|
[1] C. Chevalier etal. Inertial effects on saffman-taylor viscous fingering. J. Fluid Mech, 522, 2006. [2] E. Ben-Jacob etal. Experimental demonstration of the role of anisotropy in interfacial pattern formation. Phys. Rev. Lett, 55, 1985. [3] T. E. Faber. FLUID DYNAMICS FOR PHYSICISTS. CAMBRIDGE UNIVERSITY PRESS, 1995. [4] H. S. Hele-Shaw. Flow of water. Nature, 58, 1989. [5] C. Chevalier etal. Destabilization of a saffman-taylor fingerlike pattern in granular suspension. Phys. Rev. Lett, 99, 2009. [6] S. Li etal. Control of viscous fingeing pattern in a radial hele-shaw cell. Phys. Rev. Lett, 102, 2009. [7] N. M. Jirsaraei etal. Saffman-taylor instability in yield stress fluids. PHYSICS OF FLUIDS, 12, 2000. [8] L. Carrillo etal. Interfacial instabilities of a fluid annulus in a rotating helevshaw cell. PHYSICS OF FLUIDS, 12, 2000. [9] H. Kaufman etal. Parallel diffusion-limited aggregation. Phys. Rev. E, 52, 1995. [10] J. Nittmann, G. Daccord, and H. Eugene Stanley. Fractal growth of viscous fingers: quantitative characterization of a fluid instability phenomenon. NATURE, 314, 1985. [11] Wen J. Li Peng Xiao and Ruxu Du. Microbubble generation using carbon nanotubes heating elements. IEEE, 10, 2011. [12] Hong-Yu Chu Yen-Hong Chen and Lin I. Interaction and fragmentation of pulsed laser induced microbubbles in a narrow gap. Phys.Rev.Lett, 96, 2006. [13] F. Grieser A. Brotchie and M. Ashokkumar. Effect of power and frequency on bubble-size distrbutions in acoustic cavitation. Phys.Rev.Lett, 102, 2009. [14] T. G. Leighton. The Acoustic Bubble. ACADEMIC PRESS, 1997. [15] Hsan-Yin Hus A. T. Ohta A. Jamshidi, J. K. Valley and Ming C. Wu. Optically actuated thermocapliiary moverment of gas bubble on the absorbing substrate. Appl.Phys.Lett, 91, 2007. [16] L. Stollenwerk, J. G. Laven, and H.-G. Purwins. Spatially resolved surface-charge measurement in a planar dielectric-barrier discharge system. Phys.Rev.Lett, 98, 2007. [17] J. Guikema, N. Miller, J. Niehof, M. Klein, and M. Walhout. Spontaneous pattern formation in an effectively one-dimensional dielectricbarrier discharge system. Phys. Rev. Lett, 85, 2000. [18] Hong-Yu Chu and Bo-Shiun Huang. Gap-dependent transitions of atmospheric microplasma in open air. Physics of Plasma, 18, 2011. [19] Ulrich Kogelschatz. Filamentary and pattern and diffuse barrier discharges. IEEE, 30, 2002. [20] E. L. Gurevich, A. L. Zanin, A. S. Moskalenko, and H.-G. Purwins. Concentric-ring patterns in a dielectric barrier discharge system. Phys.Rev.Lett, 91, 2003. [21] W. Breazeal, K. M. Flynn, and E. G. Gwinn. Static and dynamic twodimensional patterns in self-extinguishing discharge avalanches. Phys- RevE, 52, 1995. [22] Brian Chapman. Glow Discharge Precesses. Wiley, 1980. [23] Julia Nase and Anke Lindner. Pattern formation during deformation of a confined viscoelastic layer: From a viscous liquid to a s oft elastic solid. Phys.Rev.Lett, 101, 2008. [24] G. Daccord, J. Nittmann, and H. Eugene Stanley. Radial viscous fingers and diffusion-limited aggregation: Fractal dimension and growth sites. Phys.Rev.Lett, 56, 1986. [25] Yuri P. Raizer. Gas Discharge Physics. Springer, 1991.
|