英文部分
Ackroyd-Stolarz, S., Hartnell, N., & MacKinnon, N. J. (2005). Approaches to improving the safety of the medication use system. Healthcare Quarterly, 8, 59-64.
Aha, D. W., Kibler, D., & Albert, M. K. (1991). Instance-based learning algorithms. Machine Learning, 6(1), 37-66.
Ansell, J., Hirsh, J., Hylek, E., Jacobson, A., Crowther, M., & Palareti G. (2008). Pharmacology and management of the vitamin K antagonists: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines (8th ed.). Chest, 133, 160S-198S.
ASHP. (1993). ASHP Report:guidelines on preventing medication errors in hospitals. American Journal of Health-System Pharmacy, 50, 305-314.
ASHP. (1998). ASHP statement on the pharmacist's role in clinical pharmacokinetic monitoring. American Journal of Health-System Pharmacy, 55(16), 1726-1727.
Bates, D.W., Cohen, M., Leape, L. L., Overhage, J. M., Shabot, M. M., & Sheridan, T. (2001). Reducing the frequency of errors in medicine using information technology. Journal of the American Medical Informatics Association, 8(4), 299-308.
Bates, D. W., Teich, J. M., Lee, J., Seger, D., Kuperman, G. J., & Boyle, D. (1999). The impact of computerized physician order entry on medication error prevention. Journal of the American Medical Informatics Association, 6(4), 313-321.
Bobb, A., Gleason, K., Husch, M., Feinglass, J., Yarnold, P. R., & Noskin, G. A. (2004). The epidemiology of prescribing errors: the potential impact of computerized prescriber order entry. Archives of Internal Medicine, 164(7), 785-792.
Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2), 123-140.
Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984). Classification and Regression Trees. Belmont, California, CA: Wadsworth International Group.
Byrne, S., Cunningham, P., Barry, A., Graham, I., Delaney, T., & Corrigan, O. I. (2000). Using neural nets for decision support in prescription and outcome prediction in anticoagulation drug therapy. Intelligent Data Analysis In Medicine and Pharmacology, a Workshop at the 14th European Conference on Artificial Intelligence.
Camps-Valls, G., Porta-Oltra, B., Soria-Olivas, E., Martin-Guerrero, J. D., Serrano-Lopez, A. J., Perez-Ruixo, J. J., et al. (2003). Prediction of cyclosporine dosage in patients after kidney transplantation using neural networks. IEEE Transactions on Biomedical Engineering, 50(4), 442-448.
Chipman, H. A., George, E. I., & McCulloch, R. E. (1998). Bayesian CART model search. Journal of the American Statistical Association, 93(443), 935-960.
Colombet, I., Bura-Rivière, A., & Chatila, R. (2004). Personalized versus non-personalized computerized decision support system to increase therapeutic quality control of oral anticoagulant therapy: an alternating time series analysis. BMC Health Services Research, 4(1), 27.
Dean, B., Schachter, M., Vincent, C., & Barber, N. (2002). Prescribing errors in hospital inpatients: their incidence and clinical significance. Quality & Safety in Health Care, 11(4), 340-344.
Dzeroski, S., & Zenko, B. (2004). Is combining classifiers with stacking better than selecting the best one? Machine Learning, 54(3), 255-273.
Ernst, F. R., & Grizzle, A. J. (2001). Drug-related morbidity and mortality: updating the cost-of-illness model. Journal of the American Pharmaceutical Association, 41(2), 192-199.
Fitzgerald, R. J. (2009). Medication errors: the importance of an accurate drug history. British Journal of Clinical Pharmacology, 67(6), 671-675.
Floares, A. G., Floares, C., Cucu, M., Marian, M., & Lazar, L. (2004). Optimal drug dosage regimens in cancer chemotherapy with neural networks. Journal of Clinical Oncology, 22(14), 2134.
Freeman, J. A., & Skapura, D. M. (1992). Neural networks algorithms, applications, and programming techniques. New York: Addison-Wesley Publishing Company.
Freund, Y., & Schapire, R. (1997). A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences, 55(1), 119-139.
Gouveia, W. A., Shane, R., & Clark, T. (2003). Computerized prescriber order entry: power, not panacea. American Journal of Health-System Pharmacy, 60(18), 1838.
Horton, J. D., & Bushwick, B. M. (1999). Warfarin therapy: evolving strategies in anticoagulation. American family physician, 59(3), 635-646.
Hu, P. J., Cheng, T. H., Wei, C., Yu, C. H., Chan, A., & Wang, H. Y. (2007). Managing clinical use of high-alert drugs: a supervised learning approach to pharmacokinetic data analysis. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 37(4), 481-492.
ISMP. (2008). ISMP’s list of high-alert medications. Retrieved August 18, 2010, from http://www.ismp.org/Tools/highalertmedications.pdf
Kanjanarat, P., Winterstein, A. G., & John, T. E. (2003). Nature of preventable adverse drug events in hospitals: a literature review. American journal of health-system pharmacy, 60(17), 1750-1759.
Kaushal, R., Shojania, K. G., & Bates, D. W. (2003). Effect of computerized physician order entry and clinical decision support systems on medication safety: a systematic review. Archives of Internal Medicine, 163(12), 1409-1416.
Kretschmann, E., & Apweiler, R. (2001). Automatic rule generation for protein annotation with the C4.5 data-mining algorithm applied on peptides in Ensembl. Proceedings of the German Conference on Bioinformatics (pp. 53-57). Braunschweig, Germany.
Lassetter, J. H., & Warnick, M. L. (2003). Medical errors, drug-related problems, and medication errors: a literature review on quality of care and cost issues. Journal of Nursing Care Quality, 18(3), 175-183.
Leape, L. L., Bates, D.W., Cullen, D. J., Cooper, J., Demonaco, H. J., Gallivan, T., et al. (1995). System analysis of adverse drug events. ADE Prevention Study Group. Journal of the American Medical Association, 274(1), 35-43.
Leape, L. L., & Berwick, D. M. (2005). Five years after “To Err Is Human”: what have we learned? Journal of the American Medical Association, 293(19), 2384-2390.
Linkins, L. A., Choi, P. T., & Douketis, J. D. (2003). Clinical impact of bleeding in patients taking oral anticoagulant therapy for venous thromboembolism: a meta-analysis. Annals of Internal Medicine, 139(11), 893-900.
Martin, B., Filipovic, M., Rennie, L., & Shaw, D. (2010). Using machine learning to prescribe Warfarin. Proceedings of the 14th International Conference on Artificial Intelligence: Methodology, Systems, Applications, 6304, 151-160.
Mukta, P., & Usha, A. K. (2007). Neural networks and statistical techniques: A review of application. Expert Systems with Application, 36(1), 2-17.
Narayanan, M., & Lucas, S. (1993). A genetic algorithm to improve a neural network to predict a patient’s response to warfarin. Methods of Information in Medicine, 32(1), 55-58.
Palareti, G., & Cosmi, B. (2009). Bleeding with anticoagulation therapy–who is at risk, and how best to identify such patients. Thrombosis and haemostasis, 102(2), 268-278.
Palareti, G., Leali, N., & Coccheri, S. (1996). Bleeding complications of oral anticoagulant treatment: an inception-cohort, prospective collaborative study (ISCOAT). Italian Study on Complications of Oral Anticoagulant Therapy. Lancet, 348(9025), 423-428.
Pedersen, C. A., Schneider, P. J., & Scheckelhoff, D. J. (2004). ASHP national survey of pharmacy practice in hospital settings: Monitoring and patient education-2003. American Journal of Health-System Pharmacy, 61(5), 457-471.
Quinlan, J. R. (1992). Learning with continuous classes. Proceedings of the 5th Australian Joint Conference on Artificial Intelligence (pp. 343-348). Hobart , Australia.
Robins, C. H., & Robins, C. R. (1970). The eel family Dysommidae (including the Dysomminidae and Nettodaridae) its osteology and composition, including a new genus and species. Proceedings of the Academy of Natural Sciences of Philadelphia, 122(6), 293-335.
Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-propagating errors. Nature, 323, 533-536.
Schaufele, M. K., Marciello, M. A., & Burke, D. T. (2000). Dosing practices of physicians for anticoagulation with warfarin during inpatient rehabilitation. American Journal of Physical Medication and Rehabilitation, 79(1), 69-74.
Schulman, S. (2003). Clinical practice: care of patients receiving long-term anticoagulant therapy. New England Journal of Medicine, 349(7), 675-683.
Setiabudi, E., Alwi, I., & Setiati, S. (2008). Oral anticoagulant treatment in management of elderly patients with atrial fibrillation: is it beneficial or detrimental? Acta medica Indonesiana, 40(1), 40-47.
Shirley, J., Paine, J. D., Sarah, G., & Benator, J. D. (2003). JCAHO initiative seeks to improve patient safety. Drug Benefit Trends, 15(1), 23-24.
Simon, H., (1999). Neural Networks: A Comprehensive Foundation (2nd ed.). USA: Prentice Hall.
Solomon, I., Maharshak, N., Chechik, G., Leibovici, L., Lubetsky, A., Halkin, H., et al. (2004). Applying an artificial neural network to warfarin maintenance dose prediction. Israel Medical Association Journal. 6(12), 770-771.
Stelfox, H. T., Palmisani, S., Scurlock, C., Orav, E. J., & Bates, D. W. (2006). The “To Err is Human” report and the patient safety literature. Quality & Safety in Health Care, 15(3), 174-178.
Tadros, R., & Shakib, S. (2010). Warfarin–indications, risks and drug interactions. Australian Family Physician, 39(6), 476-479.
The Joint Commision. (2010, July 1). 2010 National patient safety goals. Retrieved August 30, 2010, from http://www.jointcommission.org
The National Coordinating Council for Medication Error Reporting and Prevention. (n.d.). About medication errors. Retrieved October 5, 2010, from http://www.nccmerp.org
Tolle, K. M., Chen, H., & Chow, H. (2000). Estimating drug/plasma concentration levels by applying neural networks to pharmacokinetic data sets. Decision Support Systems, 30(2), 139-152.
Vapnik, V. (1995). The Nature of Statistical Learning Theory. New York: Springer-Verlag.
Visser, L. E., Penning-van Bees, F. J., & Kasbergen, A. A. (2002). Overanticoagulation associated with combined use of antibacterial drugs and acenocoumarol or phenprocoumon anticoagulants. Thrombosis and haemostasis, 88(5), 705-710.
Wang , Y., & Witten, I. H. (1997). Induction of model trees for predicting continuous classes. Proceedings of the European conference on machine learning (pp. 128-137). Prague, Czech Republic.
White, H. D., Gruber, M., & Feyzi, J. (2007). Comparison of outcomes among patients randomized to warfarin therapy according to anticoagulant control– results from SPORTIF III and IV. Archives of Internal Medicine, 167(3), 239-245.
You, J. H., Chan, F. W., Wong, R. S., & Cheng, G. (2005). Is INR between 2.0 and 3.0 the optimal level for Chinese patients on warfarin therapy for moderate-intensity anticoagulation? British Journal of Clinical Pharmacology, 59(5), 582-587.
中文部分
葉怡成(民92)。類神經網路模式應用與實作。臺北市:儒林。
楊瑛碧,鄭淑文(民99)。處方疑義與用藥安全之探討。藥學雜誌,26(1),81-87。