(35.175.212.130) 您好!臺灣時間:2021/05/18 04:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:蕭如秀
研究生(外文):Ju-Hsiu Hsiao
論文名稱:單細胞定位之微流體陣列晶片設計及製作
論文名稱(外文):Design and Fabrication of Microfluidic Chip with Single-cell-based Arrays
指導教授:任春平
指導教授(外文):Chun-Ping Jen
口試委員:林派臣楊奕玲劉德騏
口試委員(外文):Pai-Chen LinYi- Ling YangDe-Shin Liu
口試日期:2011-06-27
學位類別:碩士
校院名稱:國立中正大學
系所名稱:機械工程學系暨研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:63
中文關鍵詞:單細胞微流道微陣列細胞裂解
外文關鍵詞:microwellsingle cellcell lysismicrofluidics
相關次數:
  • 被引用被引用:0
  • 點閱點閱:267
  • 評分評分:
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:2
目前細胞與組織工程的發展,被認為是影響未來人類生活發展的重點,而單一細胞的定位與控制是非常需要克服的問題點,細胞的生長、分化以及功能都與附近環境有所相關,若能完全定位單一細胞,對日漸蓬勃的生物醫學來說極為重要。本研究目的是利用微機電技術製作一微流道陣列孔洞生物晶片系統,藉由入口流速的控制以及電滲流施加電壓控制將可達到單細胞陣列定位之目的,並在細胞定位後,加入化學藥劑使單細胞裂解。實驗結果顯示,當孔洞直徑為30 um時,細胞覆蓋率可高達91.45%,而孔洞直徑為20 um時,細胞覆蓋率可到達83.19%,且90%以上之孔洞皆為單一細胞;當細胞以陣列孔洞排列完成後,注入細胞裂解液進行單細胞裂解實驗並於11秒時,單細胞之細胞膜即逐漸裂解,實驗結果證明本研究所設計製作之微陣列晶片能透過細胞裂解液而完成高效率之細胞裂解,並可透過顯微鏡螢光系統觀察單一細胞裂解之細胞微小改變,以提供單細胞觀測及後續測量之應用。
The development of cell and tissue engineering is considered of the popular study in human life. The single–cell-based analysis is a key to understanding the fundamental cell biology. The main purpose of this study is to fabricate microarray-chip by MEMS. Controlling inlet flowrates can implement positioning cells at the single–cell level. Therefore, accurate analysis at the single-cell level has become a highly attractive tool for investigating cellular content. Microfluidic chips with arrays of microwells were developed for single-cell chemical lysis in the present study. The cellular occupancy in 30-um-diameter microwells (91.45%) was higher than that in 20-um-diameter microwells (83.19%) at an injection flow rate of 2.8 uL/min. However, most of the occupied 20-um-diameter microwells contained individual cells. The results of chemical lysis experiments at the single-cell level indicate that cell membranes were gradually lysed as the lysis buffer was injected; they were fully lysed after 11 seconds. Single-cell chemical lysis was demonstrated in the proposed microfluidic chip, which is suitable for high-throughput cell lysis.
中文摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VI
表目錄 X
第一章 緒論 1
1-1 前言 1
1-2 單細胞定位技術現況 3
1-3 電滲流文獻回顧 13
1-4 單細胞裂解文獻回顧 16
1-5 研究目的 20
第二章 基本理論 21
2-1 細胞計數及螢光染劑 21
2-2 微流體理論 23
2-3 電滲流理論 24
2-3-1 基礎理論 24
2-3-2 電雙層 25
第三章 實驗方法 28
3-1 實驗儀器與藥品 28
3-2 細胞定位實驗 30
3-2-1 細胞培養及樣本製備 30
3-2-2 晶片設計及製作 32
3-2-3 流體力細胞陣列定位實驗 40
3-2-4 利用電滲流驅動乳膠粒子之單細胞陣列實驗 41
3-3 單細胞裂解實驗 42
第四章 結果與討論 43
4-1 固定注入時間定時實驗 43
4-2 固定注入體積定量實驗 47
4-3 電滲流驅動乳膠粒子實驗 49
4-4 陣列細胞裂解實驗 53
第五章 結論 56
第六章 未來展望 58
參考文獻 59

[1]J. V. Sweedler and E. Arriaga, “Single cell analysis,” Analytical and Bioanalytical Chemistry, 87: 1-2, 2007.
[2]D. D. Carlo, and L. P. Lee, “Dynamic single-cell analysis for quantitative biology,” Analytical Chemistry, 78: 7918-7925, 2006.
[3]E. Eriksson, K. Sott, F. Lundqvist, M. Sveningsson, J. Scrimgeour, D. Hanstorp, M. Goksor, and A. Graneli, “A microfluidic device for reversible environmental changes around single cells using optical tweezers for cell selection and positioning,” Lab on a chip, 10: 617-625, 2010.
[4]H. Lee, Y. Liu, D. Ham and R. M. Westervelt, “Integrated cell manipulation system-CMOS/microfluidic hybrid,” Lab on a Chip, 7: 331-337, 2007.
[5]J. Voldman, M. L. Gray, M. Toner, and M. A. Schmidt, “A microfabrication-based dynamic array cytometer,” Analytical Chemistry, 74: 3984-3990, 2002.
[6]C. P. Tan, B. R. Seo, D. J. Brooks, E. M. Chandler, H. G. Craighead and C. Fischbach, “Parylene peel-off arrays to probe the role of cell-cell interactions in tumour angiogenesis,” Integrative Biology, 1: 587-594, 2009.
[7]C. P. Jen, C. T. Huang and C. H. Tsai, “Single-Cell-Based Measurement of Supraphysiological Thermal Injury in Human Carcinoma Cells Utilizing a Micropatterned Hydrogel Chip,” Microsystem Technologies, 17: 629-636, 2010.
[8]A. Khademhosseini A, J. Yeh, S. Jon, G. Eng, K. Y. Suh, J. A. Burdick and R. Langer “Molded polyethylene glycol microstructures for capturing cells within microfluidic channels,” Lab on a Chip, 4: 425-430, 2004.
[9]M. Ochsner, M. R. Dusseiller, H. M. Grandin, L. M. Sheila, M. Textor, V. Vogelb and M. L. Smith, “Micro-well arrays for 3D shape control and high resolution analysis of single cells,” Lab on a Chip, 7: 1074–1077, 2007.
[10]J. Fink, M. Théry, A. Azioune, R. Dupont, F. Chatelain, M. Bornens and M. Piel “Comparative study and improvement of current cell micro-patterning techniques,” Lab on a Chip, 7: 672-680, 2007.
[11]J. Y. Park , M. Morgan, A. N. Sachs , J. Samorezov , R. Teller , Y. Shen, K. J. Pienta, S. Takayama, “Single cell trapping in larger microwells capable of supporting cell spreading and proliferation,” Microfluid Nanofluid, 8: 263-268, 2009.
[12]H. Cho and L. P. Lee, “A novel integrated microfluidic sers-CD with high-throughput centrifugal cell trapping array for quantitative biomedicine,” Lab on a Chip, 6: 642-644, 2006.
[13]S. Kobel, A. Valero, J. Latt, P. Renaud and M. Lutolf, “Optimization of microfluidic single cell trapping for long-term on-chip culture,” Lab on a Chip, 10: 857-863, 2010.
[14]M. C. Park, J. Y. Hur, K. W. Kwon, S. H. Park and K. Y. Suh, “Pumpless selective docking of yeast cells inside a microfluidic channel induced by receding meniscus,” Lab on a Chip, 6: 988-994, 2006.
[15]S. Zeng, C. H. Chen, J. C. Mikkelsen, J. Santiago, and J. G. Santiago, “Fabrication and characterization of eletroosmotic micropumps,” Sensor and Actuator B, 79: 107-114, 2001.
[16]L. Chen, J. Ma, F. Tan, and Y. Guan, “Generating high-pressure sub-microliter flow rate in packed microchannel by electroosmotic force: potential application in microfluidic systems,” Sensors and Actuators B, 88: 260-265, 2003.
[17]V. Studer, A. Pepin, Y. Chen, and A. Ajdri, “Fabrication of microfluidic devices for AC electrokinetic fluid,” Microelectronic Engineering, 61: 915-920, 2002.
[18]K. Seibel, H. Schafer, V. Koziy, D. Ehrardt, and M. Bohm, “Transport properties of AC electrokinetic micropumps on labchips,” Proc. MNE Micro and Nano Engineering Conference, 4: 22-25, 2003.
[19]S. Liu, Q. Pu, and J. J. Lu, “Electric field-decoupled electroosmotic pump for microfluid devices,” Journal of Chromatography A, 1013: 57-64, 2003.
[20]C. E. Evans, R. D. Noble, and C. A. Koval, “A nonmechanical, membrane-based liquid pressurization system,” Industrial Engineering Chemistry Research, 45: 472-475, 2006.
[21]R. B. Brown and J. Audet, “Current techniques for single-cell lysis,” Journal of the Royal Society Interface, 5: S131-S138, 2008.
[22]P. A. Quinto-Su, H. H. Lai, H. H. Yoon, C. E. Sims, N. L. Allbritton and V. Venugopalan, “Examination of laser microbeam cell lysis in a PDMS microfluidic channel using time-resolved imaging,” Lab on a Chip, 8: 408-414, 2008.
[23]D. D. Carlo, K. H. Jeong and L. P. Lee, “Reagentless mechanical cell lysis by nanoscale barbs in microchannels for sample preparation,” Lab on a Chip, 3: 287-291, 2003.
[24]D. W. Lee, Y. H Cho, “A continuous electrical cell lysis device using a low dc voltage for a cell transport and rupture,” Sensors and Actuators B, 124, 84–89, 2007.
[25]G. Ocvirk, H. Salimi-Moosavi, R. J. Szarka, E. A. Arriaga, P. E. Andersson, R. Smith, N. J. Dovichi, and D. J. Harrison, “-Galactosidase Assays of Single-Cell Lysates on a Microchip: A Complementary Method for Enzymatic Analysis of Single Cells,” Proceeding of the IEEE, 92: 115-125, 2004.
[26]D. B. Tuckermann and R. F. W. Pease, “High-performance heat sink for VLSI,” IEEE Electron Device Letters, 2: 126-129, 1981.
[27]G. M. Mala and D. Li, “Flow characteristics of water in microtubes,” International Journal of Heat and Fluid Flow, 20: 142-148, 1999.
[28]I. Papautsky, J. Brazzle, T. Ameel , and A. B. Frazier, “Laminar fluid behavior in microchannels using micropolar fluid theory,” Sensors and Actuator A, 73: 101-283, 1999.
[29]X. F. Peng, G. P. Peterson, and B. X. Wang, “Frictional flow characteristics of water flowing through rectangular microchannels,” Experimental Heat Transfer, 8: 249-264, 1994.
[30]W. Qu, G. M. Mala and D. Li, “Pressure-driven water flows in trapezoidal silicon microchannel,” International Journal of Heat and Fluid Flow, 43: 353-364, 2000.
[31] D. A. Wolff and H. Pertoft, “Separation of HeLa cells by colloidal silica density gradient centrifugation,” The Journal of Cell Biology, 55: 579-585, 1972.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top