003。幫水稻把脈看氣色。農業試驗所技術服務季刊 14(2):7-13。
3. 13. 張芳銘、楊純明、張愛華。2004。利用植被反射光譜特徵估測稻株氮素含量。中華農業研究 56:63-74。
4. 30. 羅正宗、陳一心、劉啟東。2000a。水稻植株葉色變化與測定方法。嘉義大學學報 69:15-22。
5. 20. 楊清富、李芳繁。1994。應用機器視覺進行番茄顏色分級之研究。農業機械學刊 3(1):15-29。
6. 29. 羅正宗、陳一心、陳宗禮。2004。葉綠素計應用於水稻植體氮營養狀況之測定。中華農業研究 53:179-192。
7. 24. 蔡金川。1982。水稻葉色與葉片全氮農度之品種間差異。中華農業研究 31(3):246-253。
8. 9. 李裕娟、楊純明、張愛華。2002。施用氮肥對水稻植株氮素、葉綠素及植被反射光譜之影響。中華農業研究 51(1):1-14。
9. 3. 江國忠。1998。水稻有機栽培之施肥管理。花蓮區農業專訊 26:2-4。
10. 19. 楊純明。2003。利用葉綠素測計估測水稻植株葉綠素及氮素。中華農業研究 52:73-83。
11. 18. 楊之遠。1979。臺灣地區溫度年變化與水稻安全栽培期限之關係。氣象學報 25(4):21-28。
12. 23. 潘昶儒、余宣穎、黃井約。2008。水稻優質栽培施肥管理模式。花蓮區農業專訊 65:12-15。
13. 22. 劉瑋婷。1993。利用溫度單位劃分水稻生長期之可行性研究。政院農委會花蓮區農業改良場研究彙報 9:115-133。
 
系統版面圖檔 系統版面圖檔