(3.236.231.61) 您好!臺灣時間:2021/05/15 23:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:謝欣怡
研究生(外文):Hsieh, Hsin-Yi
論文名稱:濺鍍輔助電漿化學氣相沉積成長奈米複合類鑽石薄膜之奈米磨潤性能與機械性質探討
論文名稱(外文):Tribological Performance and Mechanical Property of Nanocomposite Diamond-like Carbon Films Deposited by Sputtering-assisted Plasma Chemical Vapor Deposition
指導教授:鄭友仁
指導教授(外文):Jeng, Yeau-Ren
口試委員:林仁輝洪昭南邱源城李榮宗
口試日期:2011-07-28
學位類別:碩士
校院名稱:國立中正大學
系所名稱:機械工程學系暨研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:117
中文關鍵詞:類鑽碳奈米複合薄膜濺鍍輔助電漿氧化鋯破壞韌性
外文關鍵詞:Diamond-like carbonNano-compositeSputtering-assisted plasmaZrO2Fracture toughness
相關次數:
  • 被引用被引用:0
  • 點閱點閱:179
  • 評分評分:
  • 下載下載:14
  • 收藏至我的研究室書目清單書目收藏:0
類鑽碳 (Diamond-Like Carbon, DLC) 薄膜是能最接近鑽石性質的一種薄膜,具有和天然鑽石相近的性質,如高硬度、低摩擦係數、高抗磨耗性、膜緻密度高、電絕緣性佳、熱傳導性佳、生物相容性高、抗強酸強鹼、耐腐蝕性且類鑽碳薄膜可在低溫成長等優異的性質,DLC的應用也朝向精密、耐磨耗與多功能性的發展。由於DLC的高硬度延展性不好,容易導致類鑽碳膜產生脆性破壞,進而產生薄膜韌性不佳的缺點。
本研究之主要目的是以非晶質(amorphous) 類鑽碳膜為基底,加入第二相奈米粒子成長奈米複合類鑽碳薄膜,再利用濺射輔助電漿化學氣相沈積系統(Sputtering-assisted Plasma Chemical Vapor Deposition System),沈積含ZrO2和Si3N4奈米粒子之類鑽碳膜,希望能提升其機械性質和磨潤性能的特性。製程上通入C2H2作為碳源,及通入Ar濺鍍YSZ及Si3N4靶材,利用直流脈衝功率及基板偏壓所提供濺鍍槍濺射靶材及離子撞擊基板所需的能量,藉由改變不同直流脈衝功率、基板偏壓、奈米粒子等鍍膜參數,並以AFM、TEM、Nano-Indentation、Nano-Scratch、Raman、Vickers Toughness分析,探討這些鍍膜參數對於奈米薄膜的表面形貌、硬度、韌性、磨耗等機械與磨潤性質的影響。
研究結果顯示,當基板偏壓和直流脈衝功率增加,薄膜有石墨化的趨勢,薄膜中的sp3鍵結含量低,薄膜的硬度及楊氏係數值下降。而且當基板偏壓增加時,其奈米粒子尺寸和團簇現象會越明顯,使薄膜的表面粗糙度和摩擦係數增加,而薄膜破壞韌性會因為添加第二相奈米粒子而使韌性強度上升。

Diamond-like carbon (DLC) is a material with attractive properties, such as high hardness, low friction coefficients, high wear resistance, chemical inertness, high electrical resistivity, excellent bio-compatibility, a relatively high optical gap, and low deposition temperature as diamond. DLC is a brittle material, the investigations about the fracture toughness behavior of DLC are still limited. Thus, the aim of current study to discuss the mechanical and tribological properties of DLC.
In the current research, amorphous hydrogenated diamond-like carbon films were deposited on the silicon by sputtering-assisted plasma chemical vapor deposition using acetylene as the carbon source, and argon was used to sputter YSZ and Si3N4 target. This current study adding ZrO2 and Si3N4 nanoparticles to DLC film can improve the mechanical and tribological properties. Then, the properties of the DLC films were investigated by AFM、TEM、Nano-Indentation、Nano-Scratch、Raman
spectroscopy and Vickers Toughness.
The results reveal that the bias voltage increasing, the ratio of sp3 to sp2, hardness and Young’s modulus is decreasing. With the bias voltage increasing, the size and syntropia of nanoparticles is significant. Because of that, the friction coefficient, surface roughness and fracture toughness
of the film is increasing.

中文摘要 i
Abstract ii
致謝 iii
目錄 iv
表目錄 viii
圖目錄 ix
第一章 緒論 1
1-1 前言 1
1-2 類鑽碳薄膜之機械性質探討 3
1-3 研究動機與目的 6
第二章 理論基礎 11
2-1 類鑽碳膜 11
2-1-1 類鑽碳膜之結構 11
2-1-2 類鑽碳膜之成長機制 15
2-2 奈米複合薄膜理論 19
2-3 奈米材料簡介 23
2-3-1 氧化鋯簡介 23
2-3-2 氮化矽簡介 24
2-4 濺鍍輔助電漿化學氣相沈積系統 26
2-4-1 複合相薄膜沈積原理 26
2-4-2 濺鍍(Sputtering) 原理 27
2-4-3 電漿原理 29
2-4-4 化學氣相沈積法 33
2-5 機械性質量測原理 34
2-5-1 硬度與楊氏模數 34
2-5-2 奈米壓痕之接觸力學理論 36
2-5-3 薄膜破裂韌性機制 41
2-5-4 附著力 50
2-6 磨潤性能量測原理 53
2-6-1 摩擦力與摩擦係數 53
2-6-2 表面粗糙度 55
2-7 結構分析 56
2-7-1 拉曼散射光譜 56
2-7-2 類鑽碳的拉曼散射光譜 57
第三章 實驗設備及實驗程序 70
3-1 實驗流程 70
3-2 實驗裝置及試片製作 71
3-2-1 類鑽碳薄膜沈積系統 71
3-2-2 試片製作 72
3-3 薄膜材料機械性質分析方法 73
3-3-1 奈米壓痕機械性質量測(Nano-indentation) 73
3-3-2 奈米刮痕量測(Nano-Scratch) 75
3-3-3 破裂韌性量測(Fracture Toughness) 76
3-4 薄膜材料微結構分析方法 77
3-4-1 拉曼光譜分析(Raman Scattering Spectroscope) 77
3-4-2 X光薄膜繞射儀微結構分析 78
3-4-3 掃描式電子顯微鏡(Scanning Electron Microscope, SEM) 表面形貌觀察 79
3-4-4 原子力顯微鏡(Atomic Force Microscope, AFM) 表面形貌分析 79
3-4-5 穿透式電子顯微鏡(Transmission Electron Microscope, TEM) 分析 80
第四章 結果分析與討論 86
4-1 Raman光譜分析 86
4-2 薄膜奈米壓痕硬度及楊氏係數分析 88
4-2-1 不同的鍍膜參數 88
4-2-2 參雜不同的奈米粒子 89
4-3 TEM微結構分析 90
4-4 薄膜XRD分析 91
4-5 薄膜破壞韌性分析 92
4-5-1 不同鍍膜參數 92
4-5-2 參雜不同的奈米粒子 93
4-6 AFM表面形貌及粗糙度分析 95
4-7 薄膜奈米刮痕分析 96
第五章 結論 110
第六章 參考文獻 113

1.Spear, K.E., et al., Vapor Deposition of Crystalline Diamond, in Ceramic Engineering and Science Proceedings. 1988, 1095.
2.Angus, J.C., Y. Wang, and M. Sunkara, Metastable Growth of Diamond and Diamond-Like Phases. Annual Review of Materials Science, 1991. 21: p. 221-248.
3.Grill, A., et al., Synthetic Diamond: Emerging CVD Science and Technology, 1994: p. 91.
4.王亮鈞, 奈米複合碳膜之成長與應用. 國立成功大學化學工程系研究所博士論文. 2004.
5.Donnet, C., Condensed Matter News, 1995. 4(6): p. 9-24.
6.Gardos, M.N., K.E. Spear, and J.P.Dismukes, Synthetic Diamond: Emerging CVD Science and Technology, 1994. 5: p. 419.
7.Voevodin, A.A., et al., Friction induced phase transformation of pulsed laser deposited diamond-like carbon. Diamond and Related Materials, 1996. 5(11): p. 1264-1269.
8.Donnet, C., et al., Tribochemistry of diamond-like carbon coatings in various environments. Surface and Coatings Technology, 1994. 68-69: p. 626-631.
9.Ronkainen, H., et al., Effect of tribofilm formation on the tribological performance of hydrogenated carbon coatings. Surface and Coatings Technology, 1996. 79(1-3): p. 87-94.
10.Erdemir, A., The role of hydrogen in tribological properties of diamond-like carbon films. Surface and Coatings Technology, 2001. 146-147: p. 292-297.
11.Erdemir, A., Design criteria for superlubricity in carbon films and related microstructures. Tribology International, 2004. 37(7): p. 577-583.
12.Erdemir, A., et al., Effect of source gas chemistry on tribological performance of diamond-like carbon films. Diamond and Related Materials, 2000. 9(3-6): p. 632-637.
13.Robertson, J., Properties of diamond-like carbon. Surface and Coatings Technology, 1992. 50(3): p. 185-203.
14.Grill, A., Review of the tribology of diamond-like carbon. Wear, 1993. 168(1-2): p. 143-153.
15.Hsu, C.-Y., L.-Y. Chen, and F. Chau-Nan Hong, Properties of diamond-like carbon films deposited by ion plating with a pulsed substrate bias. Diamond and Related Materials, 1998. 7(6): p. 884-891.
16.Wu, W.-J. and M.-H. Hon, Thermal stability of diamond-like carbon films with added silicon. Surface and Coatings Technology, 1999. 111(2-3): p. 134-140.
17.Grill, A., Diamond-like carbon: state of the art. Diamond and Related Materials, 1999. 8(2-5): p. 428-434.
18.Wei, Q., et al., Improvement of wear resistance of pulsed laser deposited diamond-like carbon films through incorporation of metals. Materials Science and Engineering: B, 1998. 53(3): p. 262-266.
19.Conrad, H.B.I.J.W.a.H. and Editors, The Science of Hardness Testing and its Research Applications. ASM, 1973: p. 453.
20.Grill, A., Tribology of diamondlike carbon and related materials: an updated review. Surface and Coatings Technology, 1997. 94-95: p. 507-513.
21.Heuer, A.H., Transformation Toughening in ZrO2-Containing Ceramics. Journal of the American Ceramic Society, 1987. 70(10): p. 689-698.
22.宋健民, 超硬材料. 2000, 台灣台北: 全華科技圖書股份有限公司.
23.Kingery, W.D., H.K. Bowen, and D.R. Uhlmann, Introduction to Ceramics, 2nd Edition. 1976: John Wiley & Sons.
24.余樹貞, 晶體之結構與性質,第十二章. 1993, 台灣台北: 渤海堂文化公司.
25.Robertson, J., Amorphous carbon cathodes for field emission display. Thin Solid Films, 1997. 296(1-2): p. 61-65.
26.謝健, 電漿化學氣相沉積鈦-鋁-碳-氮系統奈米結構鍍層. 國立成功大學材料科學及工程學系研究所博士論文. 2002.
27.Bhushan, B., Chemical, mechanical and tribological characterization of ultra-thin and hard amorphous carbon coatings as thin as 3.5 nm: recent developments. Diamond and Related Materials, 1999. 8(11): p. 1985-2015.
28.張瑞發, 類鑽碳膜技術,化工資訊,四月號. 1993.
29.Clausing, R.E., et al., Diamond and Diamond-Like Films and Coatings NATO Science Series: B: Physics, 1992. 266: p. 243.
30.De Martino, C., F. Demichelis, and A. Tagliaferro, Determination of the sp3/sp2 ratio in a-C:H films by infrared spectrometry analysis. Diamond and Related Materials, 1995. 4(10): p. 1210-1215.
31.S.Eisenberg and R.Chabot, Ion-Beam Deposition of thin films of diamond like carbon. Journal of Applied Physics, 1971. 42: p. 2953.
32.Holland, L. and S.M. Ojha, Infrared transparent and amorphous carbon grown under ion impact in a butane plasma. Thin Solid Films, 1978. 48(3): p. L21-L23.
33.Garnev, I. and V. Orlinov, Evaluation and parametric modelling of abrasive wear resistance of ion-plated thin DLC films. Diamond and Related Materials, 1995. 4(8): p. 1041-1045.
34.Cuomo, J.J., et al., Vapor deposition processes for amorphous carbon films with sp3 fractions approaching diamond. Journal of Applied Physics, 1991. 70(3): p. 1706-1711.
35.Kelires, P.C., C.H. Lee, and W.R. Lambrecht, Structural studies and electronic properties of diamond-like amorphous carbon. Journal of Non-Crystalline Solids, 1993. 164-166(Part 2): p. 1131-1134.
36.Robertson, J., Deposition mechanism of a-C and a-C:H. Journal of Non-Crystalline Solids, 1993. 164-166(Part 2): p. 1115-1118.
37.Robertson, J., The deposition mechanism of diamond-like a-C and a-C: H. Diamond and Related Materials, 1994. 3(4-6): p. 361-368.
38.Robertson, J., Deposition mechanism of cubic boron nitride. Diamond and Related Materials, 1996. 5(3-5): p. 519-524.
39.Spencer, E.G., et al., Ion‐beam‐deposited polycrystalline diamondlike films Applied Physics Letters, 1976. 29(2): p. 118.
40.Poncharal, P., et al., Electrostatic Deflections and Electromechanical Resonances of Carbon Nanotubes. Science, 1999. 283: p. 1513-1516
41.Wang, Z.L., P. Poncharal, and W.A.d. Heer, Nanomeasurements of individual carbon nanotubes by in situ TEM. Pure and Applied Chemistry, 2000. 72(1-2): p. 209-219.
42.陳良益, 奈米晶體複合薄膜在磨潤與光電性質之研究. 國立成功大學化學工程系研究所博士論文. 2003.
43.Griffith, A.A., The Phenomenon of Rupture and Flaw in Solid. Philosophical Transactions of the Royal Society A, 1920. 221: p. 163-198.
44.Musil, J., Hard and superhard nanocomposite coatings. Surface and Coatings Technology, 2000. 125(1-3): p. 322-330.
45.Veprek, S., S. Reiprich, and L. Shizhi, Superhard nanocrystalline composite materials: The TiN/Si[sub 3]N[sub 4] system. Applied Physics Letters, 1995. 66(20): p. 2640-2642.
46.Veprek, S., et al., Recent progress in the superhard nanocrystalline composites: towards their industrialization and understanding of the origin of the superhardness. Surface and Coatings Technology, 1998. 108-109: p. 138-147.
47.Callister, W.D., Magnetic properties. Materials Science and Engineering: An Introduction, 5th ed., John Wiley & Sons. 1999.
48.Veprek, S., Electronic and mechanical properties of nanocrystalline composites when approaching molecular size. Thin Solid Films, 1997. 297(1-2): p. 145-153.
49.Turkdogan, E.T., P.M. Bills, and V.A. Tippett, Silicon nitrides: Some physico-chemical properties. Journal of Applied Chemistry, 1958. 8(5): p. 296-302.
50.MATSUHIRO, K. and T. TAKAHASHI. Physical properties of sintered silicon nitride controlled by grain boundary chemistry and microstructure morphology in MRS International Meeting on Advanced Materials, 1st,. 1989. Tokyo, Japan.
51.Menon, M.N., et al., Creep and Stress Rupture Behavior of an Advanced Silicon Nitride: Part I, Experimental Observations. Journal of the American Ceramic Society, 1994. 77(5): p. 1217-1227.
52.Wei, Q., et al., Microstructure evolution accompanying high temperature; uniaxial tensile creep of self-reinforced silicon nitride ceramics. Materials Science and Engineering A, 1999. 272(2): p. 380-388.
53.Wei, Q., J. Sankar, and J. Narayan, Microstructural changes due to heat-treatment of annealing and their effect on the creep behavior of self-reinforced silicon nitride ceramics. Materials Science and Engineering A, 2001. 299(1-2): p. 141-151.
54.Becher, P.F., Microstructural Design of Toughened Ceramics. Journal of the American Ceramic Society, 1991. 74(2): p. 255-269.
55.Becher, P.F., M.V. Swain, and M.K. Ferber, Relation of transformation temperature to the fracture toughness of transformation-toughened ceramics. Journal of Materials Science, 1987. 22(1): p. 76-84.
56.Hirao, K., et al., Microstructure Control of Silicon Nitride by Seeding with Rodlike β-Silicon Nitride Particles. Journal of the American Ceramic Society, 1994. 77(7): p. 1857-1862.
57.Barna, P.B., et al., Formation of polycrystalline and microcrystalline composite thin films by codeposition and surface chemical reaction. Surface and Coatings Technology, 2000. 125(1-3): p. 147-150.
58.Morikawa, K., Heat Treatment (Japanese). 1987. 31.
59.田明波 and 劉德令, 薄膜科學與技術手冊. 1991, 北京: 機械工業出版社.
60.Boussinesq, J., Application des potentiels à l'étude de l'équilibre et du mouvement des solides élastiques. 1885, Pairs: Gauthier-Villars.
61.Oliver, W.C. and G.M. Pharr, An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Identation Experiment. Materials Research Society, 1992. 7: p. 1564-1583.
62.LAWN, B.R., A.G. EVANS, and D.B. MARSHALL, Elastic/Plastic Indentation Damage in Ceramics: The Median/Radial Crack System. Journal of the American Ceramic Society, 1980. 66(9-10): p. 574-581.
63.Anthony, C. and C. Fischer, Nanoindentation. 2002: Springer.
64.Lawn, B.R., et al., Fatigue analysis of brittle materials using indentation flaws. Journal of Materials Research, 1981. 16(10): p. 2846-2854.
65.Laugier, M.T., Palmqvist indentation toughness in WC-Co composites Journal of Materials Science Letters, 1987. 6(8): p. 897-900.
66.Li, X. and B. Bhushan, Measurement of fracture toughness of ultra-thin amorphous carbon films. Thin Solid Films, 1998. 315(1-2): p. 214-221.
67.Jungk, J.M., et al., Indentation fracture toughness and acoustic energy release in tetrahedral amorphous carbon diamond-like thin films. Acta Materialia, 2006. 54(15): p. 4043-4052.
68.Archard, J.F., Contact and Rubbing of Flat Surfaces. Journal of Applied Physics, 1953. 24(8): p. 981-988.
69.Fabes, B.D., et al., The determination of film hardness from the composite response of film and substrate to nanometer scale indentations. Journal of Materials Research, 1992. 7(11): p. 3056-3064.
70.Saha, R. and W.D. Nix, Effects of the substrate on the determination of thin film mechanical properties by nanoindentation. Acta Materialia, 2002. 50(1): p. 23-38.
71.T.F.Page, W.C. Oliver, and C.J. McHargue, The deformation behavior of ceramic crystals subjected to very low load nanoindentations. Journal of Materials Research, 1992. 7(2): p. 450-473.
72.Tuinstra, F. and J.L. Koenig, aman Spectrum of Graphite. The Journal of chemical physics, 1970. 53: p. 1126-1130.
73.Capano, M.A. and N.T. McDevitt, Characterization of amorphous carbon thin films. American Vacuum Society, 1996. 14(2): p. 431-435.
74.Tamor, M.A. and W.C. Vassell, Raman ‘‘fingerprinting’’ of amorphous carbon films Journal of Applied Physics, 1994. 76(6): p. 3823.
75.Tsai, H.C., et al., Structure and properties of sputtered carbon overcoats on rigid magnetic media disks Journal of Vacuum Science & Technology A, 1988. 6(4): p. 2307.
76.Prawer, S., et al., Systematic variation of the Raman spectra of DLC films as a function of sp2:sp3 composition. Diamond and Related Materials, 1996. 5(3-5): p. 433-438.
77.Mapelli, C., et al., Common force field for graphite and polycyclic aromatic hydrocarbons. Physical Review B, 1999. 60(18): p. 12710.
78.Dillon, R.O., J.A. Woollam, and V. Katkanant, Use of Raman scattering to investigate disorder and crystallite formation in as-deposited and annealed carbon films. Physical Review B, 1984. 29(6): p. 3482.
79.Nemanich, R.J., et al., Raman scattering characterization of carbon bonding in diamond and diamondlike thin films. Journal of Vacuum Science & Technology A, 1988. 6(3): p. 1783.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top