跳到主要內容

臺灣博碩士論文加值系統

(18.205.192.201) 您好!臺灣時間:2021/08/05 03:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔡瑞廷
研究生(外文):Tsai, JuiTing
論文名稱:光譜積分法在以金為基底的奈米狹縫下之陣列感測發展
論文名稱(外文):Development of Spectral Integration Method for gold nanoslits-based microarray sensor
指導教授:姚永德姚永德引用關係魏培坤
指導教授(外文):Yao, YeongDerWei, PeiKuen
口試委員:姚永德魏培坤魏大華
口試委員(外文):Yao, YeongDerWei, PeiKuenWei, DaHua
口試日期:2012-07-11
學位類別:碩士
校院名稱:國立中正大學
系所名稱:物理學系暨研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:79
中文關鍵詞:光譜積分法表面電漿子陣列感測
外文關鍵詞:Integration Methodplasmonmicroarray sensor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:198
  • 評分評分:
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:0
  現今檢測實驗對於高通量、無須標定、不受電磁甘擾、高靈敏度、即時量測等需求越來越高。為了要滿足這些需求,我們利用奈米壓印技術所製作的狹縫結構激發表面電漿子搭配適當的量測架構以及數據處理的方式得到高靈敏度的量測系統。
  本論文從整個檢測晶片的製作流程開始介紹,接著探討為了改變晶片表面的環境折射率該如何搭配適當的微流道減少雜訊與量測的方便性,再來利用甘油水溶液改變晶片的表面折射率在不同的架設上對於相同的金屬狹縫結構進行的靈敏度測試,在這之中我們得知以單光儀進行分光並利用CCD大面積量測有較高的靈敏度(21096 nm%),因此我們利用此架設進行一些應用性的實驗。
  應用性的實驗主要分為兩部分,有牛血清蛋白的生物性實驗以及奈米金顆粒的定量實驗。在生物實驗中我們可以很明顯的得到除了濃度較高的兩個陣列在量測的結果上呈現飽和的結果外,其餘的濃度的響應值皆可以鑑別出濃度順序,對於牛血清抗體的檢測極限為73.7 nM。奈米金量測上則是SEM觀察到的顆粒數量變化與響應值明顯的呈現線性關係,對於直徑30 nm的奈米金顆粒檢測極限為0.178 particle / μm2。

Nowadays, detection experiments demands for high throughput, without calibration, not subject to electromagnetic interference, high sensitivity and real-time measurement are increasing. For these purposes, we use the slits structure produced by nanoimprint lithography technology to the excitation of surface plasmon with appropriate measurement setups and data processing to get the high sensitivity measurement system.
In this thesis, we will explain the chip production process, and then explore what kind of microfluidics, which in order to change the refractive of chip surface, are appropriate to reduce noise and enhance measurement convenience. We use it as the glycerol aqueous solution to change the refractive index of the chip surface. After that, we conduct the sensitivity test using different optical systems for the same metal slit structure. We found that the highest sensitivity measurement is monochromator spectrophotometry and CCD large area set-up (21096 nm%), so we use this system to do some application experiments.
The application experiments are divided into two parts, the bovine serum proteins in biological experiments and gold nanoparticles’ quantitative experiments. In biological experiments, we can clearly see except the two highest concentration arrays show saturation results, the response value of remaining concentration arrays can identify with the concentration. Detection limit of anti-bsa is 73.7 nM. In the gold nanoparticle experiment, the number of particles changes, which observed from SEM, has linear relationship with response value. Detection limit of gold nanoparticle(diameter 30 nm) is 0.178 particle / μm2。

誌謝 ................................ ................................ ..... I
Abstract ................................ ................................ II
摘要 ................................ ................................ .... IV
圖目錄 ................................ ................................ ... V
表目錄 ................................ ................................ . VII
第一章 緒論 ................................ ....................... 1
1.1 前言 ................................ ....................... 1
1.2 研究動機與目的 ................................ ............. 3
1.3 論文架構 ................................ ................... 6
第二章 實驗理 論與原................................ ............. 7
2.1 表面電漿子 (Surface Plasmons, SPs) 相關理論與特性 [16] ........ 7
2.2 侷域性表面電漿共振 [22] ................................ .... 14
2.3 狹縫中之表面電漿子激發與共振 .............................. 16
2.4 儀器技術簡介 ................................ .............. 20
2.4.1 反應式離子蝕刻技術 ........................................... 20
2.4.2 奈米壓印技術[27, 28] ......................................... 21
2.4.3 電子鎗蒸鍍機(Electron Beam Gun Evaporation)[30] .............. 23
第三章 樣品製備與實驗流程 ................................ ........ 25
3.1 樣品製備 ................................ .................. 25
3.1.1 狹縫結構之母模製作 ................................ ...... 25
3.1.2 製作金屬狹縫結構 ................................ ........ 27
3.2 微流道製作 ................................ ................ 31
3.3 微陣列 (Microarray) 製作 ................................ .... 37
3.4 光路架設 ................................ .................. 38
3.5 光譜積分法 [14] ................................ ............ 42
第四章 架設靈敏度比較與應用性實驗 ................................ 44
4.1 架設的靈敏度與檢測極限比較 ................................ 44
4.2 生物量測 ................................ .................. 47
4.3 奈米金量測 ................................ ................ 50
第五章 結論與展望 ................................ ................ 54
參考文獻 ................................ ................................ 56
附錄 ................................ ................................ .... 59
[1]T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi et al., “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature, 391(6668), 667-669 (1998).
[2]H. F. Ghaemi, T. Thio, D. E. Grupp et al., “Surface plasmons enhance optical transmission through subwavelength holes,” Physical Review B, 58(11), 6779-6782 (1998).
[3]J. Prikulis, P. Hanarp, L. Olofsson et al., “Optical spectroscopy of nanometric holes in thin gold films,” Nano Letters, 4(6), 1003-1007 (2004).
[4]K.-L. Lee, S.-H. Wu, and P.-K. Wei, “Intensity sensitivity of gold nanostructures and its application for high-throughput biosensing,” Optics Express, 17(25), 23104-23113 (2009).
[5]K.-L. Lee, W.-S. Wang, and P.-K. Wei, “Sensitive label-free biosensors by using gap plasmons in gold nanoslits,” Biosensors & Bioelectronics, 24(2), 210-215 (2008).
[6]S. Aksu, A. A. Yanik, R. Adato et al., “High-Throughput Nanofabrication of Infrared Plasmonic Nanoantenna Arrays for Vibrational Nanospectroscopy,” Nano Letters, 10(7), 2511-2518 (2010).
[7]A. Christ, O. J. F. Martin, Y. Ekinci et al., “Symmetry breaking in a plasmonic metamaterial at optical wavelength,” Nano Letters, 8(8), 2171-2175 (2008).
[8]F. Hao, Y. Sonnefraud, P. Van Dorpe et al., “Symmetry Breaking in Plasmonic Nanocavities: Subradiant LSPR Sensing and a Tunable Fano Resonance,” Nano Letters, 8(11), 3983-3988 (2008).
[9]A. G. Brolo, R. Gordon, B. Leathem et al., “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir, 20(12), 4813-4815 (2004).
[10]J. G. Zheng, J. L. Sun, and P. Xue, “Negative Photoconductivity Induced by Surface Plasmon Polaritons in the Kretschmann Configuration,” Chinese Physics Letters, 28(12), (2011).
[11]Z. W. Seh, S. H. Liu, M. Low et al., “Janus Au-TiO2 Photocatalysts with Strong Localization of Plasmonic Near-Fields for Efficient Visible-Light Hydrogen Generation,” Advanced Materials, 24(17), 2310-2314 (2012).
[12]G. L. Liu, J. C. Doll, and L. P. Lee, “High-speed multispectral imaging of nanoplasmonic array,” Optics Express, 13(21), 8520-8525 (2005).
[13]K. H. Chen, J. Hobley, Y. L. Foo et al., “Wide-field single metal nanoparticle spectroscopy for high throughput localized surface plasmon resonance sensing,” Lab on a Chip, 11(11), 1895-1901 (2011).
[14]M. E. Stewart, N. H. Mack, V. Malyarchuk et al., “Quantitative multispectral biosensing and 1D imaging using quasi-3D plasmonic crystals,” Proceedings of the National Academy of Sciences of the United States of America, 103(46), 17143-8 (2006).
[15]J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sensors and Actuators B: Chemical, 54(1–2), 3-15 (1999).
[16]S. A.Maier, [Plasmonics Fundamentals and Applications] Springer, (2007).
[17]S. Collin, F. Pardo, R. Teissier et al., “Strong discontinuities in the complex photonic band structure of transmission metallic gratings,” Physical Review B, 63(3), (2001).
[18]A. Moreau, C. Lafarge, N. Laurent et al., “Enhanced transmission of slit arrays in an extremely thin metallic film,” Journal of Optics a-Pure and Applied Optics, 9(2), 165-169 (2007).
[19]C. H. Wei PK, Fann WS, “Optical near field in nanometallic slits,” Opt Express, 10(24), 1418-24 (2002).
[20]Y. Takakura, “Optical resonance in a narrow slit in a thick metallic screen,” Physical Review Letters, 86(24), 5601-5603 (2001).
[21]Q. Cao, and P. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Physical Review Letters, 88(5), (2002).
[22]吳民耀, “表面電漿子理論與模擬,” 物理雙周刊, 28(2), 486-496 (2006).
[23]R. Gordon, “Light in a subwavelength slit in a metal: Propagation and reflection,” Physical Review B, 73(15), 153405 (2006).
[24]Q. Cao, and P. Lalanne, “Negative Role of Surface Plasmons in the Transmission of Metallic Gratings with Very Narrow Slits,” Physical Review Letters, 88(5), 057403 (2002).
[25]P. Lalanne, J. C. Rodier, and J. P. Hugonin, “Surface plasmons of metallic surfaces perforated by nanohole arrays,” Journal of Optics a-Pure and Applied Optics, 7(8), 422-426 (2005).
[26]A. H. a. A. A. Oliner, “A new theory of Wood’s anomalies on optical gratings,” Appl. Opt., 4, 1275-1297 (1965).
[27]蔡宏營, “ 奈米轉印技術介紹,” 工研院機械所奈米工程技術部專欄, (2004).
[28]C. G. e. a. Willson, Proc. SPIE, 3676(I), 379 (1999).
[29]李冠霖, “光固化型奈米壓印微影之石英母模製備及表面處理,” 農業機械學刊, 16, 13-24 (2007).
[30]李正中, [薄膜光學與鍍膜技術] 藝軒圖書出版社, 10 (2006).
[31]K.-L. Lee, W.-S. Wang, and P.-K. Wei, “Comparisons of Surface Plasmon Sensitivities in Periodic Gold Nanostructures,” Plasmonics, 3(4), 119-125 (2008).
[32]K.-L. Lee, and P.-K. Wei, “Enhancing Surface Plasmon Detection Using Ultrasmall Nanoslits and a Multispectral Integration Method,” Small, 6(17), 1900-1907 (2010).
[33]K.-L. Lee, P.-W. Chen, S.-H. Wu et al., “Enhancing Surface Plasmon Detection Using Template-Stripped Gold Nanoslit Arrays on Plastic Films,” Acs Nano, 6(4), 2931-2939 (2012).



QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top