|
[1]M. Klotz and H. Rohling, “A 24 GHz short-range radar network for automotive application,” in Proc. IEEE Radar Conf., 2001, pp. 115–119. [2]IEEE 802.15 WPAN Millimeter Wave Alternative PHY Task Group 3c TG3c). [Online]. Available: www.ieee802.org [3]HDMI, Online: http://www.hdmi.org/ [4]C. A. Balanis, Antenna Theory: Analysis and Design, 3rd ed. New York: Wiley, 2005. [5]X. Guan, H. Hashemi, and A. Hajimiri, “A fully integrated 24-GHz eight-element phased array receiver in silicon,” IEEE J. Solid-State Circuits, vol. 39, no. 12, pp. 2311–2320, Dec. 2004. [6]H. Hashemi, X. Guan, A. Komijani, and A. Hajimiri, “A 24-GHz SiGe phased array receiver—LO phase-shifting approach,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 2, pp. 614–626, Feb. 2005. [7]A. Natarajan, A. Komijani, and A. Hajimiri, “A fully integrated 24-GHz phased-array transmitter in CMOS,” IEEE J. Solid-State Circuits, vol. 40, no. 12, pp. 2502–2514, Dec. 2005. [8]A. Babakhani, X. Guan, A. Komijani, A. Natarajan, and A. Hajimiri, “A 77-GHz phased array transceiver with on-chip antennas in silicon: Receiver and antennas,” IEEE J. Solid-State Circuits, vol. 41, no. 12, pp. 2795–2806, Dec. 2006. [9]S. Jeon, Y.-J. Wang, H. Wang, F. Bohn, A. Natarajan, A. Babakhani, and A. Hajimiri, “A scalable 6-to-18 GHz concurrent dual-band quad-beam phased-array receiver in CMOS,” IEEE J. Solid-State Circuits, vol. 43, no. 12, pp. 2660-2673, Dec. 2008. [10]H. Krishnaswamy and H. Hashemi, “A fully integrated 24GHz 4-channel phased-array transceiver in 0.13μm CMOS based on a variable-phase ring oscillator and PLL architecture,” in IEEE Int. Solid-State Circuits Conf. Tech. Dig., Feb. 2007, pp. 210-212 [11]S. Kishimoto, N. Orihashi, Y. Hamada, M. Ito, and K. Maruhashi, “A 60-GHz band CMOS phased array transmitter utilizing compact baseband phase shifters,” in Proc. IEEE Radio Frequency Integrated Circuits (RFIC) Conf., Jun. 2009, pp. 215-218. [12]K.-J. Koh, J. W. May, G. M. Rebeiz, “A millimeter-wave (40−45 GHz) 16-element phased-array transmitter in 0.18-μm SiGe BiCMOS Technology,” IEEE J. Solid-State Circuits, vol. 44, no. 5, pp. 1498–1509, Sep. 2009. [13]K.-J. Koh and G. M. Rebeiz, “An X- and Ku-Band 8-element phased-array receiver in 0.18-m SiGe BiCMOS technology,” IEEE J. Solid-State Circuits, vol. 43, no. 6, pp. 1360-1371, June 2008. [14]T. Yu and G. M. Rebeiz, “A 22-24 GHz 4-element CMOS phased array with on-chip coupling characterization,” IEEE J. Solid-State Circuits, vol. 43, no.9, pp. 2134-2143, Sept. 2008. [15]A. Natarajan, B. Floyd, and A. Hajimiri, ”A bidirectional RF-combining 60 GHz phased-array front-end,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2007, pp. 202–203. [16]H. Krishnaswamy and H. Hashemi, “A fully integrated 24GHz 4-channel phased-array transceiver in 0.13μm CMOS based on a variable-phase ring oscillator and PLL architecture,” in IEEE Int. Solid-State Circuits Conf. Tech. Dig., Feb. 2007, pp. 210-212. [17]H. Krishnaswamy and H. Hashemi, “A variable-phase ring oscillator and PLL architecture for integrated phased array transceivers,” IEEE J. Solid-State Circuits, vol. 43, no. 11, pp. 2446–2463, Nov. 2008. [18]S. Patnaik, N. Lanka, R. Harjani, “A dual-mode architecture for a phased-array receiver based on injection locking in 0.13μm CMOS,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2009, pp. 490–491. [19]T.-S. Chu, J. Roderick, and H. Hashemi, “A monolithic 4-channel UWB beam-former in 0.13μm CMOS using a path-sharing true-time-delay architecture,” in IEEE ISSCC Dig. Tech. Papers, 2007, pp. 426–427. [20]M. Danielsen and R. Jørgensen, “Frequency scanning microstrip antennas,” IEEE Trans. Antennas Propag., vol. AP-27, no. 2, pp. 146–150, Mar. 1979. [21]N. Yang, C. Caloz, K. Wu, “Full-space scanning periodic phase-reversal leaky-wave antenna,” IEEE Trans. Microw. Theory Tech., vol. 58, no. 10, pp. 2619-2632, Oct. 2010. [22]E. Pels and W. Liang, “A method of array steering by means of phased control through heterodyning,” IRE Trans. Antennas Propagat., vol. AP-10, p. 100, Jan. 1962. [23]K. Aamo, “Frequency controlled antenna beam steering,” in IEEE MTT-S Int. Microw. Symp. Dig., pp. 1549–1552, 1994. [24]M. Kim, J. B. Hacker, A. L. Sailer, and J. H. Hong, “A heterodyne-scan phased array antenna,” IEEE Microwave Guided Wave Lett., vol. 9, pp. 535–537, Dec. 1999. [25]Y.-C. Chen, C.-K. Wu, C.-K. C. Tzuang, "Dual-frequency electric-magnectic-electric microstrip leaky-mode antenna of a single fan beam,” IEEE Trans. Microw. Theory Tech., vol. 50, pp. 2713-2720, Dec. 2002. [26]T. Nishio, H. Xin, Y. Wang, and T. Itoh, “A frequency-controlled active phased array,” IEEE Microw. Wireless Compon. Lett., vol.14, no. 3, pp. 115-117, Mar. 2004. [27]T. Nishio, Y. Wang, and T. Itoh, “A frequency-controller beam-steering array with mixing frequency compensation for multichannel applications,” IEEE Trans. Antennas Propag., vol. 52, no. 4, pp. 1039-1048, Apr. 2004. [28]J. Butler and R. Lowe, “Beam forming matrix simplifies design of electronically scanned antennas,” in Electron. Design, Apr. 12, 1961, pp. 170–173. [29]M. Nedil, T. A. Denidni, and L. Talbi, “Novel Butler Matrix Using CPW Multilayer Technology,” IEEE Trans. Microw. Theory Tech., vol. 54, pp. 499-507, Jan. 2006. [30]J. Remez and R. Carmon, “Compact Designs of Waveguide Butler Matrices,” IEEE Antennas Wireless Propag. Lett., vol. 5, pp. 27-31, 2006. [31]W. Rotman and R. F. Turner, “Wide-angle microwave lens for line source applications,” IEEE Trans. Antennas Propag., vol. AP-11, no. 11, pp. 623–632, Nov. 1963. [32]L. Schulwitz and A. Mortazawi, “A new low loss Rotman lens design using a graded dielectric substrate,” IEEE Trans. Microw. Theory Tech., vol. 56, pp. 2734-2741, Dec. 2008. [33]Arun Natarajan, “Millimeter-wave phased arrays in silicon”, Ph.D. dissertation, California Institute of Technology, Pasadena, California, 2007. [34]H. Hayashi et al., “An MMIC Active Phase Shifter Using a Variable Resonant Circuit,” IEEE Trans. Microw. Theory Tech., vol. 47, pp.021-2026, Oct. 1999 [35]J. Grajal et al., “A 1.4–2.7GHz Analog MMIC Vector Modulator for a Crossbar Beam Forming Network,” IEEE Trans. Microw. Theory Tech.,vol. 45, pp. 1705–1714, Oct. 1997. [36]F. Ellinger, R. Vogt, and W. Bachtold, ” Compact reflective-type phase-shifter MMIC for C-band using a lumped-element coupler,” IEEE Trans. Microw. Theory Tech., vol. 49, pp. 913–917, May 2001. [37]F. Ellinger, R. Vogt, and W. Bachtold, “Ultracompact reflective-type phase shifter MMIC at C-band with 360° phase-control range for smart antenna combining,” IEEE J. Solid-State Circuits, vol. 37, no. 4, pp. 481–486, Apr. 2002. [38]H. Zarei, D. J. Allstot, “A low-loss phase shifter in 180 nm CMOS for multiple-antenna receivers,” in IEEE Int. Solid-State Circuits Conf. Tech. Dig., Feb. 2004, vol. 1, pp. 392–393. [39]C. T. Charles, and D. J. Allstot, “A 2-GHz integrated CMOS reflective-type phase shifter with 675 deg control range,” in Proc. IEEE International Symposium on ISCAS, May 2006, pp. 4. [40]R. H. Hardin, E. J. Downey, and J. Munushian, “Electrically-Variable Phase Shifters Utilizing Variable Capacitance Diodes,” in Proc. IRE (Lett.), vol.48, pp. 944-945, May 1960. [41]C.-S. Lin, S.-F. Chang, C.-C. Chang, and Y.-H. Shu, “Design of a reflection-type phase shifter with wide relative phase shift and constant insertion loss,” IEEE Trans. Microw. Theory Tech., vol. 55, no. 9, pp. 1862–1868, Sept. 2007. [42]H. Shenlei, L. Xueguan, C. Wenfeng, "A novel reflection-type phase shifter employing defected ground structure," in Proc. IEEE Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications, Oct. 2009, pp. 473-476. [43]S. Lee, J.-H. Park, H.-T. Kim, J.-M. Kim, Y.-K. Kim, Y. Kwon, "A 15-to-45 GHz low-loss analog reflection-type MEMS phase shifter," in IEEE MTT-S Int. Microw. Symp. Dig., pp. 1493–1496, 2003. [44]E. Sbarra, L. Marcaccioli, R.V. Gatti, R. Sorrentino, "Ku-band analogue phase shifter in SIW technology," in Proc. European Microw. Conf., Sept. 2009, pp. 264-267. [45]K. Hettak, G. A. Morin, "An integrated C-Band SiGe variable gain amplifier and reflected type phase shifter for phased array T/R modules," in Proc. European Microw. Conf., Sept. 2010, pp. 1544-1547. [46]J.-C. Wu, C.-C. Chang, S.-F. Chang, T.-Y. Chin, "A 24-GHz full-360° CMOS reflection-type phase shifter MMIC with low loss-variation," in IEEE Radio Freq. Integr. Circuits Symp. Dig., Apr. 2008, pp. 365-368. [47]M. Fakharzadeh, P. Mousavi, S. Safavi-Naeini, and S. H. Jamali, “The effects of imbalanced phase shifters loss on phased array gain,” IEEE Antennas Wireless Propag. Lett., vol. 7, pp. 192–196, Jul. 2008. [48]K. W. Hamed, A. P. Freundorfer, Y. M. M. Antar, "A new broadband monolithic passive differential coupler for K/ka-band applications," IEEE Trans. Microw. Theory Tech., vol. 54, no. 6, pp. 2527-2533, June 2006 [49]J.-C. Wu, T.-Y. Chin, S.-F. Chang, and C.-C. Chang, "2.45-GHz CMOS Reflection-Type Phase-Shifter MMICs With Minimal Loss Variation Over Quadrants of Phase-Shift Range," IEEE Trans. Microw. Theory Tech., vol.56, no.10, pp.2180-2189, Oct. 2008 [50]M.-D. Tsai, A. Natarajan, "60GHz passive and active RF-path phase shifters in silicon," in IEEE Radio Freq. Integr. Circuits Symp. Dig., Jun. 2009, pp. 223-226. [51]H. Krishnaswamy, A. Valdes-Garcia, J.-W. Lai, "A silicon-based, all-passive, 60 GHz, 4-element, phased-array beamformer featuring a differential, reflection-type phase shifter," in Proc. IEEE Phased Array Systems and Technology (ARRAY), Oct. 2010, pp. 225-232. [52]B. Biglarbegian, M. R. Nezad-Ahmadi, M. Fakharzadeh, and S. Safavi-Naeini, “Millimeter-Wave reflective-type phase shifter in CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 9, pp. 560–562, Sep. 2009. [53]M. Fakharzadeh, M.-R. Nezhad-Ahmadi, B. Biglarbegian, J. Ahmadi-Shokouh, S. Safavi-Naeini, "CMOS Phased Array Transceiver Technology for 60 GHz Wireless Applications," IEEE Trans. Antennas Propag., vol.58, no.4, pp. 1093-1104, April 2010 [54]R. J. Mailloux, Phased Array Antenna Handbook—Chapter 1, 2nd ed. Boston, MA: Artech House, 2005. [55]S. Raman, N. Barker, and G. Rebeiz, “A w-band dielectric-lens-based integrated monopulse radar receiver,” IEEE Trans. Microw. Theory Tech., vol. 46, no. 12, pp. 2308–2316, Dec. 1998. [56]R. Miura, T. Tanaka, I. Chiba, A. Horie, and Y. Karasawa, “Beamforming experiment with a DBF multibeam antenna in a mobile satellite environment,” IEEE Trans. Antennas Propag., vol. 45, no. 4, pp. 707–714, Apr. 1997. [57]D. B. Van Veen and K. M. Buckley, “Beamforming: a versatile approach to spatial filtering,” IEEE ASSP Magazine, vol. 5, no. 2, pp. 4–24, Apr. 1988. [58]T. Alamouti, “A simple transmit diversity technique for wireless communications,” IEEE J. Sel. Area Commun., vol. 16, no. 8, pp. 1451–1458, Oct. 1998. [59]T. Yu and G. M. Rebeiz, “A 24 GHz 6-Bit CMOS phased-array receiver,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 6, pp. 422–424, Jun. 2008. [60]Y. Yu, P. G. M. Baltus, A. de Graauw, E. van der Heijden, C. S. Vaucher, A. H. M. van Roermund, "A 60 GHz Phase Shifter Integrated With LNA and PA in 65 nm CMOS for Phased Array Systems," IEEE J. Solid-State Circuits, vol.45, no.9, pp.1697-1709, Sept. 2010.
|