|
1.J. C. Maxwell, “The scientific letters and papers of James Clerk Maxwell,” Cambridge University Press, 1990. 2.張克潛、李德杰,微波與光電子學中的電磁理論,五南圖書出版股份有限公司,2004 3.A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (2nd edition), Artech House Publishers, 2000. 4.R. Luebbers, F. P. Hunsberger, K. S. Kunz, R. B. Standler, and M. Schneider, “A Frequency-Dependent Finite-Difference Time-Domain Formulation for Dispersive Materials,” IEEE Trans. Electromagn. Compat. , 32(3), 222-227, 1990. 5.M. D. Bui , S. S. Stuchly and G. I. Coustache, “Propagation of transients in dispersive dielectric media,” IEEE Trans. Microw. Theory Tech. , 39(7), 1165-1172, 1991. 6.Raymond J. Luebbers, Forrest Hunsberger and Karl S. Kunz, “A frequency-dependent finite-difference time-domain formulation for transient propagation in plasma,” IEEE Trans. Antennas Propag. , 39(1), 29-34, 1991. 7.T. Kashiwa, N. Yoshida, I. Fukai, “The treatment of dispersive media by the FD-TD method,” IEEE AP-S Int. Symp., Dallas, TX, digest pp.1656-1659, 1990. 8.P. M. Goorjian and A. Taflove, “Direct time integration of Maxwell’s equations in nonlinear dispersive media for propagation and scattering of femtosecond electromagnetic solitons,” Opt. Lett. , 17(3), 180-182, 1992. 9.K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media,” IEEE Trans. Antennas Propagat. , 14(3), 302-307, 1966. 10.D. Jiao and J.-M. Jin, “Time-domain finite-element modeling of dispersive media,” IEEE Microw. Wireless Compon. Lett., 11(5), 220-222, 2001. 11.J. M. Buick, C. A. Greated and D. M. Campbell, “Lattice BGK simulation of sound waves,” Europhys. Lett. , 43(3), 235-240, 1998. 12.G. Yan, “A Lattice Boltzmann Equation for Waves,” J. Comput. Phys. , 161(1), 61-69, 2000. 13.J. Zhang, G. Yan and Y. Dong, “A higher-order accuracy lattice Boltzmann model for the wave equation,” Int. J. Numer. Meth. Fluids, 61(6), 683-697, 2009. 14.Z. Lin, H. Fang, J. Xu and J. Zi, “Lattice Boltzmann model for photonic band gap materials,” Phys. Rev. E, 67(2), 025701, 2003. 15.M. Mendoza and J. D. Muñoz, “Three-dimensional lattice Boltzmann model for electrodynamics,” Phys. Rev. E, 82, 056708, 2010. 16.M. Mendoza and J. D. Muñoz, “A Reliable Lattice-Boltzmann Solver for Electrodynamics: New Applications in Non-linear Media,” PIERS Proceedings, Marrakesh, Morocco, Mar. 20-23, 1632–1636 ,2011 17.C.-H. Wang, Y.-R. Chen and J.-R. Ho, “Lattice Boltzmann Study of Coupled Thermal-Electromagnetic Model for Temperature-Dependent Dielectric Media Heated by a Single Electromagnetic Pulse,” Journal of The Chinese Society of Mechanical Engineers, 31(5), 413-424, 2010. 18.D. A. Wolf-Gladrow, Lattice-gas cellular automata and lattice Boltzmann models, Springer, Berlin, 2000
|