|
[1]E. D. Kaplan, Understanding GPS: Principles and Applications, Artech House, 1996. [2]Y. Gu, A. Lo, and I. Niemegeers, “A survey of indoor positioning systems for wireless personal networks,” IEEE Commun. Surveys, Tutorials, vol. 11, pp. 13–32, 2009. [3]R. Mautz, “The challenges of indoor environments and specification on some alternative positioning systems,” in Proc. 6th Workshop on Position., Navigat. and Commun., 2009, pp. 29-36. [4]H. Liu, H. Darabi, P. Banerjee, and J. Liu, “Survey of wireless indoor positioning techniques and systems,” IEEE Trans. Syst., Man. Cybern. C, Appl. Rev., vol. 37, no. 6, p. 1067, Nov. 2007. [5]M. Vossiek, L. Wiebking, P. Gulden, J. Wieghardt, C. Hoffmann, P. Heide, S. Technol, and G. Munich, “Wireless local positioning,” IEEE Microw. Mag., vol. 4, no. 4, pp. 77–86, 2003. [6]K. Pahlavan, X. Li, and J.-P. Makela, “Indoor geolocation science and technology,” IEEE Commun. Mag., vol. 40, pp. 112-118, Feb. 2002. [7]C. Zhang, M. J. Kuhn, B. C. Merkl, A. E. Fathy, and M. R. Mahfouz, “Real-time noncoherent UWB positioning Radar with millimeter range accuracy: theory and experiment,” IEEE Trans. Microw. Theory Tech., vol.58, no.1, pp. 9-20, Jan. 2010. [8]N. A. Alsindi, B. Alavi, and K. Pahlavan “Measument and modeling of ultrawideband TOA-based ranging in indoor multipath environments,” IEEE Trans. Microw. Theory Tech., vol.58, no.3, pp. 1046-1058, Mar. 2009. [9]M. R. Mahfouz, C. Zhang, B. C. Merkl, M. J. Kuhn, and A. E. Fathy, “Investigation of high-accuracy indoor 3-D positioning using UWB technology,” IEEE Trans. Microw. Theory Tech., vol.56, no.6, pp. 1316-1330, Jun. 2008. [10]C. Zhang, M. Kuhn, A. E. Fathy, and M. Mahfouz, “Real-time noncoherent UWB positioning Radar with millimeter range accuracy in a 3D indoor environment”, in IEEE MTT-S Int. Microw. Symp. Dig., 2009, pp. 1413-1416. [11]B. Waldmann, R. Weigel, and P. Gulden, “Method for high precision local positioning radar using an ultra wideband technique,” in IEEE MTT-S Int. Microw. Symp. Dig., 2008, pp. 117–120. [12]C. Meier, A. Terzis, and S. Lindenmeier, “A robust 3D high precision radio location system,” in IEEE MTT-S Int. Microw. Symp. Dig., 2007, pp. 397–400. [13]C. Meier, A. Terzis, and S. Lindenmeier, “Investigation and suppression of multipath influence on indoor radio location in the millimeter wave range,” in Wave Propag. Commun., Microw. Syst. Navigat. Conf., Chemnitz, Germany, 2007, pp. 21–24. [14]T. E. McEwan, “Radiolocation system having writing pen application,” U.S. Patent 6 747 599, Jun. 8, 2004. [15]G. Ossberger, T. Buchegger, E. Schimback, A. Stelzer, and R. Weigel, “Non-invasive respiratory movement detection and monitoring of hidden humans using ultra wideband pulse radar,” in IEEE Int. UWB Syst. Tech. Conf., Kyoto, Japan, 2004, pp. 395–399. [16]A. Fujii, H. Sekiguchi, M. Asai, S. Kurashima, H. Ochiai, and R. Kohno, “Impulse radio UWB positioning system,” in IEEE Radio Wireless Symp., 2007, pp. 55–58. [17]Z. N. Low, J. H. Cheong, C. L. Law, W. T. Ng, and Y. J. Lee, “Pulse detection algorithm for line-of-sight (LOS) UWB ranging applications,” IEEE Antennas Wireless Propag. Lett., vol. 4, pp. 63–67, 2005. [18]R. Zetik, J. Sachs, and R. Thomä, “UWB localization—Active and passive approach,” in Proc. 21th IEEE IMTC, 2004, vol. 2, pp. 1005–1009. [19]S. Wehrli, R. Gierlich, J. Huttner, D. Barras, F. Ellinger, and H. Jackel, “Integrated active pulsed reflector for an indoor local positioning system,” IEEE Trans. Microw. Theory Tech., vol.58, no.2, pp. 267-275, Feb. 2010. [20]A. Stelzer, K. Pourvoyeur, and A. Fischer, “Concept and application of LPM—A novel 3-D local position measurement system,” IEEE Trans. Microw. Theory Tech., vol. 52, no. 12, pp. 2664–2669, Dec. 2004. [21]L. Wiebking, M. Glanzer, D. Mastela, M. Christmann, and M. Vossiek, “Remote local positioning radar,” in IEEE Radio Wireless Conf., Sep. 2004, pp. 191–194. [22]M. Vossiek and P. Gulden, “The switched injection-locked oscillator: A novel versatile concept for wireless transponder and localization systems,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 4, pp. 859–866, Apr. 2008. [23]A. Stelzer, K. Pourvoyeur, and A. Fischer, “Concept and application of LPM-a novel 3-D local position measurement system,” IEEE Trans. Microw. Theory Tech., vol. 52, no. 12, pp. 2664–2669, Dec. 2004. [24]R. Mosshammer, M. Huemer, R. Szumny, K. Kurekt, J. Hittner, and R. Gierlichli, “A 5.8 GHz local positioning and communication system,” in IEEE MTT-S Int. Microw. Symp. Dig., Honolulu, HI, 2007, pp. 1237–1240. [25]R. Feger, C. Wagner, S. Schuster, H. Jäger, and A. Stelzer, “A 77-GHz FMCW MIMO radar based on an SiGe single-chip transceiver,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 5, pp. 1020–1035, May 2009. [26]M. Pichler, A. Stelzer, P. Gulden, C. Seisenberger, and M. Vossiek, “Phase-error measurement and compensation in PLL frequency synthesizers for FMCW sensors—I: Context and application,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 54, no. 5, pp. 1006–1017, May 2007. [27]L. Reindl, C. C. W. Ruppel, S. Berek, U. Knauer,M. Vossiek, P. Heide, and L. Oreans, “Design, fabrication, and application of precise SAW delay lines used in an FMCW radar system,” IEEE Trans. Microw. Theory Tech., vol. 49, no. 4, pp. 787–794, Apr. 2001. [28]M. Vossiek, R. Roskosch, and P. Heide, “Precise 3-D object position tracking using FMCW radar,” in Proc. 29th European Microwave Conf., Oct. 1999, vol. 1, pp. 234–237. [29]H.-S. Ahn, and W. Yu, “Environmental-adaptive RSSI-based indoor localization,” IEEE Trans. Automat. Sci. Eng., vol. 6, no. 4, pp.626-633, Oct. 2009. [30]J.Zhou, K. M.-K.Chu, and J. K.-Y. Ng, “Providing location services within a radio cellular network using ellipse propagation model,” in Proc. 19th Int. Conf. Adv. Inf. Netw. Appl., 2005, pp. 559–564. [31]S.-H. Fang, and T.-N. Lin, ”Accurate WLAN indoor localization based on RSS fluctuations modeling”, Int. Sym. on Intelligent Signal Processing. Tech. Hungary, 2009, pp. 27–30. [32]S. Thongthammacharl and H. Olesen, ”Bluetooth enables in-door mobile location services,” Proc. Vehicular Tech. Conf., 2003, pp. 2023-2027. [33]R. Bruno and F. Delmastro, ”Design and analysis of a bluetooth-based indoor localization system”, Proc. Personal Wireless. Commun., Italy, 2003, pp. 711-725. [34]M. Rodriguez, J. P. Pece, and C. J. Escudero, ”In-building location using Bluetooth”, Proc. Int. Workshop on Wireless Ad Hoc Net., 2005. [35]J. Hallberg, M. Nilsson, and K. Synnes, ”Positioning with Bluetooth”, Proc. 10th Intl Conf. on Telecom., 2003, pp. 954-958. [36]A. Genco, ”Three step bluetooth positioning”, Lecture Notes in Computer Science, vol. 3479, 2005, pp. 52-62. [37]A. Kupper, Location-based Services Fundamentals and Operation, England: Wiley, 2005. [38]N. Priyantha, A. Chakraborty, and H. Balakrishnan, ”The cricket location- support system”, Proc. 6th ACM Intl Conf. on Mobile Computing and Networking, MA. 2000. [39]B. B. Peterson, C. Kmiecik, R. Hartnett, P. M. Thompson, J. Mendoza, and H. Nguyen, “Spread spectrum indoor geolocation,” J. Inst. Navigat., vol. 45, no. 2, pp. 97–102, 1998. [40]X. Li, K. Pahlavan, M. Latva-aho, and M. Ylianttila, “Comparison of indoor geolocationmethods in DSSS and OFDM wireless LAN,” in Proc. IEEE Veh. Technol. Conf., Sep. 2000, vol. 6, pp. 3015–3020. [41]M. Kossel, H. R. Benedickter, R. Peter, and W. Bachtold, “Microwave backscatter modulation systems,” IEEE MTT-S Dig., vol. 3, pp. 1427–1430, Jun. 2000. [42]A. Gunther and C. Hoene, “Measuring round trip times to determine the distance between WLAN nodes,” in Proc. Netw., Waterloo, ON, Canada, May 2005, pp. 768–779. [43]C. Drane, M. Macnaughtan, and C. Scott, “Positioning GSM telephones,” IEEE Commun. Mag., vol. 36, no. 4, pp. 46–54, 59, Apr. 1998. [44]D. Torrieri, “Statistical theory of passive location systems,” IEEE Trans. Aerosp. Electron. Syst., vol. 20, no. 2, pp. 183–197, Mar. 1984. [45]G. Parkinson, M. Boon, J. G. Davis, and R. Sloan, “3D positioning using spherical algorithms for networked wireless sensors deployed in grain,” in IEEE MTT-S Int. Microw. Symp. Dig., 2009, pp. 1417–1420. [46]G. M. Kirkpatrick, “Development of a monopulse radar system,” IEEE Trans. Aerosp. Electron. Syst., vol. 45, no. 2, pp. 807–818, Apr. 2009. [47]S. Chandran, Advances in Direction-of-Arrival Estimation, Artech House, 2005. [48]B. D. V. Veen and K. M. Buckley, “Beamforming: A versatile approach to spatial filtering,” IEEE ASSP Mag., vol. 5, no. 2, pp. 4–24, Apr. 1988. [49]G. Giorgetti, A. Cidronali, S. Gupta, and G. Manes, “Single-anchor indoor localization using a switched-beam antenna,” IEEE Commun. Lett., vol. 13, no. 1, pp. 58-60, Jan. 2009. [50]A. Cidronali, S. Maddio, G. Giorgetti, and G. Manes, “Analysis and performance of s smart antenna for 2.45-GHz single-anchor indoor positioning,” IEEE Trans. Microw. Theory Tech., vol.58, no.1, pp.21-31, Jan. 2010. [51]A. Cidronali, S. Maddio, G. Giorgetti, I. Magrini, S. K. S. Gupta, and G. Manes, “A 2.45 GHz smart antenna for location-aware single-anchor indoor applications,” in IEEE MTT-S Int. Microw. Symp. Dig., 2009, pp. 1553–1556. [52]S. Wang, K.-H. Tsai, K.-K. Huang, S.-X. Li, H.-S. Wu, and C.-K. C. Tzuang, “Design of X-band RF CMOS transceiver for FMCW monopulse radar,” IEEE Trans. Microw. Theory Tech., vol.57, no.1, pp.61-70, Jan. 2009. [53]F. Belloni, V. Ranki, A. Kainulainen, and A. Richter, “Angle-based indoor positioning system for open indoor environments,” in Proc. 6th Workshop on Position., Navigat. and Commun., 2009, pp. 261-265. [54]A. Tennant, “Experimental two-element time-modulated direction finding array,” IEEE Trans. Antennas Propag., vol.58, no.3, pp.986-988, Mar. 2010. [55]Y. Zhang, A. K. Brown, W. Q. Malik, and D. J. Edwards, “High resolution 3-D angle of arrival determination for indoor UWB multipath propagation,” IEEE Trans. Wireless Commun., vol.58, no.3, pp.986-988, Mar. 2010. [56]C.-H. Lim, Y. Wan, B.-P. Ng, and C.-M. S. See, “A real-time indoor WiFi localization system utilizing smart antennas,” IEEE Trans. Consumer Electronics, vol.53, no.2, pp.618-622, May 2007. [57]R. Want, A. Hopper, V. Falcao, J. Gibbons, ”The Active Badge Location System”, ACM Trans. Information Systems, vol. 10, no. 1, pp. 91-102, Jan. 1992. [58]R. J. Orr, and G. D. Abowd, ”The smart floor: a mechanism for natural user identification and tracking”, In Proc. Human Factors in Computing Systems Conf., Netherlands. 2000. [59]J. J. Caffery and G. L. Stuber, “Overview of radiolocation in CDMA cellular system,” IEEE Commun. Mag., vol. 36, no. 4, pp. 38–45, Apr. 1998. [60]S.-H. Fang, T.-N. Lin, and K.-C. Lee, “A novel algorithm for multipath fingerprinting in indoor WLAN environments,” IEEE Trans. Wireless Commun., vol.7, no.9, pp. 3579-3588, Sep. 2008. [61]M. Brunato and R. Battiti, “Statistical learning theory for location fingerprinting in wireless LANs,” Computer Networks, vol. 47, no. 6, pp. 825–845, 2005. [62]T. Roos, P. Myllymaki, H. Tirri, P. Misikangas, and J. Sievanen, “A probabilistic approach to WLAN user location estimation,” International J. Wireless Inform. Networks, vol. 9, no. 3, pp. 155–164, 2002. [63]M. A. Youssef, A. Agrawala, and A. U. Shankar, “WLAN location determination via clustering and probability distributions,” in Pervasive Computing and Commun., pp. 143–150, 2003. [64]P. Bahl and V. Padmanabhan, ”RADAR: An in-building RF based user location and tracking system”, Proc. IEEE INFOCOM, vol. 2, Mar. 2000, pp. 775-784. [65]H.-Y. Liu, and R. Y. Yen, “Error probability for orthogonal space-time block code diversity system using rectangular QAM transmission over Rayleigh fading channels,” IEEE Trans. Signal Process., vol. 54, no. 4, pp. 1230–1241, Apr. 2006. [66]A. Chindapol, and J. A. Ritcey “Design, analysis, and performance evaluation for BICM-ID with square QAM constellations in Rayleigh fading channels,” IEEE J. Sel. Areas Commun., vol. 19, no. 5, pp. 944–957, May 2001. [67]I. J. Bahl, and P. Bhartia, Microstrip Antennas, Artech House, 1980. [68]J. Butler and R. Lowe, “Beam forming matrix simplifies design of electronically scanned antennas,” in Electron. Design, Apr. 12, 1961, pp. 170–173. [69]S.-S. Liao, P.-T. Sun, N.-C. Chin, AND J.-T. Peng, “A novel compact-size branch-line coupler,” IEEE Mcrow. Wireless Component Lett., vol. 15, no 9, pp. 588-590, Sep. 2005. [70]J.-C. Wu, C.-C. Chang, S.-F. Chang, and T.-Y. Chin, “A 24-GHz full-360° CMOS reflection-type phase shifter MMIC with low loss-variation, “ in RFIC Symp. Dig., Atlanta, GA, Jun. 2008, pp. 365-368. [71]J.-C. Wu, T.-Y. Chin, S.-F. Chang, and C.-C. Chang, “2.45-GHz CMOS reflection-type phase shifter MMICs with minimal loss variation over quadrants of phase shift range,” IEEE Trans. Microwave Theory Tech., vol. 56, pp. 2180-2189, Oct. 2008. [72]H. Zarei, S. Kodama, C. T. Charles and D. J. Allstot, “Reflective-type phase shifters for multiple-antenna transceivers,” IEEE Trans. Circuits Syst. I, Reg. Papers, no. 8, vol. 54, pp. 1647-1656, Aug. 2007. [73]F. Ellinger, R. Vogt and W. Bachtold, “Ultracompact reflective-type phase shifter MMIC at C-band with 360° phase-control range for smart antenna combining,” IEEE J. Solid-State Circuits, vol. 37, no. 4, pp. 481-486, Apr. 2002. [74]H. Zarei and D. J. Allstot, “A low-loss phase shifter in 180 nm CMOS for multiple-antenna receivers,” in IEEE Int. Solid-State Circuits Conf. Tech. Dig., vol. 1, Feb. 2004, pp. 392-393. [75]S. Lee, J. H. Park, H. T. Kim, J. M. Kim Y. K. Kim and Y. Kwon, “Low-loss analog and digital reflection-type MEMS phase shifters with 1:3 bandwidth,” IEEE Trans. Microw. Theory Tech., vol. 52, no. 1, pp. 211-219, Jan. 2004. [76]H. Hayashi, T. Nakagawa and K. Araki, “A miniaturized MMIC analog phase shifter using two quarter-wave-length transmission lines,” IEEE Trans. Microw. Theory Tech., vol. 50, no. 1, pp. 150-154, Jan. 2002. [77]F. Ellinger, R. Vogt and W. Bachtold, “Compact reflective-type phase-shifter MMIC for C-band using a lumped-element coupler,” IEEE Trans. Microw. Theory Tech., vol. 49, no. 5, pp. 913-917, May. 2001. [78]H. Hayashi, M. Muraguchi, Y. Umeda and T. Enoki, “A high-Q broad-band active inductor and its application to a low-loss analog phase shifter,” IEEE Trans. Microw. Theory Tech., vol. 44, no. 12, pp. 2369-2374, Dec. 1996. [79]S. Nam, C. W. Park, F. M. Ghannouchi, E. Allamando and I. D. Robertson, “Wideband monolithic millimeter-wave phase shifter with minimum insertion loss variation,” in IEEE MTT-S Int. Micro. Symp. Dig., 2000, vol. 3, pp. 1577-1580. [80]B. Biglarbegian, M. R. Nezhad-Ahmadi, M. Fakharzadeh and S. Safavi-Naeini, “Millimeter-Wave Reflective-Type Phase Shifter in CMOS Technology,” IEEE Mcrow. Wireless Component Lett., vol. 19, no. 9, pp. 560-562, Sep. 2009 [81]K. J. Koh and G. M. Rebeiz, “A 0.13-μm CMOS digital phase shifter for K-band phased arrays,” in IEEE Radio Frequency Integrated Circuits Symp. Dig. Paper, 2004, pp. 383-386. [82]P. S. Wu, H. Y. Chang, M. D. Tsai, T. W. Huang and H. Wang, “New miniature 15-20-GHz continuous-phase/amplitude control MMICs using 0.18-μm CMOS technology,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 1, pp. 10-19, Jan. 2006. [83]P. Y. Chen, T. W. Huang, H. Wang, Y. C. Wang, C. H. Chen and P. C. Chao, “K-band HBT and HEMT monolithic active phase shifters using vector sum method,” IEEE Trans. Microw. Theory Tech., vol. 52, no. 5, pp. 1414-1424, May. 2004. [84]F. Ellinger and W. Bachtold, “Novel principle for vector modulator-based phase shifters operating with only one control voltage,” IEEE J. Solid-State Circuits, vol. 37, no. 10, pp. 1256-1259, Oct. 2002. [85]F. Ellinger, U. Lott and W. Bachtold, “An antenna diversity MMIC vector modulator for HIPERLAN with low power consumption and calibration capability,” IEEE Trans. Microw. Theory Tech., vol. 49, no. 5, pp. 964-969, May. 2001. [86]J. M. Blas and J. I. Alonso, “Low cost wideband I-Q vector modulator,” Electron. Lett., vol. 33, no. 1, pp. 18-20, Jan. 1997 [87]M. A. Y. Abdalla, K. Phang and G. V. Eleftheriades, “Printed and integrated CMOS positive/negative refractive-index phase shifters using tunable active inductors,” IEEE Trans. Microw. Theory Tech., vol. 55, no. 8, pp. 1611-1623, Aug. 2007. [88]C. Lu, A. V. H. Pham and D. Livezey, “Development of multiband phase shifters in 180-nm RF CMOS technology with active loss compensation,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 1, pp. 40-45, Jan. 2006. [89]T. Kim and D. J. Allstot, “A tunable transmission line phase shifter (TTPS),” in Proc. IEEE Int. Symp. Circuits and System (ISCAS 2004), May 2004, vol. 1, pp. 972-975. [90]F. Ellinger, H. Jackel and W. Bachtold, “Varactor-loaded transmission-line phase shifter at C-band using lumped elements,” IEEE Trans. Microw. Theory Tech., vol. 51, no. 4, pp. 1135-1140, Apr. 2003. [91]F. Ellinger, R. Vogt and W. Bachtold, “Ultra compact, low loss, varactor tuned phase shifter MMIC at C-band,” IEEE Mcrow. Wireless Component Lett., vol. 11, no. 3, pp. 104-105, Mar. 2001 [92]M. Chu, J. M. Huard, K. Y. Wong and D. J. Allstot, “A 5 GHz wide-range CMOS active phase shifter for wireless beamforming applications,” in IEEE Radio and Wireless Symposium, San Diego, USA, Jan. 2006, pp. 47-50 [93]H. Zarei, A. Ecker, J. Park and D. J. Allstot, “A full-range all-pass variable phase shifter for multiple antenna receivers,” in Proc. IEEE Int. Symp. Circuits and System (ISCAS 2005), May 2005, vol. 3, pp. 2100-2103. [94]D. Viveiros, D. Consonni and A. K. Jastrzebski, “A tunable all-pass MMIC active phase shifter,” IEEE Trans. Microw. Theory Tech., vol. 50, no. 8, pp. 1885-1889, Aug. 2002. [95]H. Hayashi and M. Muraguchi, “An MMIC active phase shifter using a variable resonant circuit,” IEEE Trans. Microw. Theory Tech., vol. 47, no. 10, pp. 2021-2026, Oct. 1999. [96]M. Mahfoudi and J. I. Alonso, “A simple technique for the design of MMIC 90° phase-difference networks,” IEEE Trans. Microw. Theory Tech., vol. 44, no. 10, pp. 1694-1702, Oct. 1996. [97]M. A. Morton, J. P. Comeau, J. D. Cressler, M. Mitchell and J. Papapolymerou, “Sources of phase error and design considerations for silicon-based monolithic high-pass/low-pass microwave phase shifters,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 12, pp. 4032-4040, Dec. 2006. [98]T.-Y. Chin, J.-C. Wu, S.-F. Chang, and C.-C. Chang, "Compact S-/Ka-band CMOS quadrature hybrids with high phase balance based on multi-layer transformer over-coupling technique," IEEE Trans. Microwave Theory Tech., vol. 57, pp. 708-715, Mar. 2009. [99]D. R. C. Frye, S. Kapur and R. C. Melville, “A 2-GHz quadrature hybrid implemented in CMOS technology,” IEEE J. Solid-State Circuits, vol. 38, no. 3, pp. 550-555, Mar. 2003. [100]D. Ozis, J. Paramesh and D. J. Allstot, “Analysis and design of lumped-element quadrature couplers with lossy passive elements,” in Proc. IEEE Int. Symp. Circuits and System (ISCAS 2006), May 2006, pp. 2317-2320. [101]R. C. Jaeger and T. N. Blalock, Microelectronic circuit design, 2th ed. McGraw-Hill Professional, 2004, pp. 339-343. [102]J. Park, J. Lu, D. S. Boesch, S. Stemmer, and R. A. York, “Distributed Phase Shifter with Pyrochlore Bismuth Zinc Niobate Thin Films,” IEEE Mcrow. Wireless Component Lett., vol. 16, no. 5, pp. 264 - 266 , May 2006.
|