(3.238.99.243) 您好!臺灣時間:2021/05/15 18:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:張孟貴
研究生(外文):Chang, Meng-Kuei
論文名稱:具180度與360度調控範圍之毫米波CMOS相移器設計
論文名稱(外文):Design of Millimeterwave CMOS Phase Shifters with 180° and 360° Tuning Range
指導教授:張盛富
指導教授(外文):Chang, Sheng-Fuh
口試委員:洪子聖莊惠如
口試委員(外文):Horng, Tzyy-ShengChuang, Huey-Ru
口試日期:2011-06-24
學位類別:碩士
校院名稱:國立中正大學
系所名稱:電機工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:56
中文關鍵詞:相移器毫米波
外文關鍵詞:phase shiftermillimeterwave
相關次數:
  • 被引用被引用:2
  • 點閱點閱:263
  • 評分評分:
  • 下載下載:31
  • 收藏至我的研究室書目清單書目收藏:0
本論文設計K及V頻段CMOS 180°被動相移器,以及360°主動式相移器。其將用於實現毫米波相位陣列之動態波束掃描功能。傳統單端架構的CMOS被動反射式相移器,為了獲得360°的調控範圍,其植入損耗值和植入損耗變動量會過大。本論文提出具有相位反轉切換功能的差動結構,實現360°的相位調控範圍,僅需180°的相位調控,便可獲得360°相位調控效果,因此大幅降低植入損耗值和其變動量。
本論文設計四顆相移器,包含K頻段180°相移器,V頻段180°相移器,K頻段360°主動相移器,和V頻段360°主動相移器。K及V頻段180°差動反射式相移器,分別以TSMC 0.18 μm與90 nm製程技術實現。以增強互耦之方法設計差動正交耦合器與反射式負載,得以縮短其繞線路徑長度,降低植入損耗及佈局面積。K頻段180°相移器晶片在22–25 GHz的植入損耗為4.9±1.1 dB,晶片面積0.11 mm2。V頻段180°相移器晶片在50–60 GHz的植入損耗為5.9±0.6 dB,晶片面積0.1 mm2。
360°相移器是由180°差動相移器與具相位反轉之低雜訊放大器結合而成。藉放大器輸出路徑切換,達成0°/180°相位反轉之功效,其搭配原有180°的調控而構成360°全相位調控。K頻段360°主動式相移器操作於22至25 GHz,具12±2 dB之增益,雜訊指數5.5±0.5 dB,功率消耗為20.3 mW,晶片面積0.72 mm2。V頻段360°主動式相移器操作於50至60 GHz,具17.6±1 dB之增益,雜訊指數5.7±0.2 dB,功率消耗為32 mW,晶片面積0.59 mm2。實驗與模擬吻合,證實本論文提出相位反轉差動結構,達到低植入損失之360°相移器。
K-band and V-band CMOS 180° and 360° phase shifters are presented in this thesis, which will be applied to millimeter-wave beam-steering phased-array systems. To achieve a full 360° tuning range, a novel differential phase shifter configuration with switchable phase inversion is proposed such that only half of the phase range is required. Therefore, the proposed differential phase shifter configuration contains two key circuit blocks, which are 180° differential reflection-type phase shifter (DRTPS) and switchable active phase inverter. First, the 180° differential reflection-type phase shifters (DRTPSs) were designed at the K- and V-band in 180 nm and 90 nm CMOS process, respectively. The strong coupling lines are utilized to realize the quadrature hybrid. Thus the insertion loss is lowered and the hybrid chip size is reduced. The K-band CMOS DRTPS has the measured insertion loss of 4.9±1.1 dB from 22 to 25 GHz and its chip area is 0.11 mm2. The V-band CMOS DRTPS has the insertion loss of 5.9±0.6 dB from 50 to 60 GHz with the 0.1 mm2 chip area.
Second, the above 180° DRTPS is integrated with the switchable active phase inverter. The switchable active phase inverter is a differential low-noise amplifier with switch-controlled interconnection to output ports. Consequently the phase of output signal at one state can be switched to 180° lag to another state. Two 360° active phase shifters at K- and V-band were implemented. The K-band active phase shifter has a measured gain of 12±2 dB, noise figure of 5.5±0.5 dB from 22 to 25 GHz. The DC power consumption is 20.3 mW and the chip area of 0.72 mm2. The V-band 360° active phase shifter has a measured gain of 17.6±1 dB and noise figure of 5.7±0.2 dB from 5 0 to 60 GHz. It draws 32 mW DC power and has a 0.59 mm2 chip area. The measured results agree very well with the simulation, which demonstrate the proposed full 360° phase shifter configuration.
目錄.........................................I
圖目錄......................................III
表目錄.......................................VI
第一章 序論....................................1
1.1 研究背景..............................1
1.2 相位陣列基本原理.......................4
1.3 研究動機..............................6
1.4 論文架構..............................7
第二章 差動可調式反射相移器.....................8
2.1 相移器研究發展現況.....................8
2.2 K-Band CMOS差動反射式相移器............9
2.2.1 設計原理...........................9
2.2.2 電路佈局與量測考量..................17
2.2.3 模擬與量測結果......................18
2.3 V-Band CMOS差動反射式相移器............23
2.3.1 研究動機...........................23
2.3.2 電路佈局與模擬結果..................24
2.4 結論.................................28
第三章 360°主動相移器..........................29
3.1 並聯式相位陣列之相移架構................29
3.2 K-Band CMOS主動式相移器...............32
3.2.1 設計原理與電路架構..................33
3.2.2 電路佈局與量測考量..................36
3.2.3 模擬與量測結果.....................37
3.3 V-Band CMOS主動式相移器...............42
3.3.1 電路架構、晶片佈局與量測考量.........42
3.3.2 模擬結果...........................44
3.4 結論.................................48
第四章 結論...................................50
參考文獻......................................52
[1]M. Klotz and H. Rohling, “A 24 GHz short-range radar network for automotive application,” in Proc. IEEE Radar Conf., 2001, pp. 115–119.
[2]IEEE 802.15 WPAN Millimeter Wave Alternative PHY Task Group 3c TG3c). [Online]. Available: www.ieee802.org
[3]HDMI, Online: http://www.hdmi.org/
[4]C. A. Balanis, Antenna Theory: Analysis and Design, 3rd ed. New York: Wiley, 2005.
[5]X. Guan, H. Hashemi, and A. Hajimiri, “A fully integrated 24-GHz eight-element phased array receiver in silicon,” IEEE J. Solid-State Circuits, vol. 39, no. 12, pp. 2311–2320, Dec. 2004.
[6]H. Hashemi, X. Guan, A. Komijani, and A. Hajimiri, “A 24-GHz SiGe phased array receiver—LO phase-shifting approach,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 2, pp. 614–626, Feb. 2005.
[7]A. Natarajan, A. Komijani, and A. Hajimiri, “A fully integrated 24-GHz phased-array transmitter in CMOS,” IEEE J. Solid-State Circuits, vol. 40, no. 12, pp. 2502–2514, Dec. 2005.
[8]A. Babakhani, X. Guan, A. Komijani, A. Natarajan, and A. Hajimiri, “A 77-GHz phased array transceiver with on-chip antennas in silicon: Receiver and antennas,” IEEE J. Solid-State Circuits, vol. 41, no. 12, pp. 2795–2806, Dec. 2006.
[9]S. Jeon, Y.-J. Wang, H. Wang, F. Bohn, A. Natarajan, A. Babakhani, and A. Hajimiri, “A scalable 6-to-18 GHz concurrent dual-band quad-beam phased-array receiver in CMOS,” IEEE J. Solid-State Circuits, vol. 43, no. 12, pp. 2660-2673, Dec. 2008.
[10]H. Krishnaswamy and H. Hashemi, “A fully integrated 24GHz 4-channel phased-array transceiver in 0.13μm CMOS based on a variable-phase ring oscillator and PLL architecture,” in IEEE Int. Solid-State Circuits Conf. Tech. Dig., Feb. 2007, pp. 210-212
[11]S. Kishimoto, N. Orihashi, Y. Hamada, M. Ito, and K. Maruhashi, “A 60-GHz band CMOS phased array transmitter utilizing compact baseband phase shifters,” in Proc. IEEE Radio Frequency Integrated Circuits (RFIC) Conf., Jun. 2009, pp. 215-218.
[12]K.-J. Koh, J. W. May, G. M. Rebeiz, “A millimeter-wave (40−45 GHz) 16-element phased-array transmitter in 0.18-μm SiGe BiCMOS Technology,” IEEE J. Solid-State Circuits, vol. 44, no. 5, pp. 1498–1509, Sep. 2009.
[13]K.-J. Koh and G. M. Rebeiz, “An X- and Ku-Band 8-element phased-array receiver in 0.18-m SiGe BiCMOS technology,” IEEE J. Solid-State Circuits, vol. 43, no. 6, pp. 1360-1371, June 2008.
[14]T. Yu and G. M. Rebeiz, “A 22-24 GHz 4-element CMOS phased array with on-chip coupling characterization,” IEEE J. Solid-State Circuits, vol. 43, no.9, pp. 2134-2143, Sept. 2008.
[15]A. Natarajan, B. Floyd, and A. Hajimiri, ”A bidirectional RF-combining 60 GHz phased-array front-end,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2007, pp. 202–203.
[16]H. Krishnaswamy and H. Hashemi, “A fully integrated 24GHz 4-channel phased-array transceiver in 0.13μm CMOS based on a variable-phase ring oscillator and PLL architecture,” in IEEE Int. Solid-State Circuits Conf. Tech. Dig., Feb. 2007, pp. 210-212.
[17]H. Krishnaswamy and H. Hashemi, “A variable-phase ring oscillator and PLL architecture for integrated phased array transceivers,” IEEE J. Solid-State Circuits, vol. 43, no. 11, pp. 2446–2463, Nov. 2008.
[18]S. Patnaik, N. Lanka, R. Harjani, “A dual-mode architecture for a phased-array receiver based on injection locking in 0.13μm CMOS,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2009, pp. 490–491.
[19]T.-S. Chu, J. Roderick, and H. Hashemi, “A monolithic 4-channel UWB beam-former in 0.13μm CMOS using a path-sharing true-time-delay architecture,” in IEEE ISSCC Dig. Tech. Papers, 2007, pp. 426–427.
[20]M. Danielsen and R. Jørgensen, “Frequency scanning microstrip antennas,” IEEE Trans. Antennas Propag., vol. AP-27, no. 2, pp. 146–150, Mar. 1979.
[21]N. Yang, C. Caloz, K. Wu, “Full-space scanning periodic phase-reversal leaky-wave antenna,” IEEE Trans. Microw. Theory Tech., vol. 58, no. 10, pp. 2619-2632, Oct. 2010.
[22]E. Pels and W. Liang, “A method of array steering by means of phased control through heterodyning,” IRE Trans. Antennas Propagat., vol. AP-10, p. 100, Jan. 1962.
[23]K. Aamo, “Frequency controlled antenna beam steering,” in IEEE MTT-S Int. Microw. Symp. Dig., pp. 1549–1552, 1994.
[24]M. Kim, J. B. Hacker, A. L. Sailer, and J. H. Hong, “A heterodyne-scan phased array antenna,” IEEE Microwave Guided Wave Lett., vol. 9, pp. 535–537, Dec. 1999.
[25]Y.-C. Chen, C.-K. Wu, C.-K. C. Tzuang, "Dual-frequency electric-magnectic-electric microstrip leaky-mode antenna of a single fan beam,” IEEE Trans. Microw. Theory Tech., vol. 50, pp. 2713-2720, Dec. 2002.
[26]T. Nishio, H. Xin, Y. Wang, and T. Itoh, “A frequency-controlled active phased array,” IEEE Microw. Wireless Compon. Lett., vol.14, no. 3, pp. 115-117, Mar. 2004.
[27]T. Nishio, Y. Wang, and T. Itoh, “A frequency-controller beam-steering array with mixing frequency compensation for multichannel applications,” IEEE Trans. Antennas Propag., vol. 52, no. 4, pp. 1039-1048, Apr. 2004.
[28]J. Butler and R. Lowe, “Beam forming matrix simplifies design of electronically scanned antennas,” in Electron. Design, Apr. 12, 1961, pp. 170–173.
[29]M. Nedil, T. A. Denidni, and L. Talbi, “Novel Butler Matrix Using CPW Multilayer Technology,” IEEE Trans. Microw. Theory Tech., vol. 54, pp. 499-507, Jan. 2006.
[30]J. Remez and R. Carmon, “Compact Designs of Waveguide Butler Matrices,” IEEE Antennas Wireless Propag. Lett., vol. 5, pp. 27-31, 2006.
[31]W. Rotman and R. F. Turner, “Wide-angle microwave lens for line source applications,” IEEE Trans. Antennas Propag., vol. AP-11, no. 11, pp. 623–632, Nov. 1963.
[32]L. Schulwitz and A. Mortazawi, “A new low loss Rotman lens design using a graded dielectric substrate,” IEEE Trans. Microw. Theory Tech., vol. 56, pp. 2734-2741, Dec. 2008.
[33]Arun Natarajan, “Millimeter-wave phased arrays in silicon”, Ph.D. dissertation, California Institute of Technology, Pasadena, California, 2007.
[34]H. Hayashi et al., “An MMIC Active Phase Shifter Using a Variable Resonant Circuit,” IEEE Trans. Microw. Theory Tech., vol. 47, pp.021-2026, Oct. 1999
[35]J. Grajal et al., “A 1.4–2.7GHz Analog MMIC Vector Modulator for a Crossbar Beam Forming Network,” IEEE Trans. Microw. Theory Tech.,vol. 45, pp. 1705–1714, Oct. 1997.
[36]F. Ellinger, R. Vogt, and W. Bachtold, ” Compact reflective-type phase-shifter MMIC for C-band using a lumped-element coupler,” IEEE Trans. Microw. Theory Tech., vol. 49, pp. 913–917, May 2001.
[37]F. Ellinger, R. Vogt, and W. Bachtold, “Ultracompact reflective-type phase shifter MMIC at C-band with 360° phase-control range for smart antenna combining,” IEEE J. Solid-State Circuits, vol. 37, no. 4, pp. 481–486, Apr. 2002.
[38]H. Zarei, D. J. Allstot, “A low-loss phase shifter in 180 nm CMOS for multiple-antenna receivers,” in IEEE Int. Solid-State Circuits Conf. Tech. Dig., Feb. 2004, vol. 1, pp. 392–393.
[39]C. T. Charles, and D. J. Allstot, “A 2-GHz integrated CMOS reflective-type phase shifter with 675 deg control range,” in Proc. IEEE International Symposium on ISCAS, May 2006, pp. 4.
[40]R. H. Hardin, E. J. Downey, and J. Munushian, “Electrically-Variable Phase Shifters Utilizing Variable Capacitance Diodes,” in Proc. IRE (Lett.), vol.48, pp. 944-945, May 1960.
[41]C.-S. Lin, S.-F. Chang, C.-C. Chang, and Y.-H. Shu, “Design of a reflection-type phase shifter with wide relative phase shift and constant insertion loss,” IEEE Trans. Microw. Theory Tech., vol. 55, no. 9, pp. 1862–1868, Sept. 2007.
[42]H. Shenlei, L. Xueguan, C. Wenfeng, "A novel reflection-type phase shifter employing defected ground structure," in Proc. IEEE Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications, Oct. 2009, pp. 473-476.
[43]S. Lee, J.-H. Park, H.-T. Kim, J.-M. Kim, Y.-K. Kim, Y. Kwon, "A 15-to-45 GHz low-loss analog reflection-type MEMS phase shifter," in IEEE MTT-S Int. Microw. Symp. Dig., pp. 1493–1496, 2003.
[44]E. Sbarra, L. Marcaccioli, R.V. Gatti, R. Sorrentino, "Ku-band analogue phase shifter in SIW technology," in Proc. European Microw. Conf., Sept. 2009, pp. 264-267.
[45]K. Hettak, G. A. Morin, "An integrated C-Band SiGe variable gain amplifier and reflected type phase shifter for phased array T/R modules," in Proc. European Microw. Conf., Sept. 2010, pp. 1544-1547.
[46]J.-C. Wu, C.-C. Chang, S.-F. Chang, T.-Y. Chin, "A 24-GHz full-360° CMOS reflection-type phase shifter MMIC with low loss-variation," in IEEE Radio Freq. Integr. Circuits Symp. Dig., Apr. 2008, pp. 365-368.
[47]M. Fakharzadeh, P. Mousavi, S. Safavi-Naeini, and S. H. Jamali, “The effects of imbalanced phase shifters loss on phased array gain,” IEEE Antennas Wireless Propag. Lett., vol. 7, pp. 192–196, Jul. 2008.
[48]K. W. Hamed, A. P. Freundorfer, Y. M. M. Antar, "A new broadband monolithic passive differential coupler for K/ka-band applications," IEEE Trans. Microw. Theory Tech., vol. 54, no. 6, pp. 2527-2533, June 2006
[49]J.-C. Wu, T.-Y. Chin, S.-F. Chang, and C.-C. Chang, "2.45-GHz CMOS Reflection-Type Phase-Shifter MMICs With Minimal Loss Variation Over Quadrants of Phase-Shift Range," IEEE Trans. Microw. Theory Tech., vol.56, no.10, pp.2180-2189, Oct. 2008
[50]M.-D. Tsai, A. Natarajan, "60GHz passive and active RF-path phase shifters in silicon," in IEEE Radio Freq. Integr. Circuits Symp. Dig., Jun. 2009, pp. 223-226.
[51]H. Krishnaswamy, A. Valdes-Garcia, J.-W. Lai, "A silicon-based, all-passive, 60 GHz, 4-element, phased-array beamformer featuring a differential, reflection-type phase shifter," in Proc. IEEE Phased Array Systems and Technology (ARRAY), Oct. 2010, pp. 225-232.
[52]B. Biglarbegian, M. R. Nezad-Ahmadi, M. Fakharzadeh, and S. Safavi-Naeini, “Millimeter-Wave reflective-type phase shifter in CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 9, pp. 560–562, Sep. 2009.
[53]M. Fakharzadeh, M.-R. Nezhad-Ahmadi, B. Biglarbegian, J. Ahmadi-Shokouh, S. Safavi-Naeini, "CMOS Phased Array Transceiver Technology for 60 GHz Wireless Applications," IEEE Trans. Antennas Propag., vol.58, no.4, pp. 1093-1104, April 2010
[54]R. J. Mailloux, Phased Array Antenna Handbook—Chapter 1, 2nd ed. Boston, MA: Artech House, 2005.
[55]S. Raman, N. Barker, and G. Rebeiz, “A w-band dielectric-lens-based integrated monopulse radar receiver,” IEEE Trans. Microw. Theory Tech., vol. 46, no. 12, pp. 2308–2316, Dec. 1998.
[56]R. Miura, T. Tanaka, I. Chiba, A. Horie, and Y. Karasawa, “Beamforming experiment with a DBF multibeam antenna in a mobile satellite environment,” IEEE Trans. Antennas Propag., vol. 45, no. 4, pp. 707–714, Apr. 1997.
[57]D. B. Van Veen and K. M. Buckley, “Beamforming: a versatile approach to spatial filtering,” IEEE ASSP Magazine, vol. 5, no. 2, pp. 4–24, Apr. 1988.
[58]T. Alamouti, “A simple transmit diversity technique for wireless communications,” IEEE J. Sel. Area Commun., vol. 16, no. 8, pp. 1451–1458, Oct. 1998.
[59]T. Yu and G. M. Rebeiz, “A 24 GHz 6-Bit CMOS phased-array receiver,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 6, pp. 422–424, Jun. 2008.
[60]Y. Yu, P. G. M. Baltus, A. de Graauw, E. van der Heijden, C. S. Vaucher, A. H. M. van Roermund, "A 60 GHz Phase Shifter Integrated With LNA and PA in 65 nm CMOS for Phased Array Systems," IEEE J. Solid-State Circuits, vol.45, no.9, pp.1697-1709, Sept. 2010.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top