跳到主要內容

臺灣博碩士論文加值系統

(3.229.142.104) 您好!臺灣時間:2021/07/27 06:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林子軍
研究生(外文):Tz-Jiun Lin
論文名稱:磷灰石礦物吸附水中氟離子之研究
論文名稱(外文):Adsorption study of fluoride ions from aqueous solutions by hydroxyapatite
指導教授:陳建易
指導教授(外文):Chien-Yen Chen
口試委員:范誠偉李文乾
口試委員(外文):Cheng-Wei FanWin-Chin Lee
口試日期:2011.06.22
學位類別:碩士
校院名稱:國立中正大學
系所名稱:應用地球物理研究所
學門:自然科學學門
學類:地球科學學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:84
中文關鍵詞:羥基磷灰石水熱法吸附氟離子
外文關鍵詞:HydroxyapatiteHydrothermal methodAdsorptionFluoride ion
相關次數:
  • 被引用被引用:0
  • 點閱點閱:245
  • 評分評分:
  • 下載下載:47
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要探討羥基磷灰石對氟離子的吸附行為,以不同的模型模擬實驗數據,描述吸附行為,並提出合理的吸附機制。
磷灰石礦物中以羥基磷灰石(Hydroxyapatite)應用範圍最為廣泛,化學式為Ca10(PO4)6(OH)2,為人體中骨骼及牙齒等硬組織中之主要成分,由於其良好的生物相容性(biocompatibility)及生物活性(bioactivity),近年來被廣泛應用於生醫材料領域及環境工程領域,常見應用為人工關節、骨骼填充物、牙齒修補填料及重金屬吸附材料。
本研究以水熱法合成羥機磷灰石,可以良好的控制羥基磷灰石的晶型,為一個極為有效的製備法。控制變因為溫度(90度、150度)及pH值(7、9、11),實驗結果發現溫度上升會使材料尺度增加,最顯著為控制條件在pH7下昇高溫度後從90.6±27.4(nm)增加至156.9±46.2(nm)。pH值增加會改變晶體形狀,長寬比從長柱狀5.9±1.7至短柱狀1.7±0.3。
在pH7、150℃批次下合成擁有最大比表面績 77.6086 (m3/g),並以此材料進行吸附實驗。研究結果發現吸附行為符合Freundlich等溫吸附模型;吸附動力遵循偽二階動力模型;由Arrhenius equation計算之活化能為3.199 ( )、頻率因子A值為1.7814 (s-1);吸附熱力學研究指出吸附過程之ΔG < 0,ΔH > 0,ΔS > 0,為自發性且亂度增加之吸熱反應。由pH變化對吸附容量之影響來看,在酸性條件下吸附容量較大,鹼性條件不利吸附,表示水中氫氧根多寡與吸附能力直接相關,因此吸附機制推論為離子交換,將羥基與水中氟離子做交換。綜合以上研究,得知化學吸附及物理吸附並存於反應中,並且吸附效果良好,為一種具備開發潛力之除氟吸附材料。

This study focused on hydroxyapatite adsorption of fluoride ion, using different model to simulate experimental data, describe the adsorption behavior and a reasonable adsorption mechanism.
Hydroxyapatite which is one of apatite minerals, to applications to the widest range, the chemical formula is ( Ca10(PO4)6(OH)2 ), is the main component of human body such as bones and teeth of hard tissues. Because of its good biocompatibility and bioactivity, are widely used in recent years the field of biomedical materials and environmental engineering. The common application is as artificial joints, bone filler, dental repair filler material and heavy metal adsorption .
In this study, using hydrothermal method to synthesis hydroxyapatite, have well control of hydroxyapatite crystal, is a highly effective preparation method. Controlling variables are temperature (90 degrees, 150 degrees) and pH (7,9,11), experimental results showed that the temperature rise will increase the scale of material, most notably for the control of the conditions under elevated temperature at pH7 from 90.6 ± 27.4 ( nm) increased to 156.9 ± 46.2 (nm).
Increase the pH of the crystal will change shape, aspect ratio (length/width) from long column (5.9 ± 1.7) to short column (1.7 ± 0.3). At pH7, 150 ℃ with the largest surface area of the synthesis batch performance 77.6086 (m3/g), and use this sample to do adsorption experiment. The results showed that the adsorption behavior in is similar with Freundlich isotherm model; Adsorption follows the pseudo second-order dynamic model; Calculated by the Arrhenius equation the activation energy is 3.199 (kJ/mole), frequency factor A is 1.7814 (s-1); Adsorption thermodynamics study indicated that the adsorption process of ΔG <0, ΔH> 0, ΔS> 0, the entropy increase in spontaneous and endothermic reactions. The effect of adsorption capacity by changing the pH value, in acidic conditions have the larger adsorption capacity, in alkaline conditions are unfavorable adsorption, indicating the amount of hydroxyl and water adsorption capacity is directly related to inferences of ion-exchange adsorption mechanism, the hydroxyl and fluoride ion are changing in the water. Integrate this study, the adsorption mechanism both chemical adsorption and physical adsorption
with a good effect. It’s a good material for development of the fluoride adsorption. material.

誌謝......................................................i
中文摘要.................................................iii
Abstract.................................................iv
目錄......................................................vi
圖目錄....................................................ix
表目錄....................................................xi

第一章 序論................................................1
1.1 前言................................................1
1.2 研究目的............................................2

第二章 文獻回顧與理論基礎....................................3
2.1 氟化物.............................................3
2.1.1 氟的性質與來源................................3
2.1.2 氟化物的作用與危害..................................3
2.1.3 氟廢水處理技術.....................................4
2.2 磷灰石礦物..........................................5
2.2.1 羥基磷灰石....................................6
2.2.2 製備方法......................................6
2.3 吸附理論............................................7
2.3.1 吸附現象......................................7
2.3.2 等溫吸附模型..................................8
2.3.2.1 Freundlich 等溫吸附模型.................9
2.3.2.2 Langmiur 等溫吸附模型..................11
2.3.3 吸附動力模型.................................12
2.3.3.1偽一階動力模型..........................13
2.3.3.2偽二階動力模型...........................13
2.3.4 吸附熱力學...................................14

第三章 材料與方法
3.1 整體研究流程........................................16
3.2 實驗材料...........................................18
3.3 實驗設備...........................................18
3.4 第一部分:以水熱法製備羥基磷灰石作為吸附材料...........20
3.4.1 製備方法.....................................21
3.4.2 羥基磷灰石之特性分析..........................22
3.4.2.1 X射線粉末繞射儀 (XRD)..................22
3.4.2.2 傅立葉轉換遠紅外線光譜 (FT-IR)...........23
3.4.2.3 穿透式電子顯微鏡 (TEM)..................24
3.4.2.4 比表面積分析儀 (BET)....................24
3.5 第二部份:羥基磷灰石吸附氟離子實驗....................26
3.5.1 等溫吸附實驗.................................26
3.5.2 吸附動力實驗.................................26
3.5.2.1 改變氟離子初始濃度......................26
3.5.2.2 改變吸附環境之溫度......................27
3.5.3 改變ph值之吸附平衡實驗........................27

第四章 結果與討論..........................................28
4.1羥基磷灰石之特性分析..................................28
4.1.1 XRD分析......................................28
4.1.2 FT-IR分析....................................30
4.1.3 TEM 外觀分析.................................33
4.1.4 EDS元素分析與SAED選區繞射分析..................35
4.1.5 粒徑分析.....................................39
4.1.6 比表面積分析..................................43
4.2 等溫吸附實驗........................................45
4.2.1 等溫吸附模型探討..............................45
4.2.2 劑量的影響...................................48
4.3 吸附動力實驗......................................49
4.3.1 初始濃度的影響................................49
4.3.2 溫度的影響...................................51
4.4 吸附熱力學討論......................................53
4.5 從pH值變化對吸附容量的影響探討吸附機制………………………55

第五章 結論與建議 ..........................................56

第六章 參考文獻.............................................57

附錄一 粒徑分析數據.........................................61
附錄二 BET測量資料..........................................72



Biswas K., Saha S.K. and Ghosh U.C. (2007), Adsorption of fluoride from aqueous
solution by a synthetic iron(III)–aluminum(III) mixed oxide, Industrial and
Engineering Chemistry Research,46 , 5346–5356.

C.J. Huang and J.C. Liu (1999), Precipitate flotation of fluoride-containing
wastewater from a semiconductor manufacturer, Water Research, 33,
3403–3412.

C. Sairam Sundaram, Natrayasamy Viswanathan and S. Meenakshi (2008),
Defluoridation chemistry of synthetic hydroxyapatite at nano scale: Equilibrium
and kinetic studies, Journal of Hazardous Materials, 155, 206–215.

Dexiang Liao, Wei Zheng, Xiaoming Li, Qi Yang, Xiu Yue, Liang Guo and
Guangming Zeng (2010), Removal of lead(II) from aqueous solutions using
carbonate hydroxyapatite extracted from eggshell waste, Journal of Hazardous
Materials, 177, 126–130.

Dongliang Jiang and Jingxian Zhang (2009), Calcium phosphate with well controlled
nanostructure for tissue engineering, Current Applied Physics, 9, 252–256.

E.I. Unuabonah, K.O. Adebowale and B.I. Olu-Owolabi (2007), Kinetic and
thermodynamic studies of the adsorption of lead (II) ions onto
phosphate-modified kaolinite clay, Journal of Hazardous Materials, 144,
386–395.

Guodong Zhang, Jingdi Chen, Shen Yang, Qifeng Yu, Zhili Wang and Qiqing Zhang
(2011), Preparation of amino-acid-regulated hydroxyapatite particles by
hydrothermal method, Materials Letters, 65, 572–574.

H.M.F. Freundlich (1906), Über die adsorption in lösungen , Z. Phys. Chem, 57,
385–470.

HuanYan Xu, Lei Yang, Peng Wanga, Yu Liuc and MingSheng Peng (2008), Kinetic
research on the sorption of aqueous lead by synthetic carbonate hydroxyapatite,
Journal of Environmental Management, 86, 319–328.

I. Mobasherpour, M. Soulati Heshajin, A. Kazemzadeha and M. Zakeri (2007),
Synthesis of nanocrystalline hydroxyapatite by using precipitation method,
Journal of Alloys and Compounds, 430, 330–333.

Irving Langmuir (1916), The adsorption of gasses on plane surface of glass, mica and
platinum, J. Am. Chem. Soc, 40, 1361–1368.

Jingbing Liu, Xiaoyue Ye, Hao Wang, Mankang Zhu, Bo Wang and Hui Yan (2003),
The influence of pH and temperature on the morphology of hydroxyapatite
synthesized by hydrothermal method, Ceramics International, 29, 629-633.

Jingdi Chen, Yingjun Wang, Xiaofeng Chen, Li Ren, Chen Lai, Wen He and Qiqing
Zhang (2011), A simple sol-gel technique for synthesis of nanostructured
hydroxyapatite, tricalcium phosphate and biphasic powders, Materials Letters,
65, 1923–1926.

J. Wei and Y.B. Li (2004), Tissue engineering scaffold material of nano-apatite
crystals and polyamide composite, European Polymer Journal , 40, 509–515.

Kaili Lin, Jiayong Pan, Yiwei Chen, Rongming Cheng and Xuecheng Xu (2009),
Study the adsorption of phenol from aqueous solution on hydroxyapatite
nanopowders, Journal of Hazardous Materials, 161, 231–240.

Keishiro Tomoda, Hidehiko Ariizumi, Takatomo Nakaji and Kimiko Makino (2010),
Hydroxyapatite particles as drug carriers for proteins, Colloids and Surfaces B:
Biointerfaces, 76, 226–235.

K.L. Lin, J.Y. Pan, Y.W. Chen, R.M. Cheng and X.C. Xu (2009), Study the adsorption
of phenol from aqueous solution on hydroxyapatite nanopowders, Journal of
Hazardous Materials, 161, 231–240.

Kuriakose, T.A.,Kalkura,S.N.,Palanichamy,M.,Arivuoli,D.,Dierks,K and Bocelli,G.
(2004).Synthesis of stoichiometric nano crystalline hydroxyapatite by
ethanol-based sol–gel technique at low temperature . Journal of Crystal
Growth, 263, 517–523.

Mahamudur Islam, Prakash Chandra Mishra and Rajkishore Patel (2011), Arsenate
removal from aqueous solution by cellulose-carbonated hydroxyapatite
Nanocomposites, Journal of Hazardous Materials, 189, 755–763.

Mehdi Sadat-Shojaia, Mohammad Ataia, Azizollah Nodehia and Leila Nasiri
Khanlarb (2010), Hydroxyapatite nanorods as novel fillers for improving the
properties of dental adhesives: Synthesis and application, Dental materials, 26,
471–482.

M.M. Abou-Mesalam (2004), Applications of inorganic ion exchangers:II-Adsorption
of some heavy metals ions from their aqueous waste solution using synthetic
iron (III) titanate, Adsorption, 10, 87–92.

M. Mohapatra, S. Anand, B.K. Mishra, Dion E. Giles and P. Singh (2009), Review of
fluoride removal from drinking water, Journal of Environmental Management,
91, 67–77.

Ndiaye, P.I., Moulin, P., Dominguez, L., Millet, J.C and Charbit, F (2005), Removal
of fluoride from electronic industrial effluent by RO membrane separation,
Desalination, 173, 25–32.

Niyaz Mohammad Mahmoodi, Bagher Hayati, Mokhtar Arami and Christopher Lan
(2011), Adsorption of textile dyes on Pine Cone from colored wastewater:
Kinetic,equilibrium and thermodynamic studies, Desalination, 268, 117–125.

R. Leyva-Ramos, J. Rivera-Utrilla, N.A. Medellin-Castill and M. Sanchez-Polo
(2010), Kinetic modeling of fluoride adsorption from aqueous solution
onto bone char, Chemical Engineering Journal, 158, 458-467.

R.R. Sheha (2007), Sorption behavior of Zn(II) ions on synthesized hydroxyapatites,
Journal of Colloid and Interface Science, 310, 18–26.

R.X. Liu, J.L. Guo and H.X. Tang (2002), Adsorption of fluoride, phosphate, and
arsenate ions on a new type of ion exchange fiber, Journal of colloid and
interface science, 248, 268–274.

S.C.J. Loo, Y.E. Siew, S. Ho, F.Y.C. Boey and J. Ma (2008), Synthesis and
hydrothermal treatment of nanostructured hydroxyapatite of controllable
sizes, Journal of Materials Science:Materials in Medicine, 19, 1389-1397.

S. Gao, R. Sun, Z. Wei, H. Zhao, H. Li and F. Hu (2009), Size-dependent
defluoridation properties of synthetic hydroxyapatite, Journal of Fluorine
Chemistry, 130, 550–556.

S. Lagergren (1898), About the theory of so-called adsorption of soluble substances,
Handlingar, 24, 1–39.

S. Meenakshi, Anitha Pius, G. Karthikeyan and B.V. Appa Rao (1991), The pH
dependence of efficiency of activated alumina in defluoridation of water, J.
Environ. Prot, 11, 511–513.

Sujata Singh, Pallavi Bhardwaj, V. Singh, S. Aggarwal and U.K. Mandal (2008),
Synthesis of nanocrystalline calcium phosphate in microemulsion—effect of
nature of surfactants, Journal of colloid and interface science, 319, 322-329.

Van der Houwen JAM, Cressey G, Cressy BA and Valsami-Jones E (2003), The effect
of organic ligands on the crystallinity of calcium phosphate, Journal of Crystal
Growth, 249, 572–583.

WHO (1985), Guidelines for Drinking Water Quality, 3, 1–2.

Won-Young Choi, Hyoun-Ee Kim, Se-Yoon Oh and Young-Hag Koh (2010),
Synthesis of poly (ε-caprolactone)/hydroxyapatite nanocomposites using in-situ
co-precipitation, Materials Science and Engineering C, 30, 777–780.

YingJun Wang, JingDi Chen, Kun Wei, ShuHua Zhang and XiDong Wang (2006),
Surfactant-assisted synthesis of hydroxyapatite particles, Materials letters, 60,
3227-3231.

Yingjun Wang, Shuhua Zhang, Kun Wei, Naru Zhao, Jingdi Chen and Xudong Wang
(2006), Hydrothermal synthesis of hydroxyapatite nanopowders using cationic
surfactant as a template, materials letters, 60, 1484–1487.

Y.S. Ho and G. McKay (1999), Pseudo-second order model for sorption processes,
Process Biochemistry, 34, 451–465.

Yuan Feng, Ji-Lai Gong, Guang-Ming Zeng, Qiu-Ya Niu, Hui-Ying Zhang,
Cheng-Gang Niu, Jiu-Hua Deng and Ming Yan (2010), Adsorption of Cd (II)
and Zn (II) from aqueous solutions using magnetic hydroxyapatitenanoparticles
as adsorbents, Chemical Engineering Journal, 162, 487–494.

Z.H. Cheng, A. Yasukawa, K. Kandori and T. Ishikawa (1998), FTIR study on
incorporation of CO2 into calcium hydroxyapatite, Journal of the Chemical
Society - Faraday Transactions, 94, 1501.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 陳淑敏、廖遠光、張澄清(2008)。少子化趨勢與教育改革民意調查研究。教育政策論壇,11(3),1-31。
2. 黃怡雯(2007a)。面對少子化現象學校行銷的涵義與因應策略。學校行政雙月刊,49,272-287。
3. 郭秋勳、郭美辰(2006)。少子化時期高等教育的因應策略與發展。教育研究月刊,151,46-55。
4. 黃怡雯(2007b)。少子化趨勢下學校行銷的運用策略。臺灣教育,644,17-22。
5. 張馨方(2009)。少子化趨勢對國民小學的衝擊與因應策略─以一所國小為例。學校行政雙月刊,63,47-66。
6. 張鈿富(2004)。出生人口變化對臺灣中小學教育的影響。師友月刊,449,1-3。
7. 張明正、李美慧( 2001 )。臺灣地區人口轉型後之生育趨勢與展望。人口學刊,23,93-112。
8. 王湘瀚(2004)。臺灣社會人口變遷對教育政策發展的影響。社會科教育研究,9,255-280。
9. 黃能堂(2007)。臺灣人口結構變遷對技職教育的衝擊與其因應。教育資料與研究雙月刊,74,97-114。
10. 楊忠斌、曾雅瑛(2007)。臺灣人口結構變遷的教育哲學省思。教育資料與研究雙月刊,74,23-26。
11. 蔡銘津(2008)。少子化趨勢對教育體系的衝擊與因應。研習資訊,25(5),101-108。
12. 鄭毓霖(2004)。少子化現象在教育上的因應之道-「日本經驗」。臺灣教育,630,14-20。
13. 薛曉華(2004)。少子化的教育生態轉變是危機或轉機?兩種價值觀的檢視—兼論因應少子化時代以學習者為中心的教育政策。臺灣教育,630,21-30。
14. 謝愛齡(2007)。嬰兒荒—少子女化面面觀。主計月刊,617,22-28。
15. 羅綸新(2007)。臺灣少子化現象對高等教育的衝擊與挑戰。教育資料與研究雙月刊,74,133-150。