(3.236.222.124) 您好!臺灣時間:2021/05/13 21:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:文志超
研究生(外文):Wen, Chih-Chao
論文名稱:混合型網路群播服務品質管理與控制之架構設計與應用
論文名稱(外文):Architecture Design and Application for Hybrid Multicast QoS Control and Management
指導教授:吳承崧
指導教授(外文):Wu, Cheng-Shong
口試委員:侯廷昭李忠憲許蒼嶺陳煥潘仁義吳承崧
口試委員(外文):Hou, Ting-ChaoLi, Jung-ShianSheu, Tsang-LingChen, HuanPan, Jen-YiWu, Cheng-Shong
口試日期:2011-07-27
學位類別:博士
校院名稱:國立中正大學
系所名稱:電機工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:英文
論文頁數:97
中文關鍵詞:群播服務品質控制與管理CSPF群播樹演算法群播資源管控
外文關鍵詞:multicast QoScontrol and managementCSPF multicast routing algorithmMRB
相關次數:
  • 被引用被引用:0
  • 點閱點閱:212
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:41
  • 收藏至我的研究室書目清單書目收藏:0
展望未來網路通訊科技的演進,帶動新一波多媒體群播應用,使群播傳輸量與服務需求快速成長,成為目前網際網路的主流。研究群播網路架構對傳輸效能影響首要的關鍵因素,在於滿足群播應用的使用者多元之服務品質(QoS)與經驗品質(QoE)。這些因素考量,包括動態群播成員管理, 具備資源調節群播網路之路徑控制,以及群播訊務傳輸控制。因此,如何設計高品質、高效率與建置互聯群播網路管控架構,是一門重要的議題。
本論文中,我們將群播網路服務品質控制與管理問題劃分為三個相關階段,並以群播會談連線建立為基礎,建構研究的主要議題。如靜態與動態群組管理階段,群播網路連線路徑與資源管控階段,以及群播訊務傳輸控制階段。在集中式控制和管理 (CCM) 的網路架構下,針對目前群播所面臨的問題,如擴展性、效率和系統建置等方面,建立模型與網路規劃,提供有效的解決方案。
首先在群組管理階段,我們在IP/MPLS網路建立 CCM 的架構,利用分享樹 (RP Shared tree) 的集中方式,彙整所有加入群播成員的資訊,並取得網路使用的狀態。在疊層 (Overlay) 網路中建立雙層群播代理 (TOMA) 的架構,可藉由IGMP 協定掌握所有移動式或固定式的群播成員。
群播會談之連線建立,屬於網路控制階段,其中我們提出三種具有QoS群播樹建立的演算法。針對IP/MPLS群播網路集中式控管,提出群播資源管控 (MRB) 功能,利用資源限制的最佳路徑演算法 (CSPF) 與RSVP-TE資源預留機制,建立所需資源分配的QoS群播樹。對於群播網路IPTV應用,提出混合群播樹之明確路徑演算法 (HT-ERM),提高IPTV群播通道的服務品質與網路效能。另外,提出疊層群播樹演算法,建立疊層群播互聯網路,達到跨網域群播 (All-IP Multicasting) 的目標。
在群播會談中,訊務傳輸會隨著使用者之服務需求改變,因此造成網路連線的改變。在此階段,我們分別對IPTV頻道選擇與行動群播兩種情境,做為群播訊務傳送控制議題的研究。前者提出IPTV群播通道快速切換(Switchover)機制,確保更換頻道的收訊延遲最小化。後者針對使用移動位置的網路存取型態不同,提出環境感知式的異質換手 (Handoff)機制,達到無間隔連線品質與普及傳輸服務的目標。
總結本論文所提出之各種模型與方法,可以加強現有的通訊協定與建立實際運作的系統架構,並且改善未來網際網路應用與服務的效能品質。

With fast development of group communications, the requests for multimedia multicast service and application are increasingly growth over current Internet. The key points for multicasting applications are quality of service (QoS) and quality of experience (QoE) supports which involve the multicast group dynamics of membership management, multicast network dynamics with P2MP routing and resource control, and dynamic multicast traffic control.
In this dissertation, the proposed multicast QoS supported network design is divided into three relevant phases of multicast session, such as static and mobile member joining in multicast group management phase, multicast QoS routing and resource reservation in multicast network control phase, and multicast traffic transmission in traffic control phase. The purpose of the centralized control and management (CCM) architecture is to setup network provisioning models and provide viable solutions for multicast QoS problems: scalability, efficiency and deployment, which is caused by dynamic behaviors in multicast session.
The multicast session is created by assigning the group address for static and dynamic member joining. In multicast group management phase, the RP shared tree of CCM can be applied for the member joining and network information collection. And, the multicast agent (MA) of overlay network can be used for mobile member joining via IGMP mechanism.
In multicast network control phase, the multicast session is setup by multicast tree construction, spanning all the sources and receivers. In multicast CCM architecture, we propose multicast resource broker (MRB) function with efficient resource provisioning which employs the CSPF multicast routing, and RSVP-TE resource reservation for multicast tree. Furthermore, for IPTV multicast application development, we propose HT-ERM approach for IPTV application which can improve the performance for multicast network delivery and channel control. For inter-domain multicast networking, we propose overlay tree construction algorithm to achieve all-IP multicasting.
In multicast traffic control phase, the proposed HT-ERM switchover control mechanism can provide fast switchover mechanism for channel change delay, and admission control for multicast IPTV QoS traffic distribution over hybrid-tree based multicast network. In additions, to achieve the seamless multicast transport connectivity, we propose context aware handoff mobility connection approach for mobile member access service.
Finally, our proposed models and algorithms can enhance the existing protocols and apply for practical framework implementation. The experimental results and performance evaluations for the reference architecture and application are validated to provide all-IP multicast transport service over Future Internet.

I. INTRODUCTION 1
1.1 Motivation 1
1.2 Problem Statement and Scope 2
1.3 Organization of the Dissertation 5
II. REVIEW OF MULTICAST QOS CONTROL AND MANAGEMENT ARCHITECTURES 6
2.1 Fundamental Principles of Multicast Architecture Design 7
2.1.1 Flooding Based Control and Management 7
2.1.2 Distributed Based Control and Management 8
2.1.3 Centralized Based Control and Management 9
2.2 QoS supported IP Multicast Control and Management 10
2.2.1 QoS Issues for IP Multicast Control and Management 10
2.2.2 IP/MPLS Multicast QoS with IntServ and Diffserv 11
2.2.3 Comparisons Between Distributed and Centralized Multicast QoS 12
2.3 QoS Supported IP Multicast for IPTV Application 12
2.3.1 Multicast Channel Delivery for IPTV QoS 12
2.3.2 QoS Supported Multicast Network Control Approaches 13
2.4 Overlay Multicast for All-IP Multicast Transport Service 14
2.4.1 Overlay Multicast Control and Management 14
2.4.2 Inter-domain Multicast QoS for All-IP Multicast 16
III. CENTRALIZED CONTROL AND MANAGEMENT ARCHITECTURE FOR MULTICAST QOS 17
3.1 CCM Multicast QoS Architecture Design 17
3.1.1 Control/Management Plane 18
3.1.2 Control Signaling Plane 19
3.1.3 Data Forwarding Plane 20
3.2 CCM Based Multicast Data Forwarding Operations 20
3.2.1 Centralized Multicast Source Tree Transport Operations 20
3.2.2 Centralized Multicast Shared Tree Transport Operations 22
3.3 MRB Functional Modules for CCM Architecture 23
3.3.1 Multicast Bandwidth Broker 24
3.3.2 Off-line Process with Policy Manager 25
3.3.3 On-line Process with Network Information Server 25
3.4 MRB Based Resource Management and Admission Control 26
3.4.1 Static Resource Planning – Class Based Resource Provisioning 26
3.4.2 Dynamic Resource Control – CSPF Based Traffic Engineering 26
3.4.3 Multicast Admission Control – QoS Based P2MP LSP Setup 28
3.5 Performance Evaluations 30
3.5.1 Analytical Evaluations 31
3.5.2 Simulation Analysis 33
3.6 Summary 37
IV. HYBRID TREE BASED EXPLICIT ROUTED MULTICAST PROTOCOL 38
4.1 QoS Supported IPTV Multicasting Issues 38
4.1.1 Background 38
4.1.2 Problem Definition for IPTV multicast QoS 39
4.2 Modeling and Assumptions 40
4.2.1 IPTV Multicast Network Model 40
4.2.2 IPTV QoS Channel State Model 42
4.2.3 IPTV Channel Change Model 43
4.3 Proposed HT-ERM for IPTV Channel Control and Delivery Operation 44
4.3.1 HT-ERM Channel Control Algorithm 45
4.3.2 HT-ERM Protocol Design for Channel Delivery 47
4.3.2.1 Channel Initialization and Joining 48
4.3.2.2 Channel Change by Hybrid Tree Switchover 49
4.3.2.3 Channel Setup with RSVP-TE Admission Control 50
4.4 Performance Evaluations 50
4.4.1 Simulation Environment Setup 51
4.4.2 Performance Metrics 52
4.4.3 Simulation Results for Multicast Network Delivery 54
4.4.4 Simulation Results for IPTV Channel Control 58
4.5 Summary 63
V. OVERLAY MULTICAST FOR ALL-IP MULTICAST TRANSPORT SERVICE 65
5.1 All-IP Multicast Transport Network Model 65
5.1.1 TOMA: Two-Tier Overlay Multicast Agent Network Model 65
5.1.2 OMTSN Management for TOMA Transport Service 66
5.2 Centralized Overlay Multicast Agent Approach 68
5.2.1 Overview 68
5.2.2 Group Joining Control 69
5.2.3 Overlay Multicast Tree Computation Algorithm 70
5.2.4 Overlay Tree Construction Process 72
5.3 Distributed Overlay Multicast Agent Approach 73
5.3.1 Overview 73
5.3.2 MA Leader Election for Member Joining 73
5.3.3 TOMA Multicast Routing Decision 75
5.4 Mobile Wireless Multicast Transport Approach 77
5.4.1 Overview of Context Aware Handoff 77
5.4.2 Context-aware Mobility Control Process 78
5.4.3 Context-aware Handoff Decision Algorithm 79
5.4.4 Context-aware Handoff for Multicast Mobility Connection 82
5.4.5 Performance Evaluations for Context Aware Handoff 84
5.5 Summary 88
VI. CONCLUSIONS 89
6.1 Our Contributions 89
6.2 Ongoing Research and Future Work 91
REFERENCES 92

REFERENCES
[1] A. Striegrl, and G. Maninaran, “A Survey of QoS Multicasting Issues,” IEEE Communications, Jun. 2002.
[2] M. Ramalho, “Intra- and Inter-Domain Multicast Routing Protocols: A Survey and Taxonomy,” IEEE Communications, vol. 3, no. 1, 1st Quarter, 2000.
[3] C. Diot, B. N. Levine, B. Lyles, H. Kassem, and D. Balensiefen, “Deployment issues for the IP multicast service and architecture,” IEEE Network, vol. 14, no. 1, pp. 78–88, Jan. 2000.
[4] S. Keshav and S. Paul, “Centralized Multicast,” Proceedings of IEEE ICNP, 1999.
[5] A. R. Modarressi and S. Mohan, “Control and Management in Next-Generation Networks: Challenges and Opportunities,” IEEE Communications Magazine, Oct., 2000.
[6] S. Paul, J. Pan, and Raj Jain, “A Future Internet Architecture Based on De-conflated Identities,” Proceedings of IEEE GLOBECOM, Dec. 2010.
[7] H. Ning and Z. Wang, “Future Internet of Things Architecture: Like Mankind Neural System or Social Organization Framework?,” IEEE Communications Letters, vol. 15, no. 4, Arp., 2011.
[8] C. -C. Wen, C. –S. Wu and K. –J. Chen, “Centralized Control and Management Architecture Design for PIM-SM Based IP/MPLS Multicast Networks,” Proceedings of IEEE GLOBECOM, Dec. 2007.
[9] D. Ooms, B. Sales, W. Livens, A. Acharya, F. Griffoul, and F. Ansari, “Overview of IP Multicast in a Multi-Protocol Label Switching MPLS Environment,” IETF RFC 3353, Aug. 2002.
[10] C. Partridge, D. Waitzman, and S. Deering, “Distance Vector Multicast Routing Protocol,” RFC 1075, 1988.
[11] J. Moy, “Multicast routing extensions to OSPF,” RFC 1584, Mar. 1994.
[12] D. Farinacci, and D. Meyer, “Multicast Source Discovery Protocol (MSDP),” IETF RFC 3618, Oct. 2003.
[13] S. Deering, D. L. Estrin, D. Farinacci, V. Jacobson, C. G. Liu and L. Wei, “The PIM Architecture for Wide-Area Multicast Routing,” IEEE/ACM Transactions on Networking, vol. 4, no. 2, Apr. 1996.
[14] D. Yang, W. Liao, and Y. -T. Lin, “MQ: An Integrated Mechanism for Multimedia Multicasting,” IEEE Transactions on Multimedia, vol. 3, no. 1, Mar. 2001.
[15] S. Chen, K. Nahrstedt, and Y. Shavitt, “A Qos Aware Multicast Routing Protocol,” IEEE Joural on Selected Areas in Communications, vol. 18, no. 12, Dec. 2000.
[16] R. Bless, and K. Wehrle, “IP Multicast in Differentiated Services (DS) Networks,” IETF RFC 3754, Apr. 2000.
[17] J. –H. Cui, J. Kim, A. Fei, M. Faloutsos, and M. Gerla, “Scalable QoS Multicast Provisioning in Diff-Serv-Supported MPLS Networks,” Proceedings of IEEE GLOBECOM, Nov. 2002.
[18] C. Groves, M. Pantaleo, T. Anderson and T. Taylor, “Gateway Control Protocol Version 1,” IETF RFC 3525, Jun. 2003.
[19] W. Sun, X. Luo, K. Lin, Y. Guan, “Performance Analysis of a Finite Duration Multichannel Delivery Method in IPTV,” IEEE Transactions on Broadcasting, vol. 54, no. 3, Sept. 2008.
[20] Donald E. Smith, “IPTV Bandwidth Demand: Multicast and Channel Surfing,” Proceedings of IEEE INFOCOM 2007, Anchorage, AK, May 2007.
[21] C. Sasaki, A. Tagami et al., “Rapid Channel Zapping for IPTV Broadcasting with Additional Multicast Stream,” Proceedings of IEEE ICC 2008, May 2008.
[22] Y. Kim, J. K. Park et al., “Reducing IPTV Channel Zapping Time Based on Viewer’s Surfing Behavior and Preference,” Broadband Multimedia Systems and Broadcasting Symposium, 2008.
[23] H. Joo, H. Song, D. -B. Lee, I. Lee, “An Effective IPTV Channel Control Algorithm Considering Channel Zapping Time and Network Utilization,” IEEE Transactions on Broadcasting, vol. 54, no. 2, June 2008.
[24] ─, “Load Splitting IP Multicast Traffic over ECMP,” Cisco Technical Report, July 2010.
[25] Xing Jin, W. Tu, Chan, and S.-H.G., “Challenges and Advances in Using IP Multicast for Overlay Data Delivery,” IEEE Communications Magazine, vol. 47, issue 6, June 2009, pp. 157-163.
[26] Lao L., J.-H. Cui, Gerla M., and Maggiorini D., “A Comparative Study of Multicast Protocols: Top, Bottom, or In the Middle,” Proc. of IEEE INFOCOM 2005, vol. 4, March 2005, pp. 2809-2814.
[27] D. Thaler, M. Talwar, A. Aggarwal, L. Vicisano and T. Pusateri, “Automatic IP Multicast Without Explicit Tunnels (AMT),” IETF Draft, draft-ietf-mboned-auto- multicast-10. txt, March 7, 2010.
[28] L. H. Sohasrabuddhe, and B. Mukherjee, “Multicast Routing Algorithms and Protocols: A Tutorial,” IEEE Network, Jan. 2000.
[29] M. Hosseini, D.T. Ahmed, S. Shirmohammadi, and N. D. Georganas, “A Survey of Application-Layer Multicast Protocols,” IEEE Communications Surveys & Tutorials, vol. 9, 2007, pp. 58–74.
[30] B. Zhang et al., “Universal IP Multicast Delivery,” Elsevier Computer Networks, vol. 50, no. 6, 2006, pp. 781–806.
[31] Xing Jin, K. –L. Cheng, and S.-H. Gary Chan, “Island Multicast Combining IP Multicast With Overlay Data Distribution,” IEEE Trans. on Multimedia, vol 11, no. 5, Aug. 2009, pp. 1024–1036.
[32] C. –C. Wen, C. –S. Wu, W. –S. Lee, and H. –K. Su, “A Context-Aware Handoff Scheme and All-IP Mobile Multicast Service for Heterogeneous Wireless Networks,” Proc. of IEEE ICUMT2009, Oct. 2009.
[33] C. -C. Wen, C. –J. Chiu, C. –S. Wu, H. –K. Su and Y. –S. Chu, “An Integrated Two-Tier Multicast-Agent Architecture for All-IP Multicast Transport Services,” Proc. of BWCCA 2011 accepted, Oct. 2011.
[34] J. –H. Cui, J. Kim, A. Fei, M. Faloutsos, and M. Gerla, “Scalable QoS Multicast Provisioning in Diff-Serv-Supported MPLS Networks,” Proceedings of IEEE GLOBECOM, Nov. 2002.
[35] A. Boudani and B. Cousin, “Using MPLS for Multicast Traffic Engineering,” IRISA, Technical report 1548, July 2003.
[36] R. Aggarwal, D. Aggarwal, and S. Yasukawa, “Extensions to resource reservation protocol – traffic engineering (RSVP-TE) for Point-to-Multipoint TE label switched paths (LSPs),” RFC 4875, May 2007.
[37] P. Trimintzios, D. Griffin, P. Georgatsos, D. Goderis, Y. T’Joens, L. Georgiadis, C. Jacquenet and R. Egan, “A Management and Control Architecture for Providing IP Differentiated Services in MPLS-Based Networks,” IEEE Communications, May 2001.
[38] D. Durham, J. Boyle, R. Cohen, S. Herzog, R. Rajan, and A. Sastry, “The COPS (Common Open Policy Service) Protocol,” RFC2748, January 2000.
[39] Y. Xiao, X. Du, J. Zhang, F.Hu and S. Guizani, “Internet Protocol Television (IPTV): The Killer Application for the Next_Generation Internet,” IEEE Communications, Nov. 2007.
[40] Y. Kim, J. K. Park et al., “Reducing IPTV Channel Zapping Time Based on Viewer’s Surfing Behavior and Preference,” Broadband Multimedia Systems and Broadcasting Symposium, 2008.
[41] H. Holbrook and B. Cain, “RFC 4607: Source-Specific Multicast for IP,” RFC 4607, August 2006.
[42] B. Fenner, M. Handley, H. Holbrook, I. Kouvelas, “Protocol Independent Multicast-Sparse Mode (PIM-SM): Protocol Specification (Revised),” RFC 4601, Aug. 2006.
[43] C. -C. Wen, C. –S. Wu and M. –T. Yang, “Hybrid Tree Based Explicit Routed Multicast for QoS Supported IPTV Service,” Proceedings of IEEE GLOBECOM, Dec. 2009.
[44] W. Sun, X. Luo, K. Lin, Y. Guan, “Performance Analysis of a Finite Duration Multichannel Delivery Method in IPTV,” IEEE Transactions on Broadcasting, vol. 54, no. 3, Sept. 2008.
[45] Donald E. Smith, “IPTV Bandwidth Demand: Multicast and Channel Surfing,” Proceedings of IEEE INFOCOM 2007, Anchorage, AK, May 2007.
[46] K. Calvert, E. Zegura, S. Bhattacharjee, “How to model an internetwork,” Proceedings of IEEE INFOCOM, 1996.
[47] B. Chinoy and H.-W. Braun, “The National Science Foundation Network,” Technical Report GA-A210029, SDSC, 1992.
[48] I. Romdhani et al., “IP mobile multicast: challenges and solutions,” IEEE Communications Surveys, Tutorials, vol.6, no.1, pp. 18–41, 2004.
[49] C. –P. Hong, C. C. Weens, S. –D Kim, “An effective vertical handoff scheme based on service management for ubiquitous computing,” ELSEVIER Computer Communication, pp. 1739-1750, 2008.
[50] L.-J. Chen, T. Sun, B. Chen, V. Rajendran and M. Gerla, “A smart decision model for vertical handoff”, Proc. 4th ANWIRE International Workshop on Wireless Internet and Reconfigurability (ANWIRE 2004), Athens, Greece, 2004.
[51] Prehofer, N. Nafisi and Q. Wei, “A framework for context-aware handover decisions”, Proc. 14th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC 2003), Sept. 2003, vol. 3, pp. 2794–2798.
[52] T. Ahmed, K. Kyamakya, M. Ludwig, “Architecture of a Context-Aware Vertical Handover Decision Model and Its Performance Analysis for GRPS – WiFi Handover,” Proc. of 11th IEEE (ISCC’06), 2006.
[53] J. Indulska et al, “Context-aware Vertical Handovers between WLAN and 3G Networks,” Proc. of IEEE, 2004.
[54] Paolo B. et al, “Integrated support for Handoff Management and Context Awareness in Hetrogeneous Wireless Networks,” ACM MPAC 2005, Nov. 2005.
[55] A. Hasswa, N. Nasser, H. Hassanein, “Tramcar: A Context-Aware Cross-Layer Architecture for Next Generation Heterogeneous Wireless Networks,” proc. of IEEE (ICC2006), 2006.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
系統版面圖檔 系統版面圖檔