(54.236.58.220) 您好!臺灣時間:2021/02/27 12:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳慶瑜
研究生(外文):King-Zoo Tang
論文名稱:整合使用者-科技與任務-科技配適構面以檢驗使用者對資訊系統評估
論文名稱(外文):Integrating User-Technology Fit with Task-Technology Fit to Examine User Evaluations of Information Systems
指導教授:洪新原洪新原引用關係
指導教授(外文):Shin-Yuan Hung
口試委員:許孟祥邱兆民吳英隆阮金聲
口試日期:2011-01-21
學位類別:博士
校院名稱:國立中正大學
系所名稱:資訊管理學系
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:英文
論文頁數:111
中文關鍵詞:使用者科技配適任務科技配適公平需求自我效能資訊系統評估
外文關鍵詞:User-Technology FitTask-Technology FitEquitable NeedsSelf-EfficacyInformation System Evaluation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:640
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:40
  • 收藏至我的研究室書目清單書目收藏:2
所謂「工欲善其事必先利其器」,所有成功的任務解決,都需要適合的資訊科技能夠配合使用者的需求與能力,來發揮資訊科技最大效果。本研究藉由加入「使用者科技配適」(User-Technology Fit, UTF)構面來擴展「任務科技配適」(Task-Technology Fit, TTF)模式。「使用者科技配適」(UTF)指的是「當使用者能夠使用符合他自己所需的資訊科技時,資訊科技將更可以提升其個人績效」。

使用者在不同的心理階層時會有不同的需求,同時使用者的資訊能力也不同,所以他們所需要與能夠應用的資訊科技也不同。UTF量表是衡量使用者評估工作上所使用資訊科技的量表。這裡所指的資訊科技包含了個人工作上所使用的資訊科技,以及個人在組織或公司內所使用的跨部門共用資訊科技。由於使用者需求或能力不同,所以最能夠配適他的資訊科技也不同。因此,個人與資訊系統特質的配適,將會影響特定的資訊科技與使用者個人特質間鏈結的強度,進而影響個人績效與個人對於資訊科技的使用評估。因此,本研究將「使用者科技配適」(UTF)構面組成分為使用者個人需求與能力等兩個部份,其中「個人需求」以Au等人(2008)提出之「公平需求」(Equitable Needs)問項為參考依據;而「個人能力」之問項,則以Bandura(1986)提出之「自我效能」(Self-efficacy)為發展基礎。本研究進而以此UTF量表來實證並檢測其解釋能力。研究結果顯示,UTF量表具有良好的信度與效度,而且整合UTF與TTF,對於使用者評估資訊系統,可以提供更良好的解釋能力。

Technologies are viewed as tools for carrying out individual tasks. Dedicated technology tools are prerequisites to the successful execution of a job. Nevertheless, the success of a task is depends on who employ these eminent tools. The notion of user-technology fit (UTF) is originate with a missing linkage in tripartite of TTF. User-technology fit is an important construct that was only implicit in many task-technology fit researches and was almost disregarded.

Based on equitable need theory (Au et al., 2008) and self-efficacy (Bandura, 1986), a measure for UTF was developed. The UTF construct was composed by the personal motivation and capabilities. In addition, this study is also to understand why and how UTF can affect the individual performance. Finally, an empirical study was conducted to exam user evaluation of information systems. The analytical results indicated that UTF is a measure with good reliability and validity. Furthermore, integrating UTF and TTF provides a better explanatory power on user evaluations of information systems than TTF only does.

Index of Contents
Abstract II


Chapter 1 – Introduction 1

1.1 Research Background and Motivation 1
1.1.1 The Contribution and Application of TTF --------------------------- 3
1.1.2 The Notion of UTF --------------------------- 6
1.1.3 The Component of UTF --------------------------- 8
1.2 Research Objectives and Questions --------------------------- 9
1.2.1 Research Objectives --------------------------- 9
1.2.2 Research Questions --------------------------- 11


Chapter 2 – Literature Review --------------------------- 12

2.1 Prior Study in Information System Use --------------------------- 12
2.1.1 Technology Acceptance Model (TAM) --------------------------- 13
2.1.2 Task Technology Fit (TTF) --------------------------- 15
2.1.3 Equitable Needs (EN) --------------------------- 19
2.1.4 Self-Efficacy (SE) --------------------------- 22
2.2 User-Technology Fit (UTF) --------------------------- 24
2.2.1 What is UTF --------------------------- 24
2.2.2 The Needs for UTF --------------------------- 26
2.2.3 Theoretical Foundation for UTF --------------------------- 30
2.3 Antecedents of UTF: User and Technology Characteristics ------------------- 32
2.3.1 User Characteristics --------------------------- 33
2.3.1.1 Personal Innovativeness --------------------------- 34
2.3.1.2 Experience --------------------------- 35
2.3.2 Technology Characteristics --------------------------- 36
2.4 Consequences of UTF: Utilization and Performance --------------------------- 38
2.4.1 Utilization --------------------------- 38
2.4.2 Performance --------------------------- 40


Chapter 3 – Research Framework and Hypotheses --------------------------- 41

3.1 Research Framework --------------------------- 41
3.2 Research Hypotheses --------------------------- 43

Chapter 4 – Research Method
4.1 Measure Development --------------------------- 49
4.1.1 Review of Famous Scale Development --------------------------- 49
4.1.2 Question Design --------------------------- 52
4.2 Pretest --------------------------- 54


Chapter 5 Research Results --------------------------- 58

5.1 Pilot Study --------------------------- 58
5.1.1 Demographics of Subjects --------------------------- 58
5.1.2 Data Normality of Pilot Test --------------------------- 59
5.1.3 Reliability and Validity of Pilot Test --------------------------- 60
5.1.4 Exploratory Factor Analysis --------------------------- 62
5.2 Empirical Study
5.2.1 Demographics --------------------------- 63
5.2.2 Reliability --------------------------- 65
5.2.3 Validity --------------------------- 66
5.2.4 Nomological Validity --------------------------- 68
5.2.4.1 The Effect of User Characteristics on UTF ------------------------ 69
5.2.4.2 The Effect of Technology Characteristics on UTF -------------- 71
5.2.4.3 The Effect of User and Technology Characteristics on UTF ---- 72
5.2.4.4 UTF to Predict Utilization --------------------------- 74
5.2.4.5 UTF to Predict Performance --------------------------- 75
5.3 Competing Models 79


Chapter 6 – Conclusions

6.1 Implications for Research 85
6.2 Implications for Practice 87
6.3 Limitations and Future Research 89

References 90

Appendix A: Questionnaires of UTF 95
Appendix B: Questionnaires of UTF on Web-site 100














References

1.Adams, J. (1965). Injustice in Social Exchange. In L. Berkowitz (Ed.), Advances in Experimental Social Psychology (pp. 267-299). New York: Academic Press.
2.Agarwal, R., & Karahanna, E. (2000). Time Flies When You're Having Fun: Cognitive Absorption and Beliefs About Information Technology Usage. MIS Quarterly, 24(2), 665-694.
3.Agarwal, R., & Prasad, J. (1998). The Antecedents and Consequents of User Perceptions in Information Technology Adoption. Decision Support Systems 22(1), 15-29.
4.Agarwal, R., & Prasad, J. (1998). A Conceptual and Operational Definition of Personal Innovativeness in the Domain of Information Technology. Information Systems Research, 9(2), 204-215.
5.Agarwal, R., & Prasad, J. (1999). Are Individual Differences Germane to the Acceptance of InformationT echnologies? Decision Sciences 30(2), 361-391.
6.Alderfer, C. P. (1972). Existence, Relatedness and Growth. New York: Free Press.
7.Anderson, J. C., & Gerbing, D. W. (1988). Structural equation modeling in practice: A review and recommended two-step approach. Psychological Bulletin, 103(3), 411-423.
8.Au, N., Ngai, E., & Cheng, T. (2008). Extending the Understanding of End User Information Systems Satisfaction Formation: An Equitable Needs Fulfillment Model Approach. MIS Quarterly, 32(1), 43-66.
9.Bagozzi, R. P. (1980). Causal Methods in Marketing. New York: John Wiley and Sons.
10.Bagozzi, R. P., Yi, Y., & Phillips, L. W. (1991). Assessing Construct Validity in Organizational Research. Administrative Science Quarterly, 36(3), 421-458.
11.Bandura, A. (1977). Self-efficacy: Toward a Unifying Theory of Behavior Change. Psychological Review, 84, 191-215.
12.Bandura, A. (1986). Social foundations of thought and action: A social cognitive theory. Englewood Cliffs: NJ: Prentice Hall.
13.Bandura, A. (1997). Self-efficacy:The Exercise of Control: New York: Freeman.
14.Bhattacherjee, A. (2000). Acceptance of e-commerce services: the case of electronic brokerages. IEEE Transactions of Systems, Man, and Cybernetics, 30(4), 411-420.
15.Bhattacherjee, A., & Premkumar, G. (2004). Understanding Changes in Belief and Attitude toward Information Technology Usage: A Theoretical Model and Longitudinal Test. MIS Quarterly, 28(2), 229-254.
16.Bohrnstedt, G. W. (1970). Reliability and validity assessment in attitude measurement. In G. F. Summers (Ed.), Attitude Measurement (pp. 80-99). Chicago: Rand-McNally.
17.Brown, S. A., & Venkatesh, V. (2005). Model of Adoption of Technology in Households: A Baseline Model Test and Extension Incorporating Household Life Cycle. MIS Quarterly, 29(3), 399-425.
18.Burton-Jones, A., & Hubona, G. S. (2005). Individual differences and usage behavior: Revisiting a technology acceptance model assumption. Database for Advances in Information Systems, 36(2), 58-77.
19.Burton-Jones, A., & Straub, D. W. (2006). Reconceptualizing System Usage: An Approach and Empirical Test. Information Systems Research, 17(3), 228-246.
20.Cable, D. M., & Edwards, J. R. (2004). Complementary and supplementary fit: A theoretical and empirical integration. Journal of Applied Psychology, 89(5), 822-834.
21.Chau, P. Y. K., & Hu, P. J. H. (2001). Information technology acceptance by individual professionals: A model comparison approach Decision Sciences, 32(4), 699-719.
22.Compeau, D. R., & Higgins, C. A. (1995). Computer self-efficacy: Development of a measure and initial test. MIS Quarterly, 19(2), 189-211.
23.Davis, F. D. (1989). Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS Quarterly 13(3), 319-340.
24.DeLone, W. H., & McLean, E. R. (2003). The DeLone and McLean Model of Information Systems Success: A Ten-Year Update. Journal of Management Information Systems, 19(4), 9-30.
25.Dennis, A. R., Wixom, B. H., & Vandenberg, R. J. (2001). Understanding Fit and Appropriation Effects in Group Support Systems Via Meta-Analysis. MIS Quarterly, 25(2), 167-193.
26.Dishaw, M. T., & Strong, D. M. (1999). Extending the technology acceptance model with task-technology fit constructs. Information & Management, 36(1), 9-21.
27.Doll, W. J., & Torkzadeh, G. (1988). The Measure of End-User Computing Satisfaction. MIS Quarterly, 12(2), 259-274.
28.Fishbein, M., & Ajzen, I. (1975). Belief, Attitude, Intention and Behavior: An Introduction to Theory and Research: Reading, MA : Addison-Wesley.
29.Fornell, C., & Larcker, D. F. (1981). Evaluating Structural Equation Models with Unobservable Variables and Measurement Error. Journal of Marketing Research, 18(1), 39-50.
30.Goodhue, D. (2006). Task Technology Fit: A Critical (But Often Missing!) Construct in Models of Information Systems and Performance. In P. Zhang & D. F. Galletta (Eds.), Human-Computer Interaction and Management Information Systems - Foundations (pp. 184-204). Armonk, NY: M. E. Sharpe.
31.Goodhue, D. L. (1995). Understanding User Evaluations of Information Systems. Management Science, 41(12), 1827-1844.
32.Goodhue, D. L., & Thompson, R. L. (1995). Task-Technology Fit and Individual Performance. MIS Quarterly, 19(2), 213-236.
33.Greenspoon, P. J., & Saklofske, D.H. (1998). Confirmatory factor analysis of the multidimensional Student's Life Satisfaction Scale. Personality and Individual Differences, 25(5), 965-971.
34.Hair, J. F., Tatham, R. L., Anderson, R. E., & Black, B. (1998). Multivariate Data Analysis. Upper Saddle River, NJ: Prentice-Hall.
35.Hinkin, T. R. (1995). A review of scale development practices in the study of organizations. Journal of Management, 21, 967-988.
36.Ho, S. Y., Davern, M. J., & Tam, K. Y. (2008). Personalization and Choice Behavior: The Role of Personality Traits. The DATA BASE for Advances in Information Systems, 39(4), 31-47.
37.Huseman, R. C., Hatfield, J. D., & Miles, E. W. (1987). A new perspective on equity theory: The equity sensitivity construct. Academy of Management Review, 12, 222-234.
38.Kankanhalli, A., Tan, B. C. Y., & Kwok-Kee, W. (2005). Contributing Knowledge to Electronic Knowledge Repositories: An Empirical Investigation. MIS Quarterly, 29(1), 113-143.
39.Kerlinger, F. N. (1992). Foundations of Behavioral Research. New York: Holt, Rinehart and Winston.
40.Laudon, K. C., & Laudon, J. P. (2000). Management Information Systems: Organization and Technology in the Networked Enterprise. Upper Saddle River: Prentice Hall.
41.Lewis, W., Agarwal, R., & Sambamurthy, V. (2003). Sources of Influence on Beliefs about Information Technology Use: An Empirical Study of Knowledge Workers. MIS Quarterly, 27(4), 657-678.
42.Lim, K. H., & Benbasat., I. (2000). The effect of multimedia on perceived equivocality and perceived usefulness of information systems. MIS Quarterly, 24(3), 449-471.
43.Majchrzak, A., Malhotra, A., & John, R. (2005). Perceived Individual Collaboration Know-How Development Through Information Technology-Enabled Contextualization: Evidence from Distributed Teams Information Systems Research, 16(1), 9-27.
44.Maslow, A. H. (1943). A theory of human motivation. Psychological Review, 50, 370-396.
45.Melville, N., Kraemer, K., & Gurbaxani, V. (2004). Review: Information Technology and Organizational Performance: An Integrative Model of IT Business Value. MIS Quarterly, 28(2), 283-322.
46.Moore, G. C., & Benbasat, I. (1991). Development of an instrument to measure the perceptions of adopting an information technology innovation. Information Systems Research, 2(3), 173-191.
47.Myers, B., Kappelman, L., & Prybutok, V. (1997). A Comprehensive Model for Assessing the Quality and Productivity of the Information Systems Functions: Toward a Theory for Information Systems Assessment. Information Resources Management Journal, 10(1), 6-25.
48.Nelson, D. L. (1990). Individual adjustment to information driven technologies: A critical review. MIS Quarterly, 14(1), 79-100.
49.Nunnally, J. C. (1978). Psychometric Theory. New York: McGraw Hill.
50.Orlikowski, W. J., & Iacono, C. S. (2001). Research Commentary: Desperately Seeking the “IT” in IT Research-A Call to Theorizing the IT Artifact. Information Systems Research, 12(2), 121-134.
51.Parasuraman, A. (2000). Technology Readiness Index (TRI): A MultipleItem Scale to Measure Readiness to Embrace New Technologies. Journal of Services Research, 2(4), 307- 320.
52.Parasuraman, A., Zeithaml, V. A., & Berry, L. L. (1988). SERVQUAL: A Multiple-Item Scale for Measuring Consumer Perceptions of Service Quality. Journal of Retailing, 64(1), 12-40.
53.Rasch, R. H., & Tosi, H. L. (1992). Factors affecting software developers' performance: An integrated approach. MIS Quarterly, 16(3), 395-409.
54.Schneider, B., & Alderfer, C. P. (1973). Three Studies of Measures of Needs Satisfaction in Organizations. Administrative Science Quarterly, 18(4), 489-505.
55.Silver, M. S., Markus, M. L., & Beath, C. M. (1995). The Information Technology Interaction Model: A Foundation for the MBA Core Course. MIS Quarterly, 19(3), 361-390.
56.Simon, H. A. (1960). The New Science of Management Decision. New York: Harper and Row.
57.Stonich, P. J. (1982). Implementing strategy: Making strategy happen. Cambridge, Massachusetts: Ballinger.
58.Straub, D. W. (1989). Validating Instruments in MIS Research. MIS Quarterly, 13(2), 147- 169.
59.Straub, D. W., Keil, M., & Brennan, W. (1997). Testing the Technology Acceptance Model Across Cultures: A Three Country Study. Information & Management, 33, 1-11.
60.Taylor, R.N. (1975). Age and Experience as Determinants of Managerial Information Processing and Decision. The Academy of Management Journal, 18(1), 74-81.
61.Taylor, S., & Todd, P. A. (1995a). Understanding Information Technology Usage: A Test of Competing Models. Information System Research, 6(2), 144-176.
62.Taylor, S., & Todd, P. A. (1995b). Assessing IT Usage: The Role of Prior Experience. MIS Quarterly, 19(2), 561-570.
63.Te'eni, D. (2006). Designs that fit: an overview of fit conceptualizations in HCI. In P. Zhang & D. Galletta (Eds.), Human-Computer Interaction and Management Information Systems - Foundations. Advances in Management Information Systems (pp. 205-221). Armonk, NY: M. E. Sharpe.
64.Thatcher, J. B., & Perrewe, P. L. (2002). An empirical examination of individual traits as antecedents to computer anxiety and computer self-efficacy. MIS Quarterly, 26(4), 381-396.
65.Thompson, R. L., Higgins, C. A., & Howell, J. M. (1994). Influence of Experience on Personal Computer Utilization: Testing a Conceptual Model. Journal of Management Information Systems, 11(1), 167-187.
66.Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User Acceptance of Information Technology: Toward a Unified View. MIS Quarterly, 27(3), 425-478.
67.Vessey, I. (1991). Cognitive Fit: Theory-Based Analyses of the Graphs Versus Tables Literature. Decision Science, 22(1), 219-241
68.Vessey, I. (1994). The Effect of Information Presentation on Decision Making: A Cost-Benefit Analysis. Information & Management, 27(2), 103-117.
69.Walczuch, R., Lemmink, J., & Streukens, S. (2007). The effect of service employees' technology readiness on technology acceptance. Information & Management, 44(2), 206–215.
70.Yi, M.Y., Jackson, J.D., Park, J.S., & Probst, J.C. (2006). Understanding information technology acceptance by individual professionals: toward an integrated view. Information & Management, 43(3), 350-363.
71.Yin, R. K. (2003). Case Study Research, Design and Methods. Beverly Hills, California: Sage Publications.
72.Zmud, R. W. (1979). Individual Differences and MIS Success: A Review of the Empirical Literature. Management Science, 25(10), 966- 979.



QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔