(3.231.29.122) 您好!臺灣時間:2021/02/25 22:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:吳仁傑
研究生(外文):Jen-Chieh Wu
論文名稱:以相位陣列技術為基礎之無線室內定位系統與相關相移器晶片電路設計
論文名稱(外文):Wireless Indoor Positioning Systems Based on Phased-Array Techniques and Related Phase Shifter MMICs Design
指導教授:張嘉展
指導教授(外文):Chia-Chan Chang
口試委員:莊晴光黃天偉鍾世忠邱茂清莊惠如洪子聖張盛富
口試委員(外文):Ching-Kuang C. TzuangTian-Wei HuangShyh-Jong ChungMao-Ching ChiuHuey-Ru ChuangHorng Tzyy-ShengSheng-Fuh Chang
口試日期:2010-11-04
學位類別:博士
校院名稱:國立中正大學
系所名稱:電機工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:99
語文別:英文
論文頁數:130
中文關鍵詞:無線室內定位系統相位陣列相移器
外文關鍵詞:Wireless Indoor Positioning SystemPhased-ArrayPhase Shifter
相關次數:
  • 被引用被引用:9
  • 點閱點閱:421
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:48
  • 收藏至我的研究室書目清單書目收藏:0
本論文提出兩種以相位陣列天線為基礎之無線室內定位系統,第一種以非正交波束相位天線為基礎之定位系統,第二種為以陣列天線為基礎且具定位誤差錯誤更正功能之定位系統。此兩套系統皆以藉由偵測各波束間接收訊號強度落差來判斷目標物之所在角度,可同時實現高精確定位且具系統架構簡易之特色。
第一種為具非正交特性之多波束相位陣列天線為基礎之無線室內定位系統,此系統單一讀取機可提供一維之角度量測。本系統中,為了解決室內多重路徑反射信號在定位結果上所造成的誤差,我們提出了兩個解決方法:第一,使用高指向性圓極化天線陣列來抑制多重路徑信號之干擾。第二,破壞了傳統巴特勒矩陣所存在於各波束間之正交特性,使用非正交波束可以有效降低在多重路徑信號干擾下波束零點退化而造成的定位誤差。
第二種是以2×2相位陣列天線為基礎且具定位誤差錯誤更正功能之無線室內定位系統。於系統提出三項創新優點:第一,提出多條功率曲線檢測法,此方法僅需偵測各波束間接收訊號強度落差即可判斷目標物之所在角度。第二,提出誤差平均演算法,此演算法利用多條功率檢測曲線來降低因多重路徑信號干擾而造成定位角度誤差。第三,僅需完成兩個正交軸上的電路誤差校正,即可達到精確之二維角度量測。
此外,由於本論文所提出的無線定位技術將使用於室內環境,為了可事先評估所提出之定位技術在室內多重路徑信號干擾下之特姓,我們推導出室內多重路徑信號之通道模型,此通道模型將可適用於所有一維及二維之相位陣列天線系統。
最後,本論文將相位陣列天線系統中之關鍵電路『可調式相移器』進行晶片化,於0.18-um CMOS中實現了低損耗變動之反射式相移器。此反射式相移器係由一3-dB耦合器搭配反射式負載所組成。由電路分析結果得知,由於高耦合電感式3-dB耦合器具有低相位平衡誤差之特性。因此,於此電路設計中使用高耦合電感式3-dB耦合器取代傳統3-dB耦合器,可有效降低相移器因相位調整所造成之損耗變動。
In this dissertation work, two wireless indoor positioning systems aiming for decimeter positioning accuracy, low circuit complexity, and multipath suppression, were investigated and developed. In both systems, only the received signal strength (RSS) information is required for the target’s direction-of-arrival (DOA) estimation so that the system complexity as well as infrastructure cost can be significantly reduced. However, large positioning error could occur due to the multi-path fading effect on the received signal strength. Therefore, the indoor multipath channel modeling for linear and planar array was also derived mathematically. To eliminate the multipath signals, two positioning technologies were proposed, including the non-orthogonal beamforming and the selection-and-average error correct algorithm.
The first wireless indoor positioning system based on the non-orthogonal beam linear arrays was implemented by incorporating two linear array receivers to determine the position of target. The circular-polarized antenna array with high directivity was chosen to suppress the multipath interference. In addition, the beam orthogonality was demoted on purpose so that the angular position can be estimated based on the power ratio of two adjacent beams.
The second wireless indoor positioning system was implemented by using a 2×2 planar array with the selection-and-average error correction algorithm. The multiple power ratio detection curves were generated due to the beam steering, while the selection-and-average error correction algorithm was proposed to improve the location accuracy. The proposed 2-D precise DOA estimation can be achieved by 1-D pattern calibrations in two axils only.
Additionally, numerous tunable phase shifter MMICs, which are the essential component in phased array system, were designed and implemented aiming for low loss-variation performance over quadrants of phase-shift range. The inductively over-coupled quadrature hybrids were theoretically analyzed, such that the phase, amplitude imbalance, and circuit size can be significantly reduced. During the course of this work, four phase shifters MMICs designed at 2.45, 24, and 60 GHz were implemented in 0.18-um CMOS technology.

Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Review of Wireless Indoor Positioning Principles 4
1.2.1 Triangulation Positioning 4
1.2.2 Proximity 8
1.2.3 Scene Analysis 9
1.3 Contribution of This Work 11
1.4 Organization of Dissertation 13
Chapter 2 Multipath Modeling in Multi-Antenna System 14
2.1 Introduction 14
2.2 Multipath Channel Modeling for Linear Array in an Indoor Environments
15
2.3 Multipath Channel Modeling for Planar Array in an Indoor Environments
18
2.4 Conclusion 23
Chapter 3 Wireless Indoor Positioning System Based on
Non-Orthogonal Beams Linear Array 24
3.1 Introduction 24
3.2 Positioning Principle and System Performance Evaluation 27
3.2.1 Analysis of Non-Orthogonal Beams Linear Array 27
3.2.2 Proposed Method for DOA Estimation 30
3.2.3 System Performance Evaluation with Multipath Interference 32
3.3 Hardware Implementation 35
3.3.1 Active Tag 36
3.3.2 Non-Orthogonal Beams Circular-Polarized Linear Array 38
3.3.3 RSSI Module and MCU 40
3.4 System Performance 43
3.4.1 1-D Positioning Demonstration 43
3.4.2 2-D Positioning Demonstration 45
3.5 Conclusion 47
Chapter 4 Wireless Indoor Positioning System Based on
Planar Array with Selection-and-Average Error Correction
Algorithm 49
4.1 Introduction 49
4.2 Positioning Principle and System Performance Evaluation 51
4.2.1 Analysis of Proposed 2-D Positioning Receiver 51
4.2.2 Selection-and-Average Error Correction Algorithm 55
4.2.3 Positioning Area 58
4.2.4 System Performance Evaluation 60
4.3 Hardware Implementation 63
4.3.1 2×2 Phased-Antenna Array with Steerable 2-D Comparator 63
4.3.2 RSSI Module and MCU 67
4.3.3 Active Tag 68
4.4 System Performance 69
4.5 Conclusion 74
Chapter 5 Design of CMOS Reflection-Type
Phase Shifter MMIC 75
5.1 Introduction 75
5.2 Operation Principle of Proposed Reflection-Type Phase Shifter 77
5.2.1 Operation Principle 77
5.2.2 Inductively Over-Coupled Quadrature Hybrid 78
5.2.3 Imperfect Hybrid Effect 82
5.3 Design of 2.45-GHz Reflection-Type Phase Shifters 84
5.3.1 Design of Quadrature Hybrid 84
5.3.2 Design of Reflective Load 87
5.3.3 Simulation and Measurement Performance 90
5.4 Design of 24-GHz Reflection-Type Phase Shifters 98
5.4.1 Design of Quadrature Hybrid 98
5.4.2 Design of Reflective Load 100
5.4.3 Measurement Performance 101
5.5 Design of V-/W-Band Reflection-Type Phase Shifters 104
5.5.1 Design of Quadrature Hybrid 105
5.5.2 Design of Reflective Load 107
5.5.3 Simulation and Measurement Performance 109
5.6 Conclusion 113
Chapter 6 Conclusion 116
References 119
VITA 131
Publications List 132

[1]E. D. Kaplan, Understanding GPS: Principles and Applications, Artech House, 1996.
[2]Y. Gu, A. Lo, and I. Niemegeers, “A survey of indoor positioning systems for wireless personal networks,” IEEE Commun. Surveys, Tutorials, vol. 11, pp. 13–32, 2009.
[3]R. Mautz, “The challenges of indoor environments and specification on some alternative positioning systems,” in Proc. 6th Workshop on Position., Navigat. and Commun., 2009, pp. 29-36.
[4]H. Liu, H. Darabi, P. Banerjee, and J. Liu, “Survey of wireless indoor positioning techniques and systems,” IEEE Trans. Syst., Man. Cybern. C, Appl. Rev., vol. 37, no. 6, p. 1067, Nov. 2007.
[5]M. Vossiek, L. Wiebking, P. Gulden, J. Wieghardt, C. Hoffmann, P. Heide, S. Technol, and G. Munich, “Wireless local positioning,” IEEE Microw. Mag., vol. 4, no. 4, pp. 77–86, 2003.
[6]K. Pahlavan, X. Li, and J.-P. Makela, “Indoor geolocation science and technology,” IEEE Commun. Mag., vol. 40, pp. 112-118, Feb. 2002.
[7]C. Zhang, M. J. Kuhn, B. C. Merkl, A. E. Fathy, and M. R. Mahfouz, “Real-time noncoherent UWB positioning Radar with millimeter range accuracy: theory and experiment,” IEEE Trans. Microw. Theory Tech., vol.58, no.1, pp. 9-20, Jan. 2010.
[8]N. A. Alsindi, B. Alavi, and K. Pahlavan “Measument and modeling of ultrawideband TOA-based ranging in indoor multipath environments,” IEEE Trans. Microw. Theory Tech., vol.58, no.3, pp. 1046-1058, Mar. 2009.
[9]M. R. Mahfouz, C. Zhang, B. C. Merkl, M. J. Kuhn, and A. E. Fathy, “Investigation of high-accuracy indoor 3-D positioning using UWB technology,” IEEE Trans. Microw. Theory Tech., vol.56, no.6, pp. 1316-1330, Jun. 2008.
[10]C. Zhang, M. Kuhn, A. E. Fathy, and M. Mahfouz, “Real-time noncoherent UWB positioning Radar with millimeter range accuracy in a 3D indoor environment”, in IEEE MTT-S Int. Microw. Symp. Dig., 2009, pp. 1413-1416.
[11]B. Waldmann, R. Weigel, and P. Gulden, “Method for high precision local positioning radar using an ultra wideband technique,” in IEEE MTT-S Int. Microw. Symp. Dig., 2008, pp. 117–120.
[12]C. Meier, A. Terzis, and S. Lindenmeier, “A robust 3D high precision radio location system,” in IEEE MTT-S Int. Microw. Symp. Dig., 2007, pp. 397–400.
[13]C. Meier, A. Terzis, and S. Lindenmeier, “Investigation and suppression of multipath influence on indoor radio location in the millimeter wave range,” in Wave Propag. Commun., Microw. Syst. Navigat. Conf., Chemnitz, Germany, 2007, pp. 21–24.
[14]T. E. McEwan, “Radiolocation system having writing pen application,” U.S. Patent 6 747 599, Jun. 8, 2004.
[15]G. Ossberger, T. Buchegger, E. Schimback, A. Stelzer, and R. Weigel, “Non-invasive respiratory movement detection and monitoring of hidden humans using ultra wideband pulse radar,” in IEEE Int. UWB Syst. Tech. Conf., Kyoto, Japan, 2004, pp. 395–399.
[16]A. Fujii, H. Sekiguchi, M. Asai, S. Kurashima, H. Ochiai, and R. Kohno, “Impulse radio UWB positioning system,” in IEEE Radio Wireless Symp., 2007, pp. 55–58.
[17]Z. N. Low, J. H. Cheong, C. L. Law, W. T. Ng, and Y. J. Lee, “Pulse detection algorithm for line-of-sight (LOS) UWB ranging applications,” IEEE Antennas Wireless Propag. Lett., vol. 4, pp. 63–67, 2005.
[18]R. Zetik, J. Sachs, and R. Thomä, “UWB localization—Active and passive approach,” in Proc. 21th IEEE IMTC, 2004, vol. 2, pp. 1005–1009.
[19]S. Wehrli, R. Gierlich, J. Huttner, D. Barras, F. Ellinger, and H. Jackel, “Integrated active pulsed reflector for an indoor local positioning system,” IEEE Trans. Microw. Theory Tech., vol.58, no.2, pp. 267-275, Feb. 2010.
[20]A. Stelzer, K. Pourvoyeur, and A. Fischer, “Concept and application of LPM—A novel 3-D local position measurement system,” IEEE Trans. Microw. Theory Tech., vol. 52, no. 12, pp. 2664–2669, Dec. 2004.
[21]L. Wiebking, M. Glanzer, D. Mastela, M. Christmann, and M. Vossiek, “Remote local positioning radar,” in IEEE Radio Wireless Conf., Sep. 2004, pp. 191–194.
[22]M. Vossiek and P. Gulden, “The switched injection-locked oscillator: A novel versatile concept for wireless transponder and localization systems,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 4, pp. 859–866, Apr. 2008.
[23]A. Stelzer, K. Pourvoyeur, and A. Fischer, “Concept and application of LPM-a novel 3-D local position measurement system,” IEEE Trans. Microw. Theory Tech., vol. 52, no. 12, pp. 2664–2669, Dec. 2004.
[24]R. Mosshammer, M. Huemer, R. Szumny, K. Kurekt, J. Hittner, and R. Gierlichli, “A 5.8 GHz local positioning and communication system,” in IEEE MTT-S Int. Microw. Symp. Dig., Honolulu, HI, 2007, pp. 1237–1240.
[25]R. Feger, C. Wagner, S. Schuster, H. Jäger, and A. Stelzer, “A 77-GHz FMCW MIMO radar based on an SiGe single-chip transceiver,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 5, pp. 1020–1035, May 2009.
[26]M. Pichler, A. Stelzer, P. Gulden, C. Seisenberger, and M. Vossiek, “Phase-error measurement and compensation in PLL frequency synthesizers for FMCW sensors—I: Context and application,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 54, no. 5, pp. 1006–1017, May 2007.
[27]L. Reindl, C. C. W. Ruppel, S. Berek, U. Knauer,M. Vossiek, P. Heide, and L. Oreans, “Design, fabrication, and application of precise SAW delay lines used in an FMCW radar system,” IEEE Trans. Microw. Theory Tech., vol. 49, no. 4, pp. 787–794, Apr. 2001.
[28]M. Vossiek, R. Roskosch, and P. Heide, “Precise 3-D object position tracking using FMCW radar,” in Proc. 29th European Microwave Conf., Oct. 1999, vol. 1, pp. 234–237.
[29]H.-S. Ahn, and W. Yu, “Environmental-adaptive RSSI-based indoor localization,” IEEE Trans. Automat. Sci. Eng., vol. 6, no. 4, pp.626-633, Oct. 2009.
[30]J.Zhou, K. M.-K.Chu, and J. K.-Y. Ng, “Providing location services within a radio cellular network using ellipse propagation model,” in Proc. 19th Int. Conf. Adv. Inf. Netw. Appl., 2005, pp. 559–564.
[31]S.-H. Fang, and T.-N. Lin, ”Accurate WLAN indoor localization based on RSS fluctuations modeling”, Int. Sym. on Intelligent Signal Processing. Tech. Hungary, 2009, pp. 27–30.
[32]S. Thongthammacharl and H. Olesen, ”Bluetooth enables in-door mobile location services,” Proc. Vehicular Tech. Conf., 2003, pp. 2023-2027.
[33]R. Bruno and F. Delmastro, ”Design and analysis of a bluetooth-based indoor localization system”, Proc. Personal Wireless. Commun., Italy, 2003, pp. 711-725.
[34]M. Rodriguez, J. P. Pece, and C. J. Escudero, ”In-building location using Bluetooth”, Proc. Int. Workshop on Wireless Ad Hoc Net., 2005.
[35]J. Hallberg, M. Nilsson, and K. Synnes, ”Positioning with Bluetooth”, Proc. 10th Intl Conf. on Telecom., 2003, pp. 954-958.
[36]A. Genco, ”Three step bluetooth positioning”, Lecture Notes in Computer Science, vol. 3479, 2005, pp. 52-62.
[37]A. Kupper, Location-based Services Fundamentals and Operation, England: Wiley, 2005.
[38]N. Priyantha, A. Chakraborty, and H. Balakrishnan, ”The cricket location- support system”, Proc. 6th ACM Intl Conf. on Mobile Computing and Networking, MA. 2000.
[39]B. B. Peterson, C. Kmiecik, R. Hartnett, P. M. Thompson, J. Mendoza, and H. Nguyen, “Spread spectrum indoor geolocation,” J. Inst. Navigat., vol. 45, no. 2, pp. 97–102, 1998.
[40]X. Li, K. Pahlavan, M. Latva-aho, and M. Ylianttila, “Comparison of indoor geolocationmethods in DSSS and OFDM wireless LAN,” in Proc. IEEE Veh. Technol. Conf., Sep. 2000, vol. 6, pp. 3015–3020.
[41]M. Kossel, H. R. Benedickter, R. Peter, and W. Bachtold, “Microwave backscatter modulation systems,” IEEE MTT-S Dig., vol. 3, pp. 1427–1430, Jun. 2000.
[42]A. Gunther and C. Hoene, “Measuring round trip times to determine the distance between WLAN nodes,” in Proc. Netw., Waterloo, ON, Canada, May 2005, pp. 768–779.
[43]C. Drane, M. Macnaughtan, and C. Scott, “Positioning GSM telephones,” IEEE Commun. Mag., vol. 36, no. 4, pp. 46–54, 59, Apr. 1998.
[44]D. Torrieri, “Statistical theory of passive location systems,” IEEE Trans. Aerosp. Electron. Syst., vol. 20, no. 2, pp. 183–197, Mar. 1984.
[45]G. Parkinson, M. Boon, J. G. Davis, and R. Sloan, “3D positioning using spherical algorithms for networked wireless sensors deployed in grain,” in IEEE MTT-S Int. Microw. Symp. Dig., 2009, pp. 1417–1420.
[46]G. M. Kirkpatrick, “Development of a monopulse radar system,” IEEE Trans. Aerosp. Electron. Syst., vol. 45, no. 2, pp. 807–818, Apr. 2009.
[47]S. Chandran, Advances in Direction-of-Arrival Estimation, Artech House, 2005.
[48]B. D. V. Veen and K. M. Buckley, “Beamforming: A versatile approach to spatial filtering,” IEEE ASSP Mag., vol. 5, no. 2, pp. 4–24, Apr. 1988.
[49]G. Giorgetti, A. Cidronali, S. Gupta, and G. Manes, “Single-anchor indoor localization using a switched-beam antenna,” IEEE Commun. Lett., vol. 13, no. 1, pp. 58-60, Jan. 2009.
[50]A. Cidronali, S. Maddio, G. Giorgetti, and G. Manes, “Analysis and performance of s smart antenna for 2.45-GHz single-anchor indoor positioning,” IEEE Trans. Microw. Theory Tech., vol.58, no.1, pp.21-31, Jan. 2010.
[51]A. Cidronali, S. Maddio, G. Giorgetti, I. Magrini, S. K. S. Gupta, and G. Manes, “A 2.45 GHz smart antenna for location-aware single-anchor indoor applications,” in IEEE MTT-S Int. Microw. Symp. Dig., 2009, pp. 1553–1556.
[52]S. Wang, K.-H. Tsai, K.-K. Huang, S.-X. Li, H.-S. Wu, and C.-K. C. Tzuang, “Design of X-band RF CMOS transceiver for FMCW monopulse radar,” IEEE Trans. Microw. Theory Tech., vol.57, no.1, pp.61-70, Jan. 2009.
[53]F. Belloni, V. Ranki, A. Kainulainen, and A. Richter, “Angle-based indoor positioning system for open indoor environments,” in Proc. 6th Workshop on Position., Navigat. and Commun., 2009, pp. 261-265.
[54]A. Tennant, “Experimental two-element time-modulated direction finding array,” IEEE Trans. Antennas Propag., vol.58, no.3, pp.986-988, Mar. 2010.
[55]Y. Zhang, A. K. Brown, W. Q. Malik, and D. J. Edwards, “High resolution 3-D angle of arrival determination for indoor UWB multipath propagation,” IEEE Trans. Wireless Commun., vol.58, no.3, pp.986-988, Mar. 2010.
[56]C.-H. Lim, Y. Wan, B.-P. Ng, and C.-M. S. See, “A real-time indoor WiFi localization system utilizing smart antennas,” IEEE Trans. Consumer Electronics, vol.53, no.2, pp.618-622, May 2007.
[57]R. Want, A. Hopper, V. Falcao, J. Gibbons, ”The Active Badge Location System”, ACM Trans. Information Systems, vol. 10, no. 1, pp. 91-102, Jan. 1992.
[58]R. J. Orr, and G. D. Abowd, ”The smart floor: a mechanism for natural user identification and tracking”, In Proc. Human Factors in Computing Systems Conf., Netherlands. 2000.
[59]J. J. Caffery and G. L. Stuber, “Overview of radiolocation in CDMA cellular system,” IEEE Commun. Mag., vol. 36, no. 4, pp. 38–45, Apr. 1998.
[60]S.-H. Fang, T.-N. Lin, and K.-C. Lee, “A novel algorithm for multipath fingerprinting in indoor WLAN environments,” IEEE Trans. Wireless Commun., vol.7, no.9, pp. 3579-3588, Sep. 2008.
[61]M. Brunato and R. Battiti, “Statistical learning theory for location fingerprinting in wireless LANs,” Computer Networks, vol. 47, no. 6, pp. 825–845, 2005.
[62]T. Roos, P. Myllymaki, H. Tirri, P. Misikangas, and J. Sievanen, “A probabilistic approach to WLAN user location estimation,” International J. Wireless Inform. Networks, vol. 9, no. 3, pp. 155–164, 2002.
[63]M. A. Youssef, A. Agrawala, and A. U. Shankar, “WLAN location determination via clustering and probability distributions,” in Pervasive Computing and Commun., pp. 143–150, 2003.
[64]P. Bahl and V. Padmanabhan, ”RADAR: An in-building RF based user location and tracking system”, Proc. IEEE INFOCOM, vol. 2, Mar. 2000, pp. 775-784.
[65]H.-Y. Liu, and R. Y. Yen, “Error probability for orthogonal space-time block code diversity system using rectangular QAM transmission over Rayleigh fading channels,” IEEE Trans. Signal Process., vol. 54, no. 4, pp. 1230–1241, Apr. 2006.
[66]A. Chindapol, and J. A. Ritcey “Design, analysis, and performance evaluation for BICM-ID with square QAM constellations in Rayleigh fading channels,” IEEE J. Sel. Areas Commun., vol. 19, no. 5, pp. 944–957, May 2001.
[67]I. J. Bahl, and P. Bhartia, Microstrip Antennas, Artech House, 1980.
[68]J. Butler and R. Lowe, “Beam forming matrix simplifies design of electronically scanned antennas,” in Electron. Design, Apr. 12, 1961, pp. 170–173.
[69]S.-S. Liao, P.-T. Sun, N.-C. Chin, AND J.-T. Peng, “A novel compact-size branch-line coupler,” IEEE Mcrow. Wireless Component Lett., vol. 15, no 9, pp. 588-590, Sep. 2005.
[70]J.-C. Wu, C.-C. Chang, S.-F. Chang, and T.-Y. Chin, “A 24-GHz full-360° CMOS reflection-type phase shifter MMIC with low loss-variation, “ in RFIC Symp. Dig., Atlanta, GA, Jun. 2008, pp. 365-368.
[71]J.-C. Wu, T.-Y. Chin, S.-F. Chang, and C.-C. Chang, “2.45-GHz CMOS reflection-type phase shifter MMICs with minimal loss variation over quadrants of phase shift range,” IEEE Trans. Microwave Theory Tech., vol. 56, pp. 2180-2189, Oct. 2008.
[72]H. Zarei, S. Kodama, C. T. Charles and D. J. Allstot, “Reflective-type phase shifters for multiple-antenna transceivers,” IEEE Trans. Circuits Syst. I, Reg. Papers, no. 8, vol. 54, pp. 1647-1656, Aug. 2007.
[73]F. Ellinger, R. Vogt and W. Bachtold, “Ultracompact reflective-type phase shifter MMIC at C-band with 360° phase-control range for smart antenna combining,” IEEE J. Solid-State Circuits, vol. 37, no. 4, pp. 481-486, Apr. 2002.
[74]H. Zarei and D. J. Allstot, “A low-loss phase shifter in 180 nm CMOS for multiple-antenna receivers,” in IEEE Int. Solid-State Circuits Conf. Tech. Dig., vol. 1, Feb. 2004, pp. 392-393.
[75]S. Lee, J. H. Park, H. T. Kim, J. M. Kim Y. K. Kim and Y. Kwon, “Low-loss analog and digital reflection-type MEMS phase shifters with 1:3 bandwidth,” IEEE Trans. Microw. Theory Tech., vol. 52, no. 1, pp. 211-219, Jan. 2004.
[76]H. Hayashi, T. Nakagawa and K. Araki, “A miniaturized MMIC analog phase shifter using two quarter-wave-length transmission lines,” IEEE Trans. Microw. Theory Tech., vol. 50, no. 1, pp. 150-154, Jan. 2002.
[77]F. Ellinger, R. Vogt and W. Bachtold, “Compact reflective-type phase-shifter MMIC for C-band using a lumped-element coupler,” IEEE Trans. Microw. Theory Tech., vol. 49, no. 5, pp. 913-917, May. 2001.
[78]H. Hayashi, M. Muraguchi, Y. Umeda and T. Enoki, “A high-Q broad-band active inductor and its application to a low-loss analog phase shifter,” IEEE Trans. Microw. Theory Tech., vol. 44, no. 12, pp. 2369-2374, Dec. 1996.
[79]S. Nam, C. W. Park, F. M. Ghannouchi, E. Allamando and I. D. Robertson, “Wideband monolithic millimeter-wave phase shifter with minimum insertion loss variation,” in IEEE MTT-S Int. Micro. Symp. Dig., 2000, vol. 3, pp. 1577-1580.
[80]B. Biglarbegian, M. R. Nezhad-Ahmadi, M. Fakharzadeh and S. Safavi-Naeini, “Millimeter-Wave Reflective-Type Phase Shifter in CMOS Technology,” IEEE Mcrow. Wireless Component Lett., vol. 19, no. 9, pp. 560-562, Sep. 2009
[81]K. J. Koh and G. M. Rebeiz, “A 0.13-μm CMOS digital phase shifter for K-band phased arrays,” in IEEE Radio Frequency Integrated Circuits Symp. Dig. Paper, 2004, pp. 383-386.
[82]P. S. Wu, H. Y. Chang, M. D. Tsai, T. W. Huang and H. Wang, “New miniature 15-20-GHz continuous-phase/amplitude control MMICs using 0.18-μm CMOS technology,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 1, pp. 10-19, Jan. 2006.
[83]P. Y. Chen, T. W. Huang, H. Wang, Y. C. Wang, C. H. Chen and P. C. Chao, “K-band HBT and HEMT monolithic active phase shifters using vector sum method,” IEEE Trans. Microw. Theory Tech., vol. 52, no. 5, pp. 1414-1424, May. 2004.
[84]F. Ellinger and W. Bachtold, “Novel principle for vector modulator-based phase shifters operating with only one control voltage,” IEEE J. Solid-State Circuits, vol. 37, no. 10, pp. 1256-1259, Oct. 2002.
[85]F. Ellinger, U. Lott and W. Bachtold, “An antenna diversity MMIC vector modulator for HIPERLAN with low power consumption and calibration capability,” IEEE Trans. Microw. Theory Tech., vol. 49, no. 5, pp. 964-969, May. 2001.
[86]J. M. Blas and J. I. Alonso, “Low cost wideband I-Q vector modulator,” Electron. Lett., vol. 33, no. 1, pp. 18-20, Jan. 1997
[87]M. A. Y. Abdalla, K. Phang and G. V. Eleftheriades, “Printed and integrated CMOS positive/negative refractive-index phase shifters using tunable active inductors,” IEEE Trans. Microw. Theory Tech., vol. 55, no. 8, pp. 1611-1623, Aug. 2007.
[88]C. Lu, A. V. H. Pham and D. Livezey, “Development of multiband phase shifters in 180-nm RF CMOS technology with active loss compensation,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 1, pp. 40-45, Jan. 2006.
[89]T. Kim and D. J. Allstot, “A tunable transmission line phase shifter (TTPS),” in Proc. IEEE Int. Symp. Circuits and System (ISCAS 2004), May 2004, vol. 1, pp. 972-975.
[90]F. Ellinger, H. Jackel and W. Bachtold, “Varactor-loaded transmission-line phase shifter at C-band using lumped elements,” IEEE Trans. Microw. Theory Tech., vol. 51, no. 4, pp. 1135-1140, Apr. 2003.
[91]F. Ellinger, R. Vogt and W. Bachtold, “Ultra compact, low loss, varactor tuned phase shifter MMIC at C-band,” IEEE Mcrow. Wireless Component Lett., vol. 11, no. 3, pp. 104-105, Mar. 2001
[92]M. Chu, J. M. Huard, K. Y. Wong and D. J. Allstot, “A 5 GHz wide-range CMOS active phase shifter for wireless beamforming applications,” in IEEE Radio and Wireless Symposium, San Diego, USA, Jan. 2006, pp. 47-50
[93]H. Zarei, A. Ecker, J. Park and D. J. Allstot, “A full-range all-pass variable phase shifter for multiple antenna receivers,” in Proc. IEEE Int. Symp. Circuits and System (ISCAS 2005), May 2005, vol. 3, pp. 2100-2103.
[94]D. Viveiros, D. Consonni and A. K. Jastrzebski, “A tunable all-pass MMIC active phase shifter,” IEEE Trans. Microw. Theory Tech., vol. 50, no. 8, pp. 1885-1889, Aug. 2002.
[95]H. Hayashi and M. Muraguchi, “An MMIC active phase shifter using a variable resonant circuit,” IEEE Trans. Microw. Theory Tech., vol. 47, no. 10, pp. 2021-2026, Oct. 1999.
[96]M. Mahfoudi and J. I. Alonso, “A simple technique for the design of MMIC 90° phase-difference networks,” IEEE Trans. Microw. Theory Tech., vol. 44, no. 10, pp. 1694-1702, Oct. 1996.
[97]M. A. Morton, J. P. Comeau, J. D. Cressler, M. Mitchell and J. Papapolymerou, “Sources of phase error and design considerations for silicon-based monolithic high-pass/low-pass microwave phase shifters,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 12, pp. 4032-4040, Dec. 2006.
[98]T.-Y. Chin, J.-C. Wu, S.-F. Chang, and C.-C. Chang, "Compact S-/Ka-band CMOS quadrature hybrids with high phase balance based on multi-layer transformer over-coupling technique," IEEE Trans. Microwave Theory Tech., vol. 57, pp. 708-715, Mar. 2009.
[99]D. R. C. Frye, S. Kapur and R. C. Melville, “A 2-GHz quadrature hybrid implemented in CMOS technology,” IEEE J. Solid-State Circuits, vol. 38, no. 3, pp. 550-555, Mar. 2003.
[100]D. Ozis, J. Paramesh and D. J. Allstot, “Analysis and design of lumped-element quadrature couplers with lossy passive elements,” in Proc. IEEE Int. Symp. Circuits and System (ISCAS 2006), May 2006, pp. 2317-2320.
[101]R. C. Jaeger and T. N. Blalock, Microelectronic circuit design, 2th ed. McGraw-Hill Professional, 2004, pp. 339-343.
[102]J. Park, J. Lu, D. S. Boesch, S. Stemmer, and R. A. York, “Distributed Phase Shifter with Pyrochlore Bismuth Zinc Niobate Thin Films,” IEEE Mcrow. Wireless Component Lett., vol. 16, no. 5, pp. 264 - 266 , May 2006.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 馬嘉應、李淑君,2008,台商透過境外公司租稅規劃之研究-以香港及新加坡為例,財稅研究,第40卷第5期,頁30-47。
2. 史芳銘,2004,大陸實施預約定價安排對台商的意義與實施程序,實用稅務,第360期,頁89-94。
3. 馬嘉應、賴榮舟,2009,我國實施移轉訂價制度之實證研究-以台灣電子產業上市公司財務報表與合併報為例,財稅研究,第41卷第4期,頁89-106。
4. 吳德豐、吳金終,2008,國際避稅與反避稅-企業國際租稅規避,稅務旬刊,第2059期,頁39-41。
5. 吳德豐、吳金終,2008,國際避稅與反避稅-國際反避稅,稅務旬刊,第2062期,頁30-33。
6. 施淑惠,2008,資本稀釋與租稅規避,稅務旬刊,第2057期,頁7-15。
7. 莊義雄、魏敏全,2008,兩岸移轉訂價稅務查核比較研究,財稅研究,第40卷第5期,頁79-106。
8. 陳明進、林怡伶,2009,大陸電子業台商稅務問題之研究,財稅研究,第41卷第2期,頁75-89。
9. 陳明進、王淑靜,2002,台商赴大陸投資安排及租稅規劃探討,財稅研究,第34卷6期,頁70-94。
10. 曾嘉文、吳蓮英,1999,受控外國公司所得稅課稅制度之研究,財稅研究,第31卷第3期,頁97-156
11. 戴嬡坪,1998,食品業赴大陸投資之研究,經濟情勢暨評論季刊,第4卷1期,頁144-167。
12. 吳錦錩(2006),企業持續性競爭優勢構面—以台灣自有品牌企業為例,中華管理評論,第九卷二期
13. 何雍慶、曾真真(2004),人力資本存量對生產力之影響─以壽險業務單位為例,商管科技季刊,第五卷第四期,pp.377-390.
14. 高明瑞、黃義俊、張乃仁(2008),綠色創新能力對組織環境績效之影響,遠東學報,第二十五卷第二期,pp.191-202.
15. 陳瑜芬、吳明政、賴銘娟(2006),應用實質選擇權探討企業在不同生命週期的人力運用策略,中華管理評論國際學報,2006年12月第九卷四期
 
系統版面圖檔 系統版面圖檔