(3.238.96.184) 您好!臺灣時間:2021/05/12 23:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:林偉棋
研究生(外文):Wei-Chi Lin
論文名稱:NdFeMB系合金棒材磁性、相變化及顯微結構之研究(M = Cr, Nb, Sn, Nb+Co, Nb+Zr, Nb+Sn)
論文名稱(外文):Magnetic properties, phase evolution, and microstructure of NdFeMB series rods(M = Cr, Nb, Sn, Nb+Co, Nb+Zr, Nb+Sn)
指導教授:張文成張文成引用關係
指導教授(外文):Wen-Cheng Chang
口試委員:張文成陳士堃張晃暐
口試委員(外文):Wen-Cheng ChangShi-Kun ChenHuang-Wei Chang
口試日期:2011-07-21
學位類別:碩士
校院名稱:國立中正大學
系所名稱:物理學系暨研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:122
中文關鍵詞:外加磁場塊狀永磁合金棒材
外文關鍵詞:Grain refinementBulk hard magnetNd2Fe14B
相關次數:
  • 被引用被引用:0
  • 點閱點閱:117
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:6
  • 收藏至我的研究室書目清單書目收藏:0
本實驗第一部分延續本實驗室先前之研究,採用銅模鑄造法製作直徑分別為0.9、1.1、1.3、1.5 mm,長度為16 mm之合金棒材,在合金棒材淬冷過程中,給予一外加磁場,探討不同棒材尺寸下,磁場提升棒材磁性之程度。實驗結果顯示磁場之引入對於尺寸較大之棒材磁性提高較多,而尺寸較小者影響甚微。
  其次,以Nd9.5Febal.MxB15(M=Cr、Nb及Sn)合金系統出發,探討不同元素適量添加後對於直徑為0.9 mm之合金棒材磁性、相組成及顯微結構之影響。結果顯示Cr置換後棒材中產生Fe3B及2:14:1相,磁性僅微幅提升;Nb之置換可有效細化晶粒並壓抑軟磁相生成而形成單一2:14:1相,iHc大幅提升,最佳磁性出現於Nb含量為4 at.%時,其磁性為Br=5.9 kG、iHc=14.6 kOe、(BH)max=7.1 MGOe;而Sn之置換可產生大量Fe3B相,可使整體磁化量提升。
  再者,以Nd9.5Febal.CoxNb4B15(x=0, 10, 20)為基底,研究不同含量之Co取代Fe,研究Co含量與熱處理溫度對合金棒材之磁性及顯微結構之影響。而Co之置換則有助於iHc之提高。而經適當熱處理後,磁性均有些微提升,最佳磁性出現於Nd9.5Febal.Co10Nb4B15由未熱處理前之Br=5.9 kG、iHc=15.6 kOe、(BH)max=7.3 MGOe提升至熱處理後之Br=6.1 kG、iHc=11.2 kOe、(BH)max=7.6 MGOe。
  最後,以Nd9.5Febal.Nb4-xZrxB15及Nd9.5Febal.Nb4SnxB15兩合金系統為基底,研究Zr取代Nb與Sn取代Fe之效應棒材之磁性及顯微結構之影響。Zr之取代粗化了晶粒尺寸導致磁性下降;而Sn之取代可有效細化晶粒而提高其磁性至Nd9.5Febal.Nb4Sn0.5B15棒材之Br=6.3 kG、iHc=9.3 kOe、(BH)max=8.2 MGOe,為本論文最高磁能積者。

In this study, in order to simplify the manufacturing the processes for making isotropic magnets, we adopted the copper mode casting method to fabricate Nd-Fe-B-type alloy rods. Firstly, effect of the external magnetic field during solidification on the magnetic properties of Nd9.5Febal.Ti2.5Zr0.5Cr1B14.5C0.5 rods with various diameters of 0.9-1.5 mm has been studied. External magnetic field during solidification could refine grain size of the rods, resulting in magnetic property improvement, and besides, effect of magnetic field to magnetic property improvement is weaker for the rods with smaller diameter (0.9 mm).
Secondly, we also studied magnetic properties, phase evolution, and microstructure of Nd9.5Febal.MxB15 (M=Cr, Nb, and Sn; x=0-6) rods. For Cr substitution, magnetic properties could be slightly improved. Nb substitution not only suppresses soft magnetic phases, i.e., Nd2Fe23B3, Fe3B and one unknown phase, leading to the presence of large amount of Nd2Fe14B phase, but also refines the grain size, effectively. As a result, the magnetic properties are enhanced remarkably from Br = 4.7 kG, iHc = 0.8 kOe and (BH)max = 0.7 MGOe for ternary alloy to Br = 5.9 kG, iHc = 14.6 kOe and (BH)max = 7.1 MGOe for Nd9.5Febal.Nb4B15 alloys. For Sn substitution, those soft magnetic phases are also suppressed for x = 0.5, but the amount of Fe3B phase increases by increasing Sn content from 0.5 to 2 at%.
Thirdly, effects of Co substitution for Fe and also heat treatment on the magnetic properties of Nd9.5Febal.Nb4B15 rods have been studied. Co substitution is helpful for the increment of coercivity, and proper heat treatment could slightly increase magnetic properties to Br=6.1 kG、iHc=11.2 kOe、(BH)max=7.6 MGOe for Nd9.5Febal.Co10Nb4B15 rod annealed at 675 oC.
Finally, effects of Zr substitution for Nb and Sn substitution for Fe on the magnetic properties of Nd9.5Febal.Nb4B15 have also been investigated. For Zr substitution, the grain size becomes coarsened and results in the decrease of the magnetic properties. On the other hand, proper amount of Sn substitution for Fe in Nd9.5Fe71.5Nb4B15 rods could further refine the grain size, consequently, magnetic properties can be further improved to Br = 6.3 kG, iHc = 9.3 kOe and (BH)max = 8.2 MGOe for Nd9.5Fe71Nb4Sn0.5B15 bulk magnet due to the improved exchange coupling effect between magnetic grains.

目錄
摘要 I
Abstract II
誌謝 IV
目錄 V
圖目錄 VIII
表目錄 XI
第一章 緒論 1
1-1 磁性材料和永磁材料 1
1-2 稀土永磁材料 5
1-3 R-Fe-B複合奈米晶永磁材料 9
1-4 R2Fe14B顯微結構和特性 15
1-5 磁性合金棒材及文獻回顧 17
1-6 研究動機與目的 22
第二章 理論基礎 24
2-1 基本磁學理論 24
2-1-1磁性來源 24
2-1-2磁性分類 25
2-1-3磁交互作用 28
2-1-4磁異向性 29
2-2磁滯曲線 31
2-3 消磁場 33
2-4交換耦合效應 35
第三章 實驗方法 39
3-1 實驗流程 39
3-2 合金棒材製備 40
3-2-1合金熔煉 40
3-2-2銅模鑄造法 41
3-2-3孔徑選擇 42
3-3 量測分析 43
3-3-1 磁性量測(VSM) 43
3-3-2 熱磁分析儀(TMA) 44
3-3-3 XRD結構鑑定 45
3-3-4 顯微組織觀察(TEM) 45
3-3-5 顯微組織觀察(SEM) 45
3-4合金成份 46
第四章 結果與討論 49
4-1外加磁場對Nd9.5Febal.Ti2.5Zr0.5Cr1B14.5C0.5不同尺寸合金棒材之影響 49
4-2 元素置換對於Nd9.5Febal.MxB15(M = Cr、Nd及Sn)合金棒材之影響 57
4-2-1 元素Cr置換對於Nd9.5Febal.MxB15合金棒材之影響 58
4-2-2 元素Nb置換對於Nd9.5Febal.MxB15合金棒材之影響 62
4-2-3 元素Sn置換對於Nd9.5Febal.MxB15合金棒材之影響 68
4-3 Co含量變化及適當熱處理對Nd9.5Febal.CoxNb4B15合金棒材之磁性、相變化及顯微結構之探討 73
4-3-1 Co含量變化對Nd9.5Febal.CoxNb4B15合金棒材之磁性、相變化及顯微結構之探討 74
4-3-2不同熱處理條件下Nd9.5Febal.CoxNb4B15合金棒材之磁性變化 80
4-4 元素Zr及Sn於Nd9.5Febal.Nb4B15合金系統中之影響 87
4-4-1 Zr置換對Nd9.5Febal.Nb4-xZrxB15合金棒材之影響 88
4-4-2 Sn置換對Nd9.5Febal.Nb4SnxB15合金棒材之影響 93
第五章 結論 100
參考文獻 103


參考文獻
[1]J.Hall, A. Fenochi and Mr. Eternad, 13th Int. Workshop on RE Magnet & their Applications, 329(1994).
[2]何開元。精密合金材料科學。北京:冶金工業出版社,85(1991)
[3]W. M. Hubbard, E. Adams and J. V. Gilfrich, J. Appl. Phys. 31, 368(1960).
[4]G. Hoffer and K. Strnat, IEEE Trans. Magn. 2, 487(1996).
[5]K. J. Strnat, Cobalt 36, 133 (1967).
[6]K. J. Strnat, G. Hoffer, J. Olson, W. Ostertag and J. J. Becker, J. Appl. Phys. 38, 1001 (1967).
[7]E. A. Nesbitt et al., Appl. Phys. Lett. 12, 361 (1968).
[8]Velge, W. A. J. T. et al., J. Appl. Phys. 39, 336 (1968).
[9]Buschow, K. H. J. et al., Philips Tech Rew 29, 1717 (1968).
[10]Das, D. K., IEEE. Trans. On magn. MAG-5, No. 3, 214 (1969).
[11] Benz M. G. et al., Cobalt No. 50, 11 (1971).
[12] D. L. Martin et al., Cobalt No. 50, 11 (1971).
[13] A. C. Epmopehko et al., IEEE Trans. Magn. 17, 499 (1973).
[14] T. Ojima et al., J. Appl. Phys. 4, 671 (1977).
[15]J. J. Croat, Appl. Phys. Lett. 37, 1096 (1980).
[16]J. J. Croat, J.Appl. Phys. 52, 2509 (1981).
[17]J. J. Croat, Appl. Phys. Lett. 39, 357 (1981).
[18] N. C. Koon and B. N. Das, Appl. Phys. Lett. 39, 840 (1981).
[19]J. J. Becker, J. Appl. Phys. 55, 2067 (1984).
[20] G. C. Hadjipanayis, R. C. Hazelton, and K. R. Lawless, J. Appl. Phys., 55, 2073 (1984).
[21]A. E. Clark et al. Phys. Lett.A 42, 160 (1972).
[22]J. J. Croat, J. F. Herbst, R. W. Lee, and F. E. Pinkerton, J. Appl. Phys., 55, 2078 (1984).
[23]D. J. Sellmyer, A. Ahmed, G. Muench, and G. Hadjipanayis, J.Appl. Phys., 55, 2088 (1984).
[24]A. E. Clark et al., Phys. Lett.A 42, 160 (1972).
[25]A. E. Clark, Appl. Phys. Lett. 23, 642 (1973).
[26]J. M. D. Coey and Hong Sun, J. Magn. Magn. Mater. 97, 251(1990).
[27]日本產經新聞四月十六日報 (1991)。
[28]Y. Kaneko, R&D Section of NEOMAX Div., Sumitomo Special Metals Co., Ltd., “Development of Super High Performance Magnet Having 444 kJ/m3 (55.8MGOe)”,日本應用磁氣學會誌,vol. 24, No. 1, 13 (2000).
[29]W. Rodewald, B. Wall, M. Katter, and K. Uestuener, IEEE Trans. Magn. 39, 2932 (2003).
[30]A. Sakamoto, T. Hidaka, C. Ishizaka, N. Uchida, and A. Fukuno, Trans. Mater. Res. Soc. Jap.
[31]Yutaka Matsuura, J. Magn. Magn. Mater.
[32]E. C. Stoner, E. P. Wohlfarther, Phil. Trans. Roy. Soc. A-240, 599(1948).
[33]周壽增, 稀土永磁材料及其應用, 北京機械工業出版社, 111(1990).
[34]A. Manaf, R. A. Buckley, H. A. Davis and M. Leonowicz, J. Magn. Magn. Mater., 101, 360 (1991).
[35]J. Bauer, M. Seeger, A. Zern and H. Kronmüller, J. Appl. Phys., 80, 1667 (1996).
[36]R. Coehoorn, D.B. DeMooij, and C. DeWaard, J. Magn. Magn. Mater., 80, 101, (1989).
[37]H. Kanekiyo, M. Uehara, and S. Hirosawa, IEEE Trans. Magn., 29, 2863 (1993).
[38]R. Coehoorn, D. B. Mooij, J. P. W. Duchateau, and K. H. Buschow, J. J. de Phys. 49, C8, 669 (1988).
[39]Z. H. Cheng, B. G. Shen, and F. W. Wang, Phys. Rev. B 51, 12433(1995).
[40]Z. H. Cheng, B. G. Shen, and M. X. Mao, and J. J. Sun, Phys. Rev. B 52, 9247 (1995).
[41]B. G. Shen, J. X. Zhang, and L. Y. Yang, J. Magn. Magn. Mater. 96, 335, (1991).
[42]B. G. Shen, J. X. Zhang, and L. Y. Yang, J. Magn. Magn. Mater. 89, 195, (1990).
[43]S. Hirosawa, H. Kanekiyo, and M. Uehara, J. Appl. Phys. 73, 6488(1993).
[44]S. Hirosawa, αnd H. Kanekiyo, Mater. Sci. Eng. Α 217/218, 367(1996).
[45]H. Kanekiyo, M. Uehara, and S. Hirosawa, IEEE Trans. Magn. 29, 2863 (1993).
[46]H. Kanekiyo, M. Uehara, and S. Hirosawa, Mater. Sci. Eng. A 181/182, 868 (1994).
[47]K. Kajiwara, K. Hono, S. Hirosawa, Mater. Trans. JIM 42, 1858(2001).
[48]D. H. Ping, K. Hono, and Hirosawa, J. Αppl. Phys. 83, 7769 (1998).
[49]D. H. Ping, K. Hono, H. Kanekiyo, and S. Hirosawa, IEEE Trans. Magn. 35, 3262 (1999).
[50]M. Rajasekhar, D. Akhtar, M. Manivel Raja, S. Ram and V. Chandrasekaran, J. Phys. D: Appl. Phys. 42 (2009)
[51]B. D. Cullity, Introduction to magnetic materials, Addison-Wesley Publishing Company, Inc. 207 (1972).
[52]T. Schrefl, J. Fidler, and H. Kronmüller, Phys. Rev. B 49, 6100(1994).
[53]A. Manaf, R. A. Buckley, and H. A. Davis, J. Magn. Magn. Mater. 128, 302, (1993).
[54]G. C. Hadjipanayis and L. Withanawasam, IEEE Trans. Magn. 31, 3596 (1995).
[55] I. Panagiotopoulos and G. C. Hadjipanayis, J. Appl. Phys. 79, 4827(1996).
[56] Y. Q. Wu, D. H. Ping, K. Hono, M. Hamano, and A. Inoue, J. Αppl. Phys. 87, 8658 (2000).
[57]X. Y. Xiong, Y. Q. Wu, and K. Hono, Proceeding on the 17th International Workshop on Rare Earth Magnets and Their Applications, 796 (2002).
[58]P. Saravanan, D. Arvindha Babu, V. Chandrasekaran, Intermetallics 651-656 19 (2011)
[59]W. C. Chang, and D. M. Hsing, J. Αppl. Phys. 79, 4843 (1996).
[60]W. C. Chang, D. M. Hsing, B. M. Ma, and C. O. Bounds, IEEE Trans. Magn. 32, 4425(1996).
[61]W. C. Chang, S. H. Wu, B. M. Ma, and C. O. Bounds, J. Magn. Magn. Mater. 167, 65 (1997).
[62]W. C. Chang, S. H. Wu, B. M. Ma, and C. O. Bounds, J. Αppl. Phys. 81, 4453(1997).
[63]W. C. Chang, S. H. Wu, B. M. Ma, C. O. Bounds, and S. Y. Yao, J.Αppl. Phys. 83, 2147 (1998).
[64]W. C. Chang, D. Y. Chiou, S. H. Wu, B. M. Ma, and C. O. Bounds, Αppl. Phys. Lett. 72, 121 (1998).
[65]W. C. Chang, S. H. Wang, S. J. Chang, and M. Y. Tsai, IEEE Trans. Magn. 35, 3265 (1999).
[66]W. C. Chang, S. H. Wang, S. J. Chang, and Q. Chen, IEEE Trans. Magn. 36, 3312 (2000).
[67]W. C. Chang, S. H. Wang, S. J. Chang, and H. W. Chang, Proceeding on the 16th International Workshop on Rare Earth Magnets and Their Applications, 605 (2000).
[68] W. C. Chang, I. A. Chen, S. J. Chang, and C. H. Yu, Proceeding on the 16th International Workshop on Rare Earth Magnets and Their Applications, 613 (2000).
[69]J. F. Herbst, J. J. Croat, F. E. Pinkerson, and W. B. Yelon, Phys. Rev. B 29, 4173 (1984).
[70]C. Abache and H. Oesterreicher, J. Αppl. Phys. 57, 4112 (1985).
[71]W. Klement, R. H. Willens and P. Duwex, Nature, 187, 869(1960).
[72]A. Inoue, Y. Shinohara and J.S. Gook, Mater. Trans. JIM, 36, 1427(1995).
[73]A. Inoue, T. Zhang, W. Zhang, A. Takeuchi, Mater. Trans. JIM 37,99(1996).
[74]A. Inoue, T. Zhang, A. Takeuchi, Mater. Trans. JIM 37,1731(1996).
[75]A. Inoue, T. Zhang and A. Takeuchi, IEEE Trans. Magn. 33, 3814(1997).
[76]W. Zhang and A. Inoue, J. Appl. Phys. 91, 8834(2002).
[77]P.C. Pawlik and H.A. Davies, Scripta Mater. 49, 755(2003).
[78]P. Pawlik, K. Pawlik, H.A. Davies, W. Kaszuwara, J.J. Wysłocki, N. Harrison, I. Toddb, J. Alloys and Compds. 423, 99(2006).
[79]J. Zhang, K. Y. Lim, Y. P. Feng and Y. Li, Scripta Mater. 56, 943(2007).
[80]H.W. Chang, M.F. Shih, C.W. Chang, C.C. Hsieh and Y.T. Cheng, Scripta materialia 59, 227 (2008).
[81]H.W. Chang, M.F. Shih, C.W. Chang, C.C. Hsieh and Y.K. Fang, J. Appl. Phys. 103, 07E105 (2008)
[82]H.W. Chang, Y. T. Cheng, C.W. Chang, C.C. Hsieh and Z. H. Guo, J. Appl. Phys. 105, 07A742 (2009).
[83]H.W. Chang, J. Y. Gan, C.C. Hsieh, X. G. Zhao, and W. C. Chang J. Appl. Phys. 107, 09A740 (2010).
[84]C. Wang, Y. S. Lai, C. C. Hsieh, W. C. Chang, H. W. Chang, and A. C. Sun, J. Appl. Phys. 109, 07A715(2011)
[85]施梅芬,直接冷卻RFeMB合金棒材之磁性、相變化及顯為結構研究,國立中正大學碩士論文(2007)
[86]張文成,磁性技術手冊,P.54,2002。
[87]B. D. Cullity, “Introduction to Magnetic Materials”, 58 (1972).
[88]E. F. Kneller, R. Hawig, IEEE Trans. Magn. 27, 3588 (1991).
[89]R.Hasegawa, Phys. Lett., 38, 5(1972)
[90]M. Nose and T. Masumoro, Sci. Rep. Res. Inst. Tohoku Univ. 28, 232(1980).
[91]A. Inoue, A. Takeuchi and B. Shen, Mater. Trans. JIM, 42, 970(2001).
[92]W. Zhang and A. Inoue, Appl. Phys. Lett. 80, 1610(2002).
[93]Yi Long, Wei Zhang, Xinmin Wang, Akihisa Inoue, J. Appl. Phys. 91, 5227(2002).
[94]M. Marinescu, P.C. Pawlik, H.A. Davies and H. Chiriac, J. Optoelectron. Adv. Mater. 6(2), 603(2004).
[95]M. Marinescu, H. Chiriac, M. Grigoras, J. Magn. Magn. Mater. 290-291, 1267(2005).
[96]P. Pawlik, K. Pawlik, H.A. Davies, W. Kaszuwara, J.J. Wysłocki, N. Harrison, I. Toddb, J. Alloys and Compds. 423,99(2006).
[97]Z. H. Guo, H. W. Chang, C. W. Chang, C. C. Hsieh, A. C. Sun, W. C. Chang, W. Pan, and W. Li, J. Appl. Phys. 105, 07A731 (2009)
[98]A. Inoue, Y. Shinohara, and J. S. Gook, Mater. Trans. JIM, 36, 1427(1995)
[99]Z. Chu, W. B. Yelon and B. M. Ma, J. Appl. Phys. 91 7878(2002)
[100]張晃暐,PrFeB系複合奈米晶薄帶磁性、相變化、矯頑機制及磁性後效之研究,國立中正大學博士論文 (1994)。
[101]甘健佑,多元塊狀永磁磁性及相變化之研究,國立中正大學碩士論文 (2009)
[102]Rintaro Ishii, Toshio Miyoshi, Hirokazu Kanekiyo and Satoshi Hirosawa, J. Magn. Magn. Mater. 312, 410(2007).
[103]鄭裕德,多元置換對直接冷卻RFeMB合金棒材之向變化及磁性之影響,國立中正大學碩士論文(2008)。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔