(3.235.245.219) 您好!臺灣時間:2021/05/10 01:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:蕭瑜源
研究生(外文):Yu-Yuan Hsiao
論文名稱:全積體式矽鍺射頻功率放大器之研究暨微帶天線探討
論文名稱(外文):Investigation of Fully Integrated SiGe RF Power Amplifier Design and Patch Antenna
指導教授:吳建華吳建華引用關係
指導教授(外文):Janne-Wha Wu
口試委員:吳建華湯敬文黃尊禧黃國威
口試委員(外文):Janne-Wha WuChing-Wen TangTzuen-Hsi HuangGuo-Wei Huamg
口試日期:2011-07-29
學位類別:碩士
校院名稱:國立中正大學
系所名稱:電機工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:89
中文關鍵詞:全積體式功率放大器微帶天線
外文關鍵詞:Fully Integrated Power AmplifierPatch Antenna
相關次數:
  • 被引用被引用:0
  • 點閱點閱:238
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:24
  • 收藏至我的研究室書目清單書目收藏:0
本研究內容為全積體式射頻功率放大器之設計,使用台積電提供的0.35μm製程與0.18μm BiCMOS製程。 第一部分,探討全積體式功率結合之功率放大器設計,探討從阻抗轉換比與電感值之選擇。進而使用功率結合變壓器去作設計,輸出功率(OP1dB)達28dBm,效率(PAE)約38%,增益約17 dB;量測部分,沒有增益。當電路處於關閉狀態,疊接組態共基極端有微小的功率消耗問題。為了解決此問題,在第二部分提出疊接式的電流鏡偏壓電路, 此電路並且可以維持傳統式電流鏡偏壓所擁有提高線性的優點。根據25oC模擬結果,直流電流消耗為44mA、輸出功率(OP1dB)約23dBm、效率(PAE)約30%、增益約10 dB及EVM約13%;但量測結果顯示,直流電流消耗為56mA、輸出功率約21dBm、效率18.2%及增益8.2 dB。重新審視較高溫度的模擬結果,就直流及交流特性比對發現量測時的電晶體溫度應為145oC,此為量測與模擬誤差發生的主要原因。
論文最後是有關天線設計模型的探討。近幾年文獻,可以看到很多不同結構形狀的天線。並實現於單頻、雙頻,或者多頻的應用。為了能有系統化設計天線,探討如何將天線設計模型化是極為重要的。

This study focuses on fully integrated radio frequency power amplifier by using TSMC 0.35μm BiCMOS process and 0.18μm BiCMOS process. In the first part, a fully integrated power amplifier by using power combining is studied first. The major key consideration is focused on how to properly choose inductance from impedance transformation ratio. The simulated performances are the output power at 1dB gain compression (OP1dB) 28 dBm, power added efficiency (PAE) 38% and power gain 17 dB. The second part of this thesis is designed for a no power consumption at turned-off state. A cascaded bias current mirror is employed herein. It can keeps the advantage of linearity of traditional bias current mirror structure. The simulated performances based on 25oC junction temperature are output power at 1dB gain compression is 23 dBm, power added efficiency 30% and power gain 10 dB. The measured are output at 1dB gain compression is 21dBm, power added efficiency 18.2% and power gain 8.2 dB. The deviation between simulation and measurement is due to the device junction temperature. As checked with the dc and ac performances, the junction temperature under measurement should be at 145 oC.
Finally, a topic about antenna design model is discussed. As disclosed in the published literatures, many designers are devoted themselves to different structure of antenna such as single, dual, or multi-band. However, systematically designing method is lack. So, an antenna model is also investigated in this study.

目錄 iv
圖目錄 vi
表目錄 ix
第一章 緒論 - 1 -
1.1 動機 - 1 -
第二章 功率放大器基本原理 - 3 -
2.1 S參數 - 3 -
2.2 穩定度 - 4 -
2.3 功率增益 - 5 -
2.4 功率放大器之效率 - 6 -
2.5 1dB增益壓縮點 - 6 -
2.6 線性度 - 8 -
2.7 功率放大器分類 - 10 -
2.7.1 線性放大器 - 10 -
2.7.2 非線性放大器 - 13 -
第三章 功率結合之功率放大器設計 - 16 -
3.1 文獻回顧 - 17 -
3.2 功率結合設計 - 20 -
3.2.1 LC諧振匹配網路 - 20 -
3.2.2 變壓器匹配網路分析 - 22 -
3.2.3 低寄生電阻電感 - 27 -
3.3 變壓器設計 - 29 -
3.4 電晶體元件選擇 - 31 -
3.4.1 電路拓樸組態 - 33 -
3.4.2 線性偏壓電路 - 34 -
3.4.3 匹配電路 - 35 -
3.4.4 整體電路拓樸 - 35 -
3.5 模擬結果 - 36 -
3.6 量測結果 - 39 -
3.7 結論 - 43 -
第四章 疊接式偏壓電路功率放大器 - 45 -
4.1 簡介 - 45 -
4.2 電路設計 - 47 -
4.3 模擬結果 - 57 -
4.4 佈局考量 - 60 -
4.5 量測結果 - 61 -
4.6 結論 - 67 -
第五章 微帶天線 - 73 -
5.1 饋入方式與諧振腔 - 73 -
5.2 微帶線等效電路 - 75 -
5.3 天線設計 - 76 -
5.4 結論 - 83 -
第六章 總結 - 84 -
參考文獻 - 85 -

[1]T. H. Lee, The design of CMOS radio-frequency integrated circuits, 2nd ed. Cambridge, UK ; New York: Cambridge University Press, 2004.
[2]B. Razavi, RF microelectronics. Upper Saddle River, NJ: Prentice Hall, 1998
[3]D. M. Pozar, Microwave and RF wireless systems. New York: John Wiley, 2001.
[4]S. C. Cripps, Advanced techniques in RF power amplifier design. Boston: Artech House, 2002.
[5]G. Gonzalez, Microwave transistor amplifiers: analysis and design. Englewood Cliffs, N.J.:Prentice-Hall, 1984
[6]C. W. Tasi, "Silicon Germanium Bipolar Transistor Radio Frequency Power Amplifier," Electrical Engineering Department, National Chung Cheng University, 2007.
[7]J. Y. Lia, "Radio Frequency Power Amplifier and Integrated Balun Circuity," EE Department, National Chung Cheng University, 2007.
[8]T. H. Lee, The design of CMOS radio-frequency integrated circuits, 2nd ed. Cambridge, UK ; New York: Cambridge University Press, 2004.
[9]D. M. Pozar, Microwave and RF wireless systems. New York: John Wiley, 2001.
[10]S. C. Cripps, Advanced techniques in RF power amplifier design. Boston: Artech House, 2002.
[11]C. C. Huang, "Differential Radio Frequency Power Amplifier and Single Pole to Six Thru Antenna Switch," EE Department,, National Chung Cheng University, 2007.
[12]C. H. Liu, "Design of Radio Frequency Amplifiers," Microelectronics Department, National Cheng Kung University, 2006.
[13]D. L. Ingram, D.I. Stones, J. H. Elliott, H. Wang, R. Lai, and M. Biedenbender, "A 6-W Ka-band power module using MMIC power amplifiers," IEEE Trans. Microwave Theory Tech., vol.45, no.12, pp.2424-2430, Dec 1997
[14]J. Jeon, Y. Kwon, S. Lee, C. Cheon, and E.A. Sovero,"1.6- and 3.3-W power-amplifier modules at 24 GHz using waveguide-based power-combining structures," IEEE Trans. Microwave Theory Tech., vol.48, no.12, pp.2700-2708, Dec 2000
[15]Y. S. Lee , and Y. H. Jeong, "A High-Efficiency Class-E GaN HEMT Power Amplifier for WCDMA Applications," IEEE Microwave and Wireless Components Letters, , vol.17, no.8, pp.622-624, Aug. 2007
[16]K.C. Tsai and P. R. Gray, "A 1.9-GHz, 1-W CMOS class-E power amplifier for wireless communications," IEEE J. Solid-State Circuits, vol.34, no.7, pp.962-970, Jul 1999
[17]E. Wilkinson, “An N-way hybrid power divider”, IRE Trans. Microwave Theory Tech., vol. 8, pp. 116-118, January, 1960
[18]I. Aoki, S.D. Kee, D.B. Rutledge, and A. Hajimiri, “Fully Integrated CMOS Power Amplifier Design Using The Distributed Active-Transformer Architecture,” IEEE J. Solid-State Circuits, Vol. 37, pp. 371–383, Mar. 2002.
[19]C. Park, Y. Kim, H. Kim, and S. Hong, "A 1.9-GHz CMOS Power Amplifier Using Three-Port Asymmetric Transmission Line Transformer for a Polar Transmitter," IEEE Trans. Microwave Theory Tech., vol.55, no.2, pp.230-238, Feb. 2007
[20]C. Park, D. H. Lee, J. H., and S. Hong, "Tournament-Shaped Magnetically Coupled Power-Combiner Architecture for RF CMOS Power Amplifier," IEEE Trans. Microwave Theory Tech., vol.55, no.10, pp.2034-2042, Oct. 2007
[21]P. Haldi, D. Chowdhury, P. Reynaert, G. Liu, and A. M. Niknejad, "A 5.8 GHz 1 V Linear Power Amplifier Using a Novel On-Chip Transformer Power Combiner in Standard 90 nm CMOS," IEEE J. Solid-State Circuits, vol.43, no.5, pp.1054-1063, May 2008
[22]G. Liu,” Fully Integrated CMOS Power Amplifier.”Department ,University of California,2006
[23]A. Vasylyev,” Integrated RF Power Amplifier Design in Silicon-Based
Technologies,” Von der FakultÄat fÄur Mathematik, Naturwissenschaften und Informatik der Brandenburgischen Technischen UniversitÄat Cottbus,2006
[24]H. Seol, C. Park, D. H. Lee, M. Park, and S. Hong, "A 2.4-GHz HBT power amplifier using an on-chip transformer as an output matching network," IEEE MTT-S International Microwave Symposium Digest, , vol., no., pp.875-878, 15-20 June 2008
[25]Y. S. Noh, and C. S. Park, "PCS/W-CDMA dual-band MMIC power amplifier with a newly proposed linearizing bias circuit," IEEE J. Solid-State Circuits , vol.37, no.9, pp. 1096- 1099, Sep 2002
[26]D.G. Rahn, M.S. Cavin, F.F. Dai, N.H.W. Fong, R. Griffith, J. Macedo, Moore, A.D., Rogers, J.W.M. and Toner, M.,"A fully integrated multiband MIMO WLAN transceiver RFIC," IEEE Journal of Solid-State Circuits, vol.40, no.8, pp. 1629- 1641, Aug. 2005
[27]M. Racanelli, P. Ma, and P. Kempf,"SiGe BiCMOS technology for highly integrated wireless transceivers," Gallium Arsenide Integrated Circuit (GaAs IC) Symposium, 2003. IEEE 25th Annual Technical Digest 2003. , vol., no., pp. 183- 186, 9-12 Nov. 2003
[28]S. Mohammadi, Z. Ma, J. Park, P. Bhattacharya, L. P. B. Katehi, G. E. Ponchak, S. A. Alterovitz, K. M. Strohm, and J. F. Luy,"SiGe/Si power HBTs for X- to K-band applications," 2002 IEEE MTT-S International Microwave Symposium Digest, vol.1, no., pp.289-292, 2002
[29]E. Sackinger, and W. Guggenbuhl, "A high-swing, high-impedance MOS cascode circuit," IEEE J. Solid-State Circuits, vol.25, no.1, pp.289-298, Feb 1990
[30]M. L. Edwards, and J. H. Sinsky, "A new criterion for linear 2-port stability using a single geometrically derived parameter," IEEE Trans. Microwave Theory Tech., vol.40, no.12, pp.2303-2311, Dec 1992
[31]J. Rollett, "Stability and Power-Gain Invariants of Linear Two-ports," IRE Trans. Circuit Theory, vol.9, no.1, pp. 29- 32, Mar 1962
[32]L. Y. Yang, H. S. Chen, and Y. J. E. Chen, "A 2.4 GHz Fully Integrated Cascode-Cascade CMOS Doherty Power Amplifier," IEEE Microwave and Wireless Components Letters , vol.18, no.3, pp.197-199, March 2008
[33]F. Wang, D. F. Kimball, D. Y. Lie, P. M. Asbeck, and L.E. Larson, "A
Monolithic High-Efficiency 2.4-GHz 20-dBm SiGe BiCMOS Envelope-Tracking OFDM Power Amplifier," IEEE J. Solid-State Circuits, vol.42, no.6, pp.1271-1281, June 2007
[34]T. Sowlati, and D. M. W. Leenaerts, "A 2.4-GHz 0.18-μm CMOS self-biased cascode power amplifier," IEEE J. Solid-State Circuits, vol.38, no.8, pp. 1318- 1324, Aug. 2003
[35]K. Sangwon, and L. Jenshan, "A novel linearizer and a fully integrated CMOS power amplifier," Asia-Pacific in Microwave Conference, 2006., pp. 144-147.
[36]L. Y. Yang, H. S. Chen, and Y. J. E. Chen,"A 2.4 GHz Fully Integrated Cascode-Cascade CMOS Doherty Power Amplifier," IEEE Microwave and Wireless Components Letters , vol.18, no.3, pp.197-199, March 2008
[37]F. Wang, D. F. Kimball, D. Y. Lie, P. M. Asbeck, and L. E. Larson,"A
Monolithic High-Efficiency 2.4-GHz 20-dBm SiGe BiCMOS Envelope-Tracking OFDM Power Amplifier," IEEE J. Solid-State Circuits, vol.42, no.6, pp.1271-1281, June 2007
[38]T. Sowlati, D. M. W. Leenaerts, "A 2.4-GHz 0.18-μm CMOS self-biased cascode power amplifier," IEEE J. Solid-State Circuits, vol.38, no.8, pp. 1318- 1324, Aug. 2003
[39]J. Wang, R. Fralich, C. Wu, and J. Litva, "Multifunctional aperture coupled stack patch antenna," Electronics Letters , vol.26, no.25, pp.2067-2068, 6 Dec. 1990
[40]S. M. Deng, M. D. Wu, and P. Hsu , "Analysis of coplanar waveguide-fed microstrip antennas," IEEE Trans. Antennas Propagat., vol.43, no.7, pp.734-737, Jul 1995
[41]C. P .Wen, "Coplanar Waveguide: A Surface Strip Transmission Line Suitable for Nonreciprocal Gyromagnetic Device Applications," IEEE Trans. Microwave Theory Tech., vol.17, no.12, pp. 1087- 1090, Dec 1969
[42]H. C. Liu, T. S. Horng, and N. G. Alexopoulos, "Radiation of printed antennas with a coplanar waveguide feed," IEEE Trans. Antennas Propagat., vol.43, no.10, pp.1143-1148, Oct 1995
[43]A. Constantine balans,”Antenna Theory:Analysis and Design”,2nd edition, John Wiley&Sons,Inc,1997.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔