(3.210.184.142) 您好!臺灣時間:2021/05/16 01:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:胡顥騰
研究生(外文):Hu, Hao-Teng
論文名稱:光子晶體光纖干涉儀在感測應用之研究
論文名稱(外文):Photonic Crystal Fiber Interferometer for Sensing Applications
指導教授:湯兆崙
指導教授(外文):Tang, Jaw-Luen
口試委員:湯兆崙魏台輝王劍能
口試委員(外文):Tang, Jaw-LuenWei, Tai-HueiWang, Jian-Neng
口試日期:2011-07-27
學位類別:碩士
校院名稱:國立中正大學
系所名稱:物理學系暨研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:201
中文關鍵詞:光子晶體光纖光子晶體光纖干涉儀干涉儀長度干涉光譜之條紋間距折射率Q值應變溫度
外文關鍵詞:photonic crystal fiberinterferometersensing lengthrefractive indexquality factorstraintemperature
相關次數:
  • 被引用被引用:5
  • 點閱點閱:308
  • 評分評分:
  • 下載下載:24
  • 收藏至我的研究室書目清單書目收藏:0
本論文採用電弧放電的方式,將三種不同型號的光子晶體光纖製作成光子晶體光纖干涉儀,藉由改變干涉儀的長度,我們得到了不同的干涉光譜,並且進一步分析干涉光譜之特性,同時我們也驗證了干涉光譜之條紋間距與干涉儀長度之間反比的關係。在折射率感測方面,三種光子晶體光纖干涉儀的感測解析度(RI=1.333~1.422)約為10-3~10-5RIU之間,其中PM-1550光子晶體光纖干涉儀在高折射率區間(RI=1.403~1.422)之感測靈敏度可到達1246nm/RIU,而其感測解析度為1.17×10-5 RIU。另外,本論文中介紹了Q值(quality factor)之計算,其可以顯示折射率感測器之品質。三種光子晶體光纖干涉儀的Q值(RI=1.333~1.422)大約在4 ~ 550 RIU-1之間,其中PM-1550光子晶體光纖干涉儀在高折射率區間(RI=1.403~1.422)之Q值為547 RIU-1。三種光子晶體光纖干涉儀對於應變的感測,其實驗結果具有良好的線性度,其感測靈敏度大約在1.1pm/με ~ 2.1pm/με之間。在溫度感測的實驗中,我們發現LMA-10光子晶體光纖干涉儀對於溫度的變化相當不靈敏,因此在測量其他物理量時,比較不容易受到溫度的干擾。
We have fabricated fiber Mach-Zehnder interferometer (MZI) with 3 types of photonic crystal fiber (PCF) by using arc discharge. We changed the sensing length of the interferometer, and analyzed the properties of the interference spectrum, like fringe visibility, difference of the propagation constant and the fringe distance. The fringe distance, as predicted by theory, was found to be inversely proportional to the sensing length. In the study of refractive index sensing, the sensor resolution of 3 types PCF-MZI are about 10-3 -10-5, and the sensitivity of the PM-1550 type PCF-MZI, the highest among the others, is found to be 1246nm/RIU, and its sensor resolution is 1.17×10-5 RIU. Additionally, a quality factor Q was introduced to determine the quality of a refractive-index sensor. The Q of our PCF-MZIs are from 4 RIU-1 to 550 RIU-1. About strain sensing, the experimental results of the 3 types PCF-MZI show very high linearity, and the sensitivity is between 1.1 pm/με and 2.1 pm/με. We also found that the LMA-10 type PCF-MZI is very insensitive to temperature, therefore, we can neglect the cross-sensitivity of temperature when doing sensing of other physical quantities.
摘要…………………………………………………………………….....I
Abstract……………………………………………………………...…...II
目錄……………………………………………………………………..III
圖目錄…………………………………………………………………..VI
表目錄………………………………………………………………....XX
第一章 緒論…………………………………………………...1
1-1 研究背景………………………………………………………..1
1-1-1 光纖簡介…………………………………………………1
1-1-2 光纖感測器簡介…………………………………………6
1-1-3 光纖干涉儀簡介………………………………………..11
1-2 研究動機與目的………………………………………………11
1-3 本文簡介………………………………………………………13
第二章 光子晶體光纖及干涉儀基本原理……………….....14
2-1 光子晶體光纖基本原理介紹…………………………………14
2-1-1 光子晶體光纖簡介……………………………………..14
2-1-2 光子晶體光纖的基本構造…………………...………...15
2-1-3 光子晶體光纖的製作方法……………………………..15
2-1-4 光子晶體光纖的特性…………………………………..16
2-1-5 光子晶體光纖的傳播原理…………………………….17
2-2 光纖干涉儀………………………………………………...….18
2-2-1 Michelson光纖干涉儀的基本原理…………………..18
2-2-2 Fabry-Perot光纖干涉儀的基本原理…………….…...19
2-2-3 Mach-Zehnder光纖干涉儀的基本原理……………...20
2-3 折射率變化基本的理論………………………………………22
2-3-1 漸逝波………………………………………………….22
2-3-2 外在折射率下,波長的飄移理論……………….…….23
2-4 Villatoro干涉儀實驗之文獻回顧…………………………...27
第三章 光纖干涉儀製作與實驗方法……………………….33
3-1 引言……………………………………………………………33
3-2 光纖干涉儀的製作技術………………………...……….……33
3-2-1 光柵式干涉儀…………………………………………..33
3-2-2 熔燒點式干涉儀………………………………………..34
3-3 實驗裝置與實驗流程…………………………………………35
3-3-1 實驗儀器介紹…………………………………………..35
3-3-2 實驗流程………………………………………………..39
3-3-3 製作干涉儀實驗裝置………………………………….40
3-3-4 量測折射率實驗裝置………………………………….42
3-3-5 量測應變實驗裝置…………………………………….43
3-3-6 量測溫度實驗裝置…………………………………….44
第四章 實驗結果與討論…………………………………….46
4-1 引言……………………………………………………………46
4-2 製作光子晶體光纖干涉儀……………………………………46
4-3 光子晶體光纖干涉儀測量折射率……………………………89
4-4 光子晶體光纖干涉儀測量應變……………………...……...155
4-5 溫度感測實驗………………………………………………..177
4-6 微流體晶片實驗……………………………………………..186
4-7 溫度與應變對干涉儀之效應……………….………….…….192
第五章 結論與未來展望…………………………………...196
5-1 結論…………………………………………………………..196
5-2 未來展望…………………………………………………......198
參考文獻…………………………………………………….199


[1]K.C. Kao, and G.A. Hockham, "Dielectric-fibre surface waveguides for optical frequencies," Proc. IEE, Vol. 113, No. 7, pp. 1151-1158(1966).
[2]吳曜東,光纖原理與應用,全華科技圖書股份有限公司,台北(2001)。
[3]勞工安全衛生研究所副研究員沈育霖「光纖感測器簡介」(2011)。勞工安全衛生研究所網站。取自:http://oldwww.iosh.gov.tw/data/f2/sp72-2.htm
[4]郭原宏,“光纖光柵感測器於結構監測之應用”,國立臺灣大學土木工程學研究所碩士論文(2000)。
[5]許招墉,光電工學概論,全華科技圖書股份有限公司,台北(1990)。
[6]E.M. Dianov, S.A. Vasiliev, A.S. Kurkov, O.I. Medvedkov, V.N. Protopopov, "In-fiber Mach-Zehnder interferometer based on a pair of long-period gratings," ECOC’96, Oslo.
[7]D. W. Kim, Y. Zhang, K. L. Cooper, and A. Wang, "In-fiber reflection mode interferometer based on a long-period grating for external refractive-index measurement," Appl. Opt., Vol. 44, pp. 5368-5373 (2005).
[8]J. Villatoro, V. P. Minkovich, V. Pruneri, and G. Badenes, "Simple all-microstructured-optical-fiber interferometer built via fusion splicing," Opt. Exp., Vol. 15, No. 4, pp. 1491-1496 (2007).
[9]H. Y. Choi, M. J. Kim, and B. H. Lee, "All-fiber Mach-Zehnder type interferometers formed in photonic crystal fiber," Opt. Exp., Vol. 15, No. 9, pp. 5711-5720 (2007).

[10] P. Russell, "Photonic crystal fibers," Science, REVIEW Appl. Phy., Vol. 299, pp. 358-362 (2003)
[11] F. Zolla, G. Renversez, A. Nicolet, B. Kuhlmey, S. Guenneau, and D. Felbacq, Foundations of PHOTONIC CRYSTAL FIBERS, ( World Scientific).
[12] T.A. Birks, J.C. Knight, P.St.J. Russell, " Endlessly single-mode
photonic crystal fiber," Opt. Lett., Vol. 22, pp. 961-963 (1997).

[13] J. C. knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth and P. St. J. Russell, "Anomalous dispersion in photonic crystal fiber," IEEE Photo. Tech. Lett., Vol. 12, pp. 807-809 (2000).
[14] 陳泳竹,徐文成,崔虎,“光纖中超連續光譜產生的領域分析”,光子學報,第三十二卷,第148-151頁(2003)。
[15] 廖建銘,“光子晶體光纖光柵之研究” 國立中正大學物理研究所碩士論文(2008)。
[16] B. H. Lee and J. Nishii, "Self-interference of long-period fiber grating and its application as temperature sensor," Elec. Lett., Vol. 34, No. 21, pp. 2059-2060 (1998).
[17] Y. J. Rao, M. Deng, D. W. Duan, X. C. Yang, T. Zhu, and G. H. Cheng, "Micro Fabry-Perot interferometers in silica fibers machined by femtosecond laser, " Opt. Exp., Vol. 15, No. 21, pp. 14123-14128 (2007).
[18] J. Canning and A.L.G. Carter, "Modal interferometer for in situ measurements of induced core index change in optical fibers," Opt. Lett., Vol. 22, No. 8, pp.561-563 (1997).
[19] 陳建興,“金奈米粒子修飾光纖光柵感測器之特性與研究” 國立中正大學物理研究所碩士論文(2007)。
[20] R. Jha, J. Villatoro, and G. Badenes, "Ultrastable in reflection photonic crystal fiber modal interferometer for accurate refractive index sensing," Appl. Phy. Lett., 93 (2008).
[21] R. Jha, J. Villatoro, G. Badenes, and V. Pruneri, "Refractometry based on a photonic crystal fiber interferometer," Opt. Lett., Vol. 34, No. 5, pp. 617-619 (2009).
[22] L. Rindorf, and O. Bang, "Sensitivity of photonic crystal fiber grating sensors: biosensing, refractive index, strain, and temperature sensing," J. Opt. Soc. Am. B, Vol. 25, No. 3, pp. 310-324 (2008).
[23] G. Coviello, V. Finazzi, J. Villatoro, and V. Pruneri, "Thermally stabilized PCF-based sensor for temperature measurements up to 1000ºC," Opt. Exp., Vol. 17, No. 24, pp. 21551-21559 (2009).
[24] J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, "Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing," Appl. Phy. Lett., Vol. 91, (2007).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top