( 您好!臺灣時間:2021/05/11 12:51
字體大小: 字級放大   字級縮小   預設字形  


研究生(外文):Liu, Zheming
論文名稱(外文):2D/3D Integrated Image Sensor with a Rapid Parallel Reading Mechanism
指導教授(外文):Chen, Oscal T.-C.
口試委員(外文):Wu, KoujueyYu, SungnienChiang, Rachel
外文關鍵詞:photodiodepixel circuit2D/3D image sensorTime-of-Flight
  • 被引用被引用:0
  • 點閱點閱:259
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:19
  • 收藏至我的研究室書目清單書目收藏:0
提出共用匯流排來實現3D感測器之平行讀取機制,並可同時兼顧2D感測器之序列讀取。此機制將像素陣列中行、列、左斜、右斜方向之像素電路利用共用匯流排進行連接,再利用後端判讀電路將各方向匯流排彙整,判讀電路將偵測到光子之像素電路訊號轉換為計時電路之停止計時訊號,此機制可以在同一工作週期內同時擷取大量的3D深度資訊,也簡化像素電路陣列內部佈局繞線,可以達到3D影像感測器中高速擷取影像和高解析影像的目標。整體2D/3D影像感測器包括光電二極體、2D/3D影像感測像素電路、雙重取樣校正電路、多頻道計時電路、行列解碼器。當影像感測器操作在2D模式,利用光電二極體N端電壓轉換成電荷補充單元的控制訊號,此電荷補充單元參考此控制訊號自動對二極體補充電荷,延緩光電二極體的飽和時間,進而提高2D像素電路的動態範圍。當操作在3D模式,利用像素電路經由反相器之輸出迴授至光電二極體N端,形成一放電路徑,加速光電二極體的崩潰速度,提高3D感測器的偵測速度。設計了44×36 pixel 2D/3D影像感測器,此晶片所採用的是TSMC 0.35μm 2P4M的製程技術,動態範圍可達110dB(光電流:10-11A至3×10-6A),深度精確度可達到4cm。所提出之影像感測器可切換在2D與3D兩種模式下,可廣泛在各種多媒體進行應用。
In this work, we propose a rapid parallel reading mechanism that is accomplished by using a bus-sharing manner in a 3D image sensor. This mechanism also supports a sequence reading in a 2D sensor. The bus-sharing manner reveals that the transmission lines of pixels at four directions, row, column, left oblique and right oblique, are established. Hence, the back-end circuit can use these sharing buses to identify which pixels are triggered by light. The proposed mechanism can capture a large number of pixels associated with depths in one period. Additionally, it can simplify the internal winding in the circuit layout, and achieve a high-speed response and a high depth resolution. To realize this mechanism, this work successfully develops a 2D/3D integrated image sensor including photodiodes, pixel circuits, corrected double sampling circuits, sensor amplifiers, a multi-channel Time-to-Digital Converter (TDC), a column decoder, a row decoder, a controller and readout circuits. When the image sensor operates at a 2D mode, the N node of a photodiode is adequately supplied by additional charges to slow down its saturation time, and thereby to increase the dynamic range. At a 3D mode, there is a pull-down path to accelerate the response time of a photodiode sensing light under a time-of-flight mechanism. Based on the TSMC 0.35μm 2P4M CMOS technology, a 44×36-pixel 2D and 11×9-pixel 3D integrated image sensor was implemented to have a die size of 2.04mm×2.4mm. The dynamic range at a 2D mode can reach 110dB and the depth resolution can be around 4cm at a 3D mode. Therefore, the proposed integrated image sensor can effectively switch between 2D and 3D sensing operations for various multimedia capturing applications.
誌謝 I
中文摘要 II
目錄 IV
表目錄 VIII
第一章 序論 1
1.1 前言 1
1.2 論文目的 1
1.3 論文架構 2
第二章 理論背景 3
2.1 前言 3
2.2 光電二極體 3
2.3 影像感測器特性 4
2.3.1 填充因數(Fill factor) 4
2.3.2 動態範圍(Dynamic range) 4
2.4 像素感測器 4
2.4.1 2D影像感測器 6
2.4.2 3D影像感測器 8
2.5 計時電路 9
2.6 讀取機制 12
第三章 2D與3D整合像素電路 16
3.1 前言 16
3.2 2D/3D影像整合感測像素電路 17
3.3 平行讀取機制 24
3.4 多頻道計時電路 27
第四章 模擬與實測結果分析 31
4.1 光電二極體模擬 31
4.3 2D模式序列讀取 33
4.4 系統模擬 35
4.5 實際量測 36
4.6 文獻比較 38
第五章 結論與未來研究方向 39
參考文獻 40
[1]Jung-Young Son and Bahram Javidi, “Three-dimensional imaging methods based on multiview images,” Journal of IEEE/OSA Display Technology, vol. 1, no. 1, pp. 125-140, Sep. 2005.
[2]Kazutake Uehira, Masahiro Suzuki and Takuya Abekawa, “3-D display using motion parallax for extended-depth perception,” Proc. of IEEE International Conference on Multimedia and Expo., pp. 1742-1745, July 2007.
[3]FUJUFLIM (2009, July 28). FinePix REAL 3D W1 (1st ed.) [Online]. Available: http://www.fujifilm.com/products/3d/camera/finepix_real3dw1/
[4]S. Gokturk, H. Yalcin and C. Bamji, “A time-of-flight depth sensor-system description, issues and solutions,” Proc. of IEEE Conf. on Computer Vision and Pattern Recognition, pp. 35-43, June 2004.
[5]S. Mabdai, M. Ikeda and K. Asada, “A 256 × 256 14k range Maps/s 3-D range-finding image sensor using row-parallel embedded binary search tree and address encoder,” Tech. Dig. of IEEE Int’l Conf. on Solid-State Circuits, pp. 404-405, Feb. 2010.
[6]MESA (2008, July 25). Mesa Imaging AG (1st ed.) [Online]. Available: http://www.mesa-imaging.ch/
[7]Sergio Cova et al., “Circuit for high precision detection of the time of arrival of photons falling on single photon avalanche diodes,” US patent No. 6384663, Mar. 2001.
[8]Oscal T.-C. Chen, Wei-Jean Liu, Li-Kuo Dai, Ping-Kuo Weng and Far-Wen Jih, “Extended one-dimensional analysis to effectively derive quantum efficiency of various CMOS photodiodes,” IEEE Journal of Transactions on Electron Devices, vol. 54, pp 2659-2668, no. 10, Oct. 2007.
[9]M. Gersbach, Y. Maruyama, E. Labonne, J. Richardson, R. Walker, L. Grant, R Henderson, F. Borghetti, D. Stoppa and E. Charbon, “Parallel 32x32 time-to-digital converter array fabricated in a 130 nm imaging CMOS technology,” ESSCIRC, 2009.
[10]D. Schwartz, E. Charbon and K. Shepard, “A single-photon avalanche diode array for fluorescence lifetime imaging microscopy,” IEEE Journal of Solid- State Circuits, vol. 43, pp 2546-2557, no. 11, Nov. 2008.
[11]C. Niclass, M. Sergio and E. Charbon, “A single-photon avalanche diode array fabricated in 0.35μm CMOS and based on an event-driven readout for TCSPC experiments,” Proc. of SPIE, 2006.
[12]C. Niclass, C. Favi, T. Kluter, M. Gersbach and E.Charbon, “A 128 × 128 single-photon imager with on-chip column-level 10b time-to-digital converter array capable of 97ps resolution,” Tech. Dig. of IEEE Int’l Conf. on Solid-State Circuits, pp.44-594, 2008.
[13]Z. Liu, M. Lin, C. Chan and Oscal T.-C. Chen, “2D and 3D-integrated image sensor,” Proc. of IEEE Midwest Circuits and Systems, pp. 292-295, Aug. 2010.
[14]S. Cova et al., “Avalanche photodiodes and quenching circuits for single-photon detection,” Applied Optics, vol. 35, no. 12, pp. 1956-1976, Apr. 1996.
[15]I. Chang, J. Kim, S. Park and K. Roy, “A 32 kb 10T sub-threshold SRAM array with bit-interleaving and differential read scheme in 90 nm CMOS,” IEEE Journal of Solid-State Circuits, vol. 44, no. 2, Feb. 2009.
[16]Y. Arai and T. Ohsugi, “TMC-a CMOS time to digital converter VLSI,” Journal of IEEE Transactions on Nuclear Science, vol. 36, pp. 528-531, Feb. 1989.
[17]Jianjun Yu, Fa Foster Dai and R. C. Jaeger, “12-Bit vernier ring time-to-digital converter in 0.13μm CMOS technology,” IEEE Journal of Solid-State Circuits, vol. 45, pp. 830-842, no. 4, Apr. 2010.
[18]Alberto Dalla Mora, Alberto Tosi, Simone Tisa and Franco Zappa, “Single-photon avalanche diode model for circuit simulations,” Prof. of IEEE Letters on Photonics Technology, vol. 19, no. 23, pp. 1922-1924, Dec. 2007.
[19]Gao Jun, Chen Zhongjian, Lu Wengao, Cui Wentao and Ji Lijiu, “Correlated double sample design for CMOS image readout IC,” Proc. of IEEE International Conference on Solid-State and Integrated Circuits Technology, vol. 2, pp. 1437-1440, Oct. 2004.
[20]J. Wang, P. Yang and D.Sheng, “Design of a 3-V 300-MHz low power 8-b × 8-b pipelined multiplier using pulse-triggered TSPC flip-flops,” IEEE Journal of Solid- State Circuits, vol. 35, no. 4, pp. 583-592, Apr. 2000.
[21]J. Richardson, R. Walker, L. Grant, D. Stoppa, F. Borghetti, E. Charbon, M. Gersbach and R. Henderson, “A 32 × 32 50ps resolution 10 bit time to digital converter array in 130nm CMOS for time correlated imaging,” Proc. of IEEE Custom Intergrated Circuits, pp. 77-80, 2009.
[22]G. Zach, M. Davidovic and H. Zimmermann, “A 16 × 16 pixel distance sensor with in-pixel circuitry that tolerates 150 klx of ambient light,” IEEE Journal of Solid- State Circuits, vol. 45, pp. 1345-1353, no. 7, July 2010.
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔